
Analysis of Causative Attacks against SVMs Learning from
Data Streams

Cody Burkard
University of Washington, Bothell

18115 Campus Way NE, Bothell, WA 98011
cburkard@uw.edu

Brent Lagesse
University of Washington, Bothell

18115 Campus Way NE, Bothell, WA 98011
lagesse@uw.edu

ABSTRACT
Machine learning algorithms have been proven to be vulner-
able to a special type of attack in which an active adversary
manipulates the training data of the algorithm in order to
reach some desired goal. Although this type of attack has
been proven in previous work, it has not been examined in
the context of a data stream, and no work has been done to
study a targeted version of the attack. Furthermore, current
literature does not provide any metrics that allow a system
to detect these attack while they are happening. In this
work, we examine the targeted version of this attack on a
Support Vector Machine(SVM) that is learning from a data
stream, and examine the impact that this attack has on cur-
rent metrics that are used to evaluate a models performance.
We then propose a new metric for detecting these attacks,
and compare its performance against current metrics.

1. INTRODUCTION
As storage costs decrease and the amount of data col-

lected from our environment continues to increase, machine
learning classification techniques play a crucial role in our
ability to quickly and efficiently analyze the vast troves of
data that we are now able to access. Critical problems have
been tackled successfully via the use of these algorithms,
including spam filtering, network anomaly [8] and malware
detection [7], and even activity learning tasks in a pervasive
setting[9, 14]. This trend will likely continue, while little
work has been done to understand the security implications
of these techniques.

An attacker has the potential to perform two types of
attacks on a learning algorithm [2]; an exploratory attack
in which the adversary attempts to discover more about the
machine learning model and a causative attack that requires
a more powerful attacker model where the adversary may
manipulate training data. In the latter attack model an ad-
versary has the potential to cause misclassification of future
input data, which could be detrimental to the performance
of a classifier or even dangerous if the application is used

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWSPA ’17 March 24, 2017, Scottsdale, Arizona, USA
c© 2017 ACM. ISBN 978-1-4503-4909-3/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3041008.3041012

in critical systems such as smart grid load forecasting [1].
As systems such as these continue to be developed, it is im-
portant that we begin to understand how an adversary may
manipulate the system and what metrics may be used to
detect that this is occurring.

Anomaly detection systems such as clustering have been
used in the past to detect noise in the training data that is
not representative of the distribution of other data points
in a batch. When these systems are used, an adversary is
restricted in their addition of training data when attempting
a causative attack. However, a boiling frog attack [8] has
been proven in which anomaly detection does not detect that
a sample is malicious because the attack occurs gradually
over time. During a boiling frog attack, other approaches
must be used to detect that an attack is happening.

In this work, we analyze Support Vector Machines(SVMs)
as they are trained on stream data that can be modified by
an adversary. We create an attack strategy for an attacker to
perform a causative attack while under constraints imposed
by an anomaly detection defense. This attack is validated
on a system that uses SVMs for classification, and is studied
through the behavior of learning curves of various metrics.
Finally, we propose a new type of metric that is more useful
in detecting the attack in this work, and evaluate it against
other commonly used metrics.

2. BACKGROUND
In this section we provide context for the rest of this paper

by discussing metrics for machine learning, support vector
machines, and adversarial machine learning concepts. We
begin with a formal description of SVMs. We then discuss
commonly used metrics for evaluation of classification algo-
rithms, and then segue into Section 3 with a description of
adversarial machine learning concepts in SVMs.

2.1 Support Vector Machines
SVMs are a popular supervised learning technique used

to separate data points into a set of known classes. This
broader category of learners accepts a set of input sample
points paired with their classes Dtr = {(xi, yi)|xi ∈ X , yi ∈
Y}ni=1 as input, with the goal of generating an output hy-
pothesis function f that correctly classifies future input sam-
ples x. The output of these learners for every new input sam-
ple x is a corresponding prediction of that sample’s class, or
label. . To separate these samples according to their respec-
tive classes a hyperplane is learned to separate each class
from all other classes. This hyperplane is found in such a
way that it optimally minimizes classification error of Dtr

31

according to the true label values of each sample, while also
maximizing the distance of each class from the hyperplane
relative to the closest training samples to the hyperplane. A
structural risk minimization process is employed to achieve
these results, in which each sample point of Dtr that is close
to the hyperplane contributes to the empirical risk of the
hypothesis being tested, and the goal of the process is to
find a set of these support vectors that define a hyperplane
with the minimum possible risk. In this process, L(yi, f(xi))
is a loss function which defines the contribution to empirical
risk of each data sample in Dtr. If new samples are added
to the training set that reside near the learned hypothesis
fo, their loss increases, potentially causing the hyperplane
to shift. This idea will be visited further in Section 6.

2.2 Metrics
The ability to evaluate the performance of a classifier as it

is learning is essential when selection of a machine learning
model is occurring. A variety of performance metrics are
available for this purpose. In this work, we will focus on
accuracy and empirical risk of an SVM model to interpret
how well a model is learning. We also evaluate the predic-
tive accuracy of the model using k-fold cross validation. In
addition to these metrics and methods, we present another
metric that may help to detect attacks, such as the attack
we present in this paper.

2.3 Attacking SVMs
Support Vector Machines have been shown to be vulnera-

ble to causative attacks [4, 15], in which the attacker is able
to modify the learner based on the addition of new samples
or the change of training sample labels. In an incremen-
tally learning setting, these attacks may be performed if the
attacker can access the data stream. In this case, every ad-
ditional sample that is sent to the learner by the attacker
may be used to update the trained model. Depending on the
goal of the attacker, this change could be an indiscriminate
attack, where the malicious samples have a general but dra-
matic effect on the model’s decision boundary, or a targeted
attack, in which the attacker is attempting to misclassify a
specific part of the feature space, or even a specific sam-
ple. In this work, we focus on the impact and detection of a
targeted attack on a batch learning classifier as its training
data is update.

3. RELATED WORK
Since the inception of adversarial machine learning, a large

amount of the work in this area has been focused on prov-
ing the vulnerability of machine learning algorithms against
causative and exploratory attacks. In [3], a taxonomy is pro-
posed for the evaluation of attacks against machine learning
algorithm along with a comprehensive analysis of the pos-
sible attacks and defenses on machine learning algorithms.
The causative attack described in this paper has been fur-
ther proven in a variety of applications such as spam filter-
ing, network anomaly detection, and malware detection[8,
13, 10, 7].

A boiling frog attacks is proven in [8], in which an anoma-
lous network detector is evaded by performing a causative
attack on the Principal Component Analysis(PCA) based
detector. In [6], a causative attack is implemented to max-
imally decrease performance accuracy of a class by inputting
an optimized mislabelled sample somewhere within that classes

feature space. The attacked algorithm in this work is an
incrementally learning SVM. This attack uses a gradient
descent approach to optimizing the attack point. A label
flipping attack is examined by Xiao et al.[15] in which an
adversary is able to flip a set of arbitrary labels in a train-
ing data set to maximize the accuracy loss of the resulting
model. This approach once again relies on a gradient de-
scent approach to optimizing the attack point. Later in [4],
a framework for analyzing causative attacks against SVMS
is proposed.

Little work has been done to provide metrics specifically to
understand how vulnerable a system is to machine learning
attacks. In [11], classifier robustness is calculated according
to the impact that an adversary may have on a learning
algorithm.

4. SYSTEM DESCRIPTION
In this section, we define the learning system that we eval-

uate in this work. The setup of this system is described,
followed by the goal of the learner and a naive defense mech-
anism that is in place to defend it from attacks.

4.1 System Setup
An SVM binary classifier is used to evaluate the work

of this paper. The learner is constructed in a supervised
manner based on input from a data stream. After receiving
an initial training data set from the stream, the model is
created based on this data and evaluated by a set of metrics
to determine how well it is performing, including predictive
accuracy, test accuracy, and empirical risk.

A batch of size b samples is drawn from the same proba-
bility distribution as the original training data and used to
determine the accuracy of the model. This batch is drawn
ten times, and the average of this accuracy score is used as
the final accuracy metric. Predictive accuracy is estimated
using k-fold cross validation with five folds. Finally, empir-
ical risk is also measured.

To continue learning the probability distribution that gen-
erates the stream data, the system continues to collecting
labelled training samples from the stream until the number
of collected samples is equal to the batch size b. Once this
batch is collected, the model is retrained on the combined
set of Dtr, the original training data, and Dbatch, the new
batch. This combined set is then stored as Dtr. Because the
distribution of data is not changing, the models performance
should slowly increase as it trains on more data, and learns
more about the shape of the original distribution. Each
time the model is retrained, the same metrics listed above
are taken in order to form a learning curve for the model.
The goal of this system is to learn the probability distribu-
tion that is generating the samples collected from its data
stream.

4.1.1 Defense
In order for this system to learn the correct hypothesis,

the data that it retrieves from the input stream must re-
flect the true probability distribution of the initial training
data. If an attacker is able to submit mislabelled data to
this stream, they may be able to perform a causative attack
on the system. To stop this from happening, a simple de-
fense mechanism is enforced by the learning system to help
prevent attacks from occurring. If a new training sample

32

contributes over r̂ in loss to the current hypothesis f0, the
sample is rejected as training data in the new batch.

5. ATTACKER MODEL
In this work, the attacker model is distinguished from

other previous works in that the ultimate goal of the attack
is to cause a single vector to be misclassified. In this section,
we define our adversary in accordance with the framework
proposed in [4]. The attacker’s goal is identified, followed
by a description of the attackers knowledge and capability.
This information is then used to define an optimal attack
strategy.

5.1 Attacker Goal
The goal of this attack is to cause a victim vector, Xvict,

to be classified incorrectly. The true classification of this
vector is the corresponding label of the victim class, yvict,
so a successful attack results in the classification of Xvict

to become yatt according to the learned decision function
ft(xvict).

In order to cause a vector to be misclassified, the hyper-
plane that separates the class yvict from yatt must learn an
incorrect concept such that ft(xvict) = yatt, where ft is the
target hypothesis. In a batch classification setting, this can
be done by introducing specially crafted training examples
Datt that increase the risk of the current hypothesis, causing
it to move towards the target hypothesis.

The attackers goal is to find this set of attack samples
Datt = xi...xn that must be added to Dtr to cause the cur-
rent hypothesis to change. Each of these samples must in-
crease the risk associated with training the model on the
current hypothesis in order to cause a change.

5.2 Attacker Knowledge
The attacker in this work has full knowledge of the tar-

geted learner. Although we believe that this attack is pos-
sible on a black box by ”stealing” a learning model from an
adversary, we leave this approach to future work.

The knowledge of the attacker includes the original train-
ing data Dtr, the feature mapping of that data, the type of
classifier used as well as the parameters used by that classi-
fier, and any defense mechanisms that are employed by the
learning system. This full knowledge allows the attacker to
duplicate the model that is being attacked, and evaluate the
attack on a local model before attacking a real model.

5.3 Attacker Constraints
The previously discussed defensive measure used to pro-

tect the learner we define in this work imposes one constraint
on the attacker. The attacker may only send samples to the
model that incur a loss that is less than the value of the loss
anomaly detection defense, r̂. This introduces an upward
limit on the amount of risk that each new attack sample
x∗ may add to the current hypothesis. The constraint is
described in the following equation.

l(yi, f0(xi)) < r̂

for (xi, yi) ∈ Datt

(1)

In our experiments, this value is set to 1, which is the
worst case for the attacker because they may only introduce
attack samples that are labelled correctly according to the
current hypothesis.

5.4 Attacker Capability
Due to the existence of a local replica model, the attacker

can intelligently craft samples that are not caught by the
anomaly defense mechanism. In this work, we also model
an adversary that has full control of the data stream, and
can introduce any arbitrary set of samples into a training
batch. Although this is a very powerful adversary, we argue
that this is likely of a system that generates the data stream
is infected with malware.

5.5 Attacker Strategy
Given the attacker model described in this section, we

create an optimized attacker strategy that is simple and ef-
fective for any classification model. Instead of attempting
to directly calculate ft to find Datt, we severely limit the
potential attack samples and approximate a Datt based on
this limited selection. This approach is based on and re-
quires knowledge of the current hypothesis.

The attacker first determines a targeted vector with the
goal of misclassifying it. This vector does not have to be
part of Dtr, and can be constructed of any arbitrary val-
ues. After determining the class of this vector based on the
trained hypothesis fo, the attacker finds the closest samples
in Dtr of the opposite class, and uses that sample as the ini-
tial attack point. Once these samples are found, the attacker
constructs a first degree polynomial with them, which con-
tains all possible attack points. The attacker then iterates
through the procedure of generating attack samples, until
the targeted vector is misclassified on the local model. In
this procedure, the attacker conducts a binary search on this
polynomial to find a sample that contributes the maximum
amount of loss within the upward loss constraint of each at-
tack sample. The result of this search is used to update the
local algorithm, and is also sent to the model that is being
attacked.

In our experiments the constraint on loss for each sam-
ple is set to 1. This simplifies the algorithm used slightly
because the attacker only has to search for the closest sam-
ple to the hyperplane, which is the location of maximum
loss contribution. This modified algorithm is described in
algorithm 1.

6. EVALUATION
In the following sections, we explain the experiments con-

ducted in this paper as well as our evaluation mechanisms.
We provide a novel metric for detecting targeted attacks and
describe how it works. The experiments conducted are then
described, followed by the results of those experiments.

6.1 Stability
When analyzing the security of a machine learning model,

it is helpful to have a set of metrics that can be used to un-
derstand its state. However, different attacks have varying
impacts on the learning curves of traditional metrics such
as accuracy, predictive accuracy with k-fold cross valida-
tion, and empirical risk. These metrics may be quite helpful
in detecting an indiscriminate causative attack because that
type of attack leads to a massive reduction in classification
performance for the model, which is what they measure. On
the other hand, in the case of the targeted attack described
in algorithm 1, these metrics have three problems. First,
a targeted attack may not impact the entire feature space

33

Algorithm 1: Binary Search Targeted Attack on Clas-
sifier Model
input : Dtr, xvict, batch size, model, step size
output: Z, a set of attack points
xatt = locate closest sample to
xvict in attacking class from Dtr

y∗ = model.classify(xatt)
set t to a line constructed between xvict and xatt

x∗ = xatt

v∗ = xvict

repeat
x1 = x value of xatt

x2 = x value of xvict

diff = x2− x1
repeat

stepsize = diff
2

xTest = x1 + stepsize
testLabel = model.classify(t(xTest))
if testLabel == victimLabel then

v∗ = t(xTest)
end
else

x∗ = t(xTest)
end
diff = x2− x1

until diff < stepsize;
Z+ = {x∗, y∗}
if length(Z == batchsize) then

update local model on Z
end

send {x∗, y∗} to model under attack
until model.classify(xvict) is not y∗;

in the same way that an indiscriminate attack does, so the
learning curve should not deteriorate as quickly, making it
more difficult to detect an attack. Second, if the ratio of
attack data to benign data is small enough, these metrics
may not even suffer during a successful attack, because they
are based on average scores across many samples. Finally,
even if the learning curves are impacted enough to detect an
attack after each retrain, an analyst has no way of knowing
what portion of the feature space is under attack based on
these metrics as they are collected over time.

In order to detect a targeted attack on a batch learning
classifier as described in 4, the metrics that are calculated
each time the learner is retrained on new data must include
not only the amount of risk that is associated with each
training sample, but also the amount of risk posed to a spe-
cific portion of the learner’s feature space. In this system, all
previous training data is kept during each successive retrain-
ing of the model. We propose a stability metric that takes
advantage of this property of the learning system to provide
more information about the state of a specific portion of the
learner’s feature space.

Due to the nature of the attack described in section 5, the
portion of the feature space between the original decision
boundary fo and the victim sample xvict is misclassified by
the model after a successful attack. This causes the training
data of the victim class that falls within this portion of the
feature space to add a significant amount of risk to the hy-
pothesis learned after the attack. This could be detected by

monitoring the distance to the hyperplane of each sample in
this portion of the feature space after each training cycle.

When there are more benign training samples in one loca-
tion, they will provide more stability to that locality because
of the amount of potential loss that they will contribute as
the hypothesis approaches them. The stability metric pro-
posed in this work is based on this concept as well as the idea
of monitoring the distance of these samples to the hyper-
plane to observe changes in the feature space. To calculate
this metric for a specific location, a vector of n dimensions xs

is chosen as the central location to be monitored. A search
is done on all of the training data in the victim class to find
all samples within a chosen radius r, described as a set
Srad = x ∈ Dtr|d(xs, x) < r where d(x1, x2) is the euclidean
distance between two vectors. The distance to the hyper-
plane of these vectors is then found with the decision func-
tion df(x) of the classifier, and these values are then summed
together. Finally, this value is divided by the batch size of
the learning system in order to normalize this metric. The
formal description of this metric is below.

stability(xi) =

∑
k∈Srad

df(k)

b
(2)

6.2 Experimental Setup
The goal of the experiments described in this section is

to evaluate the feasibility of the attack in section 5 on the
system in 4, as well as show the use of new metrics such as
stability in detecting these attacks. The experiments con-
ducted in this work are described in this section along with
the parameters used to conduct those experiments.

The first set of experiments is meant to show the impact
of our targeted attack. The system under attack is initially
trained on 2000 training samples from the input stream and
is retrained on every 100 new samples. The evaluation data
contains 10000 samples drawn from the real data stream,
split up into ten evaluation data sets that are used to mea-
sure accuracy of the learner on the original probability dis-
tribution, and averaged together to get the final result. The
defense mechanism described in 4.1.1 has an r̂ value of 1.
The attacker is introduced to this system with full control
of new data samples with the goal of misclassifying a vic-
tim sample, xvict as quickly as possible. Once this sample is
misclassified, the attack continues to input new samples at
the target coordinates.

The second set of experiments conducted are meant to
evaluate the ability of the stability metric to detect a tar-
geted attack on a victim point. The same attack and system
is used for these experiments, but stability is introduced on
two separate vectors in the victim class. The radius used
for these metrics is equal to the distance of the selected vec-
tor from the hyperplane. The attack is run twice on the
same set of training data, the first time targeting one vec-
tor while the second time targeting another. These vectors
are selected for the stability measurement, and show how a
higher stability makes it more difficult for an attacker to suc-
ceed. Each time a model is retrained in these experiments,
all of the metrics described in this work are collected and
plotted on a learning curve for the model.

These tests are run using the libraries provided by scikit-
learn[12], an open source machine learning tool kit written
in python. The algorithm used for each of these experiments

34

Figure 1: Plots representing targeted attack on vector 1.

(a) Attack on Vector 1 (b) Metrics during attack on Vector 1 (c) Stability during attack on Vector 1

is an SVM with a gaussian kernel, with a penalty parameter
value of 1.0 and a gamma value of .001.

6.3 Results
The results of the experiments described above are de-

picted in the graphs in figures 1, and 2. The first graph
in each of these sets is a visualization of the attack taking
place in a two dimensional feature space. The dashed line
represents the resulting model of the attack, while the solid
line represents the models learned from the original training
data. These graphs show the ability of the simple targeted
attack described in section 5 to cause misclassification of
samples deep within a class’s feature space, without impact-
ing the entire feature space.

The second graph in each set shows the comparison of
empirical risk, cross validation scores, and average accuracy
each time the model is trained. The number of samples in
each training batch is shown as well as the instance that
the attack was successful. We notice two things about this
graph. First, although the average accuracy and cross val-
idation scores decrease at the beginning of the attack and
slightly after the success of the attack, the accuracy scores do
not change after the attack is successful because the decision
boundary no longer moves, and the cross validation score ac-
tually increases again in the attack on vector 1. Secondly,
the empirical risk also begins to lower again after the attack
occurs, because as more data is submitted near the targeted
vector the decision boundary continues to move away and
the average loss contributed by this set of malicious vectors
decreases.

The third graphs in each set depict the stability metric of
both targeted vectors as they are attacked. The comparison
of these graphs provides a great deal of information about
the model as it is under attack. First, we notice that the
variance in the stability value of these vectors as the attack
progresses is a great deal more than the variance of the other
metrics observed. Second, the stability metrics of each vec-
tor change independently of each other, because only one of
these locations in the feature space is under attack. In figure
2(a), we notice that the stability of both vectors decreases
slightly, but this is because the decision boundary really is
moving closer to both vectors, as seen in the first graph. Fi-
nally, we notice that with a higher stability value, it takes
more samples to succeed in a targeted attack on the location
being measured. In figure 2(a), vector 1 starts with a stabil-
ity value under 1.0 and is compromised by the fourth batch
of malicious data. On the other hand, figure 3(a) shows that
vector 2 has a stability score of close to 4.0 to start, and it

takes seven batches to compromise this target, almost twice
that of vector 1.

7. DISCUSSION
Our results illustrate some of the security challenges of

systems that utilize machine learning algorithms. In par-
ticular, any time an attacker is able to manipulate or add
training data to a machine learning model, they are able
to exert some amount of control over the classification of
future samples. Previous works have explored how this is
possible on a static set of training data [15], or using an in-
discriminate attack [5], but to our knowledge this is the first
targeted causative attack shown on an SVM.

Targeted causative attack have only begun to be explored,
but we believe this is a very probable type of attack in the
future as we rely more on machine learning algorithms to
make decisions based on the data from their environment.
Systems that learn from crowd sensing data may be partic-
ularly vulnerable to this type of attack because much of the
data that is used will be based on the input of untrusted de-
vices. These systems may also have to account for a chang-
ing environment and adjust to concept drift using the data
collected from these untrusted devices, which may be ma-
nipulated by an attacker or even infected with malware. As
these systems continue to be developed, it is imperative that
we develop new ways to measure changes in these systems
as well as create defense mechanisms to protect them other
than basic anomaly detection.

The stability metric from this work is shown to change
as a targeted attack occurs. Further work using this metric
may include methods for discovering what the most impor-
tant locations in feature space are for the classes within that
space, so that a system may more intelligently choose what
locations to monitor using this metric. We also argue that
this metric may be used to create a game-theoretic defense
mechanism to prevent malicious samples from having a large
impact on a decision boundary.

Finally, this is just one example of a metric that may be
used to detect targeted causative attacks. This metric is
only possible in situations in which previous training data
continues to be used to update a model. In an environment
with changing concepts or in an online learning setting, this
metric cannot be used because this training data is changing,
and other metrics may be needed to detect this attack.

8. CONCLUSION
As machine learning algorithms become more prevalent in

the technologies used in our daily lives, it is of the utmost

35

Figure 2: Plots representing targeted attack on vector 2.

(a) Attack on Vector 2 (b) Metrics during attack on Vector 2 (c) Stability during attack on Vector 2

importance that we understand what attacks are possible
against these algorithms and how different learning models
will react to those attacks. Furthermore, this analysis must
be based on various metrics that allow us to gain a deeper
insight into the behavior of these algorithms in an adversar-
ial setting. Understanding these fundamental concepts in-
creases our situational awareness in a security context, and
is the stepping stone to more elaborate and complete defense
techniques that prevent these attacks from occurring.

In this work, we have generated a new targeted attack
algorithm according to the framework presented in [4] and
empirically evaluated it against a learning system with an
anomaly detection defense. We show how this defense is
not able to stop a causative attack from occurring on this
system. Furthermore, we compare the learning curves of
multiple metrics during this attack to prove their lack of
ability to detect this attack, and provide a new novel met-
ric for identifying how stable a section of a model’s feature
space is based on the current training data. Finally, we have
discussed how this metric may be used to detect an attack.

We believe that this work provides a better understand-
ing of the threat posed to SVMs in an incremental learning
setting, and could potentially lead to further research into
generic defense techniques for the attack discussed in this
paper. By analyzing metrics that monitor samples within a
critical location a models feature space, we show how one
might detect a targeted attack as it is occurring. We ar-
gue that knowledge gained from this work could be used
to model the characteristics of an attack, leading to better
detection techniques and countermeasures.

Acknowledgements
The work presented in this paper was partially supported
through CAE Cybersecurity Grant H98230-15-1-0284.

9. REFERENCES
[1] Z. Aung, M. Toukhy, J. Williams, A. Sanchez, and

S. Herrero. Towards accurate electricity load forecasting in
smart grids. In The Fourth International Conference on
Advances in Databases, Knowledge, and Data Applications,
DBKDA, 2012.

[2] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The
security of machine learning. Machine Learning,
81(2):121–148, 2010.

[3] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D.
Tygar. Can machine learning be secure? In Proceedings of
the 2006 ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’06, pages 16–25, New
York, NY, USA, 2006. ACM.

[4] B. Biggio, I. Corona, B. Nelson, B. I. Rubinstein,
D. Maiorca, G. Fumera, G. Giacinto, and F. Roli. Security
evaluation of support vector machines in adversarial
environments. In Support Vector Machines Applications,
pages 105–153. Springer, 2014.

[5] B. Biggio, L. Didaci, G. Fumera, and F. Roli. Poisoning
attacks to compromise face templates. In 2013
International Conference on Biometrics (ICB), pages 1–7,
June 2013.

[6] B. Biggio and P. Laskov. Poisoning attacks against Support
Vector Machines. In In International Conference on
Machine Learning (ICML, 2012.

[7] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona,
G. Giacinto, and F. Roli. Poisoning Behavioral Malware
Clustering. In Proceedings of the 2014 Workshop on
Artificial Intelligent and Security Workshop, AISec ’14,
pages 27–36, New York, NY, USA, 2014. ACM.

[8] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and
J. D. Tygar. Adversarial machine learning. In Proceedings
of the 4th ACM Workshop on Security and Artificial
Intelligence, AISec ’11, pages 43–58, New York, NY, USA,
2011. ACM.

[9] B. Lagesse, C. Burkard, and J. Perez. Securing pervasive
systems against adversarial machine learning. In 2016
IEEE International Conference on Pervasive Computing
and Communication Workshops (PerCom Workshops),
pages 1–4, March 2016.

[10] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P.
Rubinstein, U. Saini, C. Sutton, J. D. Tygar, and K. Xia.
Misleading Learners: Co-opting Your Spam Filter. In
Machine Learning in Cyber Trust, pages 17–51. Springer
US, 2009. DOI: 10.1007/978-0-387-88735-7 2.

[11] B. Nelson, B. Biggio, and P. Laskov. Understanding the
risk factors of learning in adversarial environments. In
Proceedings of the 4th ACM workshop on Security and
artificial intelligence, pages 87–92. ACM, 2011.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[13] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h.
Lau, S. Rao, N. Taft, and J. D. Tygar. Antidote:
Understanding and defending against poisoning of anomaly
detectors. In Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement Conference, IMC ’09,
pages 1–14, New York, NY, USA, 2009. ACM.

[14] J. Wen, J. Indulska, and M. Zhong. Adaptive activity
learning with dynamically available context. In 2016 IEEE
International Conference on Pervasive Computing and
Communications (PerCom), pages 1–11, March 2016.

[15] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and
F. Roli. Support vector machines under adversarial label
contamination. Neurocomputing, 160:53–62, 2014.

36

