
TrustSense: An energy efficient trust scheme for
clustered wireless sensor networks

Adedayo Odesile
Department of Computing and Software Systems

University of Washington Bothell
Email: adedao@uw.edu

Brent Lagesse
Department of Computing and Software Systems

University of Washington Bothell
Email: lagesse@uw.edu

Abstract—Designing security systems for wireless sensor net-
works presents a challenge due to their relatively low compu-
tational resources. This has rendered many traditional defense
mechanisms based on cryptography infeasible for deployment
on such networks. Reputation and anomaly detection systems
have been implemented as viable alternatives, but existing
implementations still struggle with providing efficient security
without a significant impact on energy consumption. To address
this trade-off between resource consumption and resiliency, we
designed TrustSense, a reputation management protocol for
clustered WSNs. It is a semi-centralized family of algorithms that
combine periodic trust updates, spatial correlation, and packet
sequence validation at the cluster-heads’ hierarchy to relieve the
sensor nodes of unnecessary opinion queries and trust evaluation
computation. We compared the efficiency of TrustSense with
legacy reputation systems such as EigenTrust and the results
of simulations show a significant improvement in reliability and
energy usage while maintaining an acceptable path length with
varying numbers of malicious nodes. We believe the approach of
combining different techniques from various classes of intrusion
detection systems unlocks several possibilities of achieving better
results by more complex and versatile composition of these
techniques.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are comprised of spa-
tially distributed sensor nodes, observing certain phenomena
and cooperatively routing measured information to one or
more central locations. WSNs have application in a variety
of fields such as facility management, smart-homes, traffic
controls, incidence response, and other diverse areas. In gen-
eral, contemporary ubiquitous systems involving the Internet
of Things and pervasive computing include aspects of WSNs,
so they would also benefit from our research. Unlike traditional
networks, WSNs are characterized by energy constrained
nodes, dynamism in topology, and are mostly ad-hoc in nature.
As such, they are considered be easier and less expensive to
deploy. However, these advantages come at a security cost,
increasing the chances of an attacker gaining access and
eventually subverting the network through various malicious
activities. This is mostly the case in unattended and non-
tamper-proof networks where including a malicious node or
re-engineering an existing benevolent node is a real possibility.
Given the wide range applications of WSNs, the importance of
establishing an efficient means of protecting the network from
adversarial threats cannot be over-emphasized. As a result,
numerous research studies[1] on securing these systems have

been carried out in the past few decades. There have been
two broad categories of security mechanisms researched and
implemented for WSNs which are the cryptographic and non-
cryptographic techniques [2]. Cryptographic implementations
focus more on intrusion prevention through various authentica-
tion protocols mostly involving the use of digital signatures. If
the adversary eventually by-passes them and gains control of a
single node in the network, all the other nodes are considered
vulnerable. Secondly, the computational overhead created by
cryptographic implementations are unsuitable for WSNs in
most cases due to their resource constraint.

Conversely, non-cryptographic techniques like reputation
and anomaly detection systems are more concerned with
isolating adversaries that are actively participating in the
network. Current security research in WSNs [3], [4], [5],
[6], [7] is geared towards this approach as the attacker is
engaged throughout the process, constantly being faced with
the challenge of survival in the network before eventually
being isolated. Focusing on intrusion detection and isolation
as opposed to prevention also minimizes the impact it has
on the openness and flexibility of WSNs. Depending on the
implementation, this category of systems could also create
high computation and communication overhead. This brings
a challenge of balancing the trade-offs between resiliency
and energy consumption in these intrusion detection/isolation
systems which remains an active research problem.

In this paper, we developed a trust management scheme
”TrustSense” that leverages novel ideas from some existing
implementations [7], [6] to provide a rich and energy-efficient
system that achieves a better balance between resiliency and
energy trade-off. It combines the use of periodic trust-updates
and caching for reducing communication overhead, linear
spatial variogram for outlier detection and a strict reward
system to quicken the isolation of malicious nodes. Based on
our simulation test results, we were able to simultaneously
achieve resiliency despite a high percentage of malicious nodes
in the network while consuming less energy than previous
approaches.

II. RELATED WORKS

An extensive survey on detection and isolation of malicious
behaviour in WSNs was carried out by Illiano et al. [1]
where they classified these systems into anomaly detection

ar
X

iv
:2

01
1.

10
01

7v
1

 [
cs

.C
R

]
 1

9
N

ov
 2

02
0

and trust based systems respectively. The anomaly detection
systems compared reported values from sensors with an ex-
pected data model and flag a node as suspect/malicious if the
difference between measured and expected value exceeds a
certain threshold. These data models were built on different
correlation techniques. They were further classified by Illiano
et al. into four namely:

• Temporal Correlation which compares the currently
measured value of a single node with a series of its
recently measured values to detect abnormalities.

• Spatial Correlation whereby measurements sampled at
any point in time from a group of sensors observing the
same thing within a common location are examined and
outliers are flagged.

• Physical Attribute Correlation where change in mea-
sured values are compared with the constraints that
characterize the physical phenomena being observed to
detect abnormal/unrealistic changes. For example, it is
impossible to measure a temperature value of -1 Kelvin
and as such any sensor reporting that will be considered
an outlier.

• Hybrid Systems that combine two or more of the above
techniques.

[8], [9] implemented spatial correlation models under the as-
sumptions of spatial homogeneity which suggests that similar
sensors within a certain area should measure the same values
with no variation except when it random errors occur. Zhang
et al. relaxes this constraint by modeling spatial correlation as
a function of the distance between each sensor [10], thereby
allowing more variations. We focused on the spatial correlation
model because of the challenges posed by the other two. Tem-
poral correlation models make it difficult to discern between
actual incidence spikes and malicious activities because both
cases will result into violation of the correlation constraint.
The physical attribute correlation is context specific and cannot
be generalized to every WSN.

Trust-based systems measure the confidence level that the
behavior of a certain node is acceptable. While all trust
systems exhibit similar high level function in that they acquire
information, compute trust, and disseminate that trust[11], the
way trust values are computed, assigned and accessed differen-
tiates existing implementations. Gomez et al. [4] implemented
a trust algorithm, BTRM, that models the behavior of ants
in a colony whereby the ants leave pheromone traces along
a navigated path to help subsequent ants find their way to
a certain destination. The ants in this context refer to the
control packets sent by reputable nodes that modify existing
pheromones they encounter on their way from source to
destination node. The pheromones are modified by a function
that helps other sensors identify the most trustworthy (with
high probability) path to send data.

Abramov and his peers implemented TMS [6]; a trust
algorithm based on their previous trust model in [12]. The trust
model encompasses metrics that characterize different mali-
cious behaviors. Local trust of a node B from the perspective

of node A is computed as a weighted normalized difference
between the number of successful and failed interactions A
has had with B for every situation corresponding to a related
metric. Once A decides that B is misbehaving, it reports B to
the cluster head which in turn makes a final decision about B.
They compared their algorithm with the BTRM, EigenTrust
and, PowerTrust, realizing a lower resource usage and high
resiliency against most of their tested threat models except the
Sybil attacks. Hoceini et al. took a slightly different approach
in their NEES trust model implementation [7] which was
focused on conserving energy by reducing communication
overhead. They used periodic trust updates as opposed to
other trust models that compute trust values for every request.
However, their algorithm only addresses malicious packet
drops. To counter malicious nodes that perform on-off attacks
in which they behave benignly for longer periods of time to
build strong reputations and occasionally perform malicious
acts, Oh et al. [3] decided to assign a penalty to reduce the
tolerance that the system has for malicious behavior, thereby
speeding up the isolation of misbehaving nodes.

It was observed that each of the existing trust systems were
designed based on diverse concepts that addressed different
security issues. In TrustSense, we merged some of these
concepts to generate a solution that strikes an optimal balance
between efficiency and immunity.

III. SYSTEM DESIGN

The decisions that guided the design of TrustSense are
explained in this section. The first design consideration was
the threat model which was scoped as follows:

A. Threat Model

TrustSense was designed to protect WSNs against adver-
saries actively carrying out malicious activities in the network
that could range from sink-hole attacks to data falsification
while minimizing its energy footprint. Dealing with passive
listeners illegally extracting information from the network is
outside the scope of non-cryptographic mechanisms, and as
such was not considered in the design.

B. TrustSense Design Decisions

In order to improve upon existing trust management sys-
tems, we identified recurring questions in every reputation
model and addressed them in the following subsections.

Aggressive conservation of energy was a primary consid-
eration in arriving at the subsequent design decisions which
were to favor caching over computation, computation over
communication, and in order to reduce predictability of the
system from malicious nodes, heavy use of randomization was
also infused into the protocol.

1) Types of topologies system could work with: As stated
in the title, TrustSense was designed to work strictly with
a clustered topology. This is due to the heavy reliability on
cluster-heads to facilitate the trust protocol.

2) Assumptions that could be made about the nodes in
the network: The communication between a node and its
neighbors are assumed to be reliable, hence, this will not
work for intermittent high-latency, opportunistic or very sparse
networks. Secondly, the cluster-heads are assumed to be higher
power tamper-proof nodes with longer range of communica-
tion such that they could reach out to other cluster-heads and
all the sensors within their respective clusters via one-way
multi-casts.

3) Prior information needed: In order to facilitate co-
ordination and control by the cluster-heads, the following
list of parameters need to preloaded: trust update period,
maximum outlier thresholds, median and high reputation value
thresholds, packet relay and consistency reward rate, packet
loss and outlier punishment rate, and spatial relevance.

4) How new nodes get reputation information: On deploy-
ment of nodes into the network, and subsequent inclusion of
new nodes, a pseudo-random Id is generated for each of them.
Every node is responsible for getting its registration packet
to the nearest cluster-head. Only then is the node considered
to be part of the network or else the cluster-heads will drop
any data reported from it. Since there is a possibility of the
new nodes being surrounded mostly by attackers, a directional
flooding protocol is used to ensure that the registration packet
gets delivered to a cluster-head as shown in figure 1.

Fig. 1. Directional Flood Protocol

New nodes have no idea of the closest cluster-head’s lo-
cation, hence they broadcast registration packet to all their
neighbors. Registered benevolent neighbors will examine the
packet for location information and forward only if they are
closer to the cluster-head than the new node. The only caveat
is if the new node is totally surrounded by sink-holes, it is
ineluctably denied from joining the network.

On reception of the registration packet, the cluster-head
adds new node’s information to its local-cluster table and
it is subsequently assigned a default trust value interpolated
between the minimum good and medium threshold as:

defaulttrust = 0.25 ∗ gd+ 0.75 ∗md (1)

. However, if the node was coming from another known cluster,
its Id will be detected in the cluster-head’s global trust table,

hence its trust value will be assigned from the appropriate
entry. To aid with spatial correlation computation, a location
graph encoded as a vector of coordinates in each entry on
the local trust table is updated if newly added node is close
enough to be a neighbor of the node corresponding to each
entry. The node information will automatically be included in
the next local and global update. Algorithm 1 demonstrates
how the registration process occurs.

Algorithm 1 New Node Registration
Require: lclTableCount < maxCount

if lclTable.contains(regPacket.Id) then
return

end if
defTrust← 0.25 ∗ goodThrsh+ 0.75 ∗mediumThrsh
if glbTable.contains(regPacket.Id) then
defTrust← glbTable.get(regPacket.Id).trust

else
glbTable.add(GlobalEntry(regPacket.Id, defTrust))

end if
newEntry ← lclT rust.add(LocalEntry(regPacket.Id,
defTrust, regPacket.location, regPacket.IPLink))
for all e IN lclTable do

if e.Id 6= newEntry.Id then
if Abs(e.location − newEntry.location) <
maxRange then
e.spatialNeighbors.add(newEntry.Id)
newEntry.spatialNeighbors.add(e.Id)

end if
end if

end for

5) How trust/reputation evaluated: TrustSense uses peri-
odic trust updates. As opposed to constantly querying neigh-
bors about a potential forwarding nodes, getting reputation
information is only a matter of doing a simple look-up on
your local cache which is guaranteed to be consistent with
every other node’s opinion. This is because the cached trust
information is all coming from one source; the cluster-head.

For fair distribution of data forwarding to give newer nodes
a chance to build their reputation, a pseudo-random path
selection seed is also attached to the trust updates and is
constantly regenerated in subsequent updates. This seed is
passed into a link selection function described in Algorithm 2.
The seed is used to randomly select a trust range which could
either depict a highly trusted, trusted or suspicious node with
the probability distribution skewed to the highly trusted nodes
as shown in algorithm 2.

6) Representation of trust: We represented trust as any
real number ranging from 0 to 1. We then chose 0.25 as the
minimum trust value a node must have to be considered trusted
(medium threshold), and 0.75 for highly trusted nodes. Any
node below 0.25 is considered a primary suspect. Once the
trust value falls below 0, node is black-listed from the network.
These values can be modified, but they produced good results
in simulation.

Algorithm 2 Link Selection Function
Require: seed ≤ 100 AND ≥ 0

minTrust← 0
maxTrust← 1.0
if seed < 60 then
minTrust← goodThrs

else if seed > 60 AND seed < 90 then
minTrust← medThrs
maxTrust← goodThrs

else
maxTrust← medThrs
minTrust← double.minvalue

end if
candidateNodes← empty
repeat

for all n IN neighbors.distancemap do
if n.distancetoCh ≤ this.distanceToCh then

currTrust← defaultTrust
if trustTable.get(n.id) 6= NULL then

currTrust← trustTable.get(n.id)
end if
if currTrust ≥ minTrust AND currTrust ≤
maxTrust then
candidateNodes.add(n)

end if
end if

end for
if candidateNodes.empty then

if minTrust ≡ goodThrs then
minTrust← medThrs
maxTrust← goodThrs

else if minTrust ≡ medThrs then
minTrust← double.minV alue
maxTrust← medThrs

else
maxTrust← double.minvalue

end if
end if

until candidateNodes.count > 0 OR maxTrust ≡
double.minvalue
if candidateNodes.count > 0 then
size← candidateNodes.size
forwardingNode← candidateNodes.get
(seed MOD size)

end if

7) Trust management/distribution: Trust information is
maintained by cluster-heads in two different tables. A local
table containing a rich set of details about nodes within
its cluster and a global table containing an Id to reputation
mapping of both intra and inter cluster sensor nodes within
the network. Every trust update period, a global update occurs
where all cluster heads exchange a minified version of their
local trust tables containing just Ids and trust values, and a
list of nodes ids they have black-listed in their local clusters
in order for other cluster-heads to remove them from their
global trust tables.

Subsequently, a local update is triggered where every
cluster-head multi-casts relevant information from their local
trust table to nodes registered within their respective cluster.
Each node sieves out only information concerning its neigh-
bors and updates its local trust cache and distance map if
needed. The newly updated black-list is also sent along with
the updates so nodes are aware of the sensors they should
avoid.

8) How reputation is computed: Trust computation is car-
ried out by cluster-heads. To reduce computational complexity,
we use simple increments and decrements for rewards and
punishment respectively. This approach has been shown to
be effective in prior work [13]. The values to be added or
deducted in both cases are part of the initialization parameters
embedded in the cluster-head. However, these values are not
always fixed, especially in cases where reward/punishment is
spread amongst multiple nodes.

9) Classification of activities: Good behaviors consist of
a) reporting accurate data values, b) consistently delivering
packets to the cluster heads with minimal loss, and c) for-
warding packets on behalf of other sensors. On the other hand,
a) reporting suspicious data values, b) delivering packets out
of order, and c) selective forwarding or total route denial are
considered punishable.

10) Identification of good behavior and isola-
tion/punishment of bad ones: Based on the previous
subsection, the list of good and bad behaviors are seen to be
just one-to-one mapping of contrasting activities; meaning
the same algorithm holds for identifying a good behavior and
its direct bad opposite.

Starting with data accuracy, a spatial correlation tech-
nique based on a linear variogram as demonstrated by Zhang
et al. in [10] was used. Using a variogram relaxes the constraint
of every sensor within a spatial domain having to report the
same values. An expected value was computed as a weighted
average of values acquired from one-hop neighbors and the
actual reported data value from the sensor, with the weights
being a linear function of the distance between neighboring
node and the actual sensor whose value is being examined. If
the difference between expected value and the actual value is
greater than a certain threshold, data is flagged as outlying.
This computation is carried out by the cluster head before
data bundling for the base-station. Below is the equation that

models the expected value E(x) for an arbitrary sensor x:

Wi =
d(x, i)

dmax
(2)

E(x) =
(
∑n

i Wi ∗ V (i)) + V (x)

(
∑n

i Wi) + 1
(3)

In equation 2, the spatial weight is computed using the
linear variogram function where d(x,i) represents the distance
between sensor x and neighbor i, and dmax is the maximum
one-hop distance between two sensors. In equation 3, E(x) is
the expected value for sensor x and V(x) is the actual value
reported by sensor x which is infused into the variogram as
the most influential value in computing E(x).

If E(x) and V(x) are consistent, the node x is rewarded
with 50% probability by incrementing its trust value by the
consistency reward rate. On the other hand, the node has its
outlier counter O(x) incremented in the local trust table. If
O(x) becomes equal to the maximum event outlier sequence, it
indicates that something else must be wrong around the node’s
spatial domain for the consistent outlying values which could
be a concentrated incidence spike or a defect in the node. Such
incidents are reported to the base station to resolve. However,
if the node reports a consistent value before the maximum
outlier sequence is reached, it depicts (with high probability)
an intentional on-off malicious data injection and node is
punished immediately by having its trust value decremented
in the trust table. Its O(x) value is also reset to 0.

For packet forwarding and delivery, every data sample
originating from an arbitrary node is tagged with its node
Id and a data sequence. On random occasions, with roughly
50% probability, the cluster-head carries out a packet loss/drop
inspection. It checks for the chronology of a registered node
x’s reported data packets by comparing the measured data
sequence S(x) and with the one currently cached in the local-
trust table S(xcached). If S(x) - S(xcached) is not equal to one,
it means a data packet was skipped hence, the cluster-head
decides to punish suspect nodes. However, nodes are rewarded
for forwarding with a 50% probability if sequence numbers
were consistent. Using the last generated path selection seed,
cluster-head estimates the most probable path missing/reported
packet must have travelled with the link selection function
described in algorithm II and randomly distributes punish-
ments/rewards across nodes included in the path. This list is
not exclusive of the originating node.

Lastly, in keeping the local-trust table up to date, cluster-
head reduces the spatial presence value of any node that missed
a data bundling window. If node reports any value before
hitting a spatial presence of 0, it is reset back to 1, or else the
node is removed from both the local and global trust table.

The reputation model was tested through simulations using
the TRMSim-WSN v0.5 developed by Abramov et al. [14].

IV. EXPERIMENTAL SIMULATIONS AND RESULTS

We conducted experiments using two broad scenarios. The
first one is such that the malicious nodes stays the same

throughout the run, and the second in which the nodes os-
cillates between malicious and benevolent status at random
while still maintaining the percentage of malicious nodes in
the network. Under each scenario, we increased the percentage
of malicious nodes in 10% steps and recorded the average
satisfaction, path to reliable servers and relative energy con-
sumption for 100 sensors executing 30 times per run which
is the minimal number of samples needed to approximate a
normal distribution. In all cases, TrustSense was compared
with existing trust models implemented in the simulator which
includes BTRM [4], EigenTrust [5], PowerTrust [15] and
PeerTrust [16].

Figure 3 and 4 show the energy consumption measured
as a function of transmitted packet distance for both stable
and oscillating adversaries. Interestingly, there is no visible
relationship between the percentage of malicious nodes and the
energy consumed in all five trust models. EigenTrust’s energy
usage was seen to exceed the rest in order of magnitude. This
is expected as it was designed mainly for traditional P2P sys-
tems and not WSNs. The other trust models consumed similar
amount of energy except for PeerTrust which was significantly
lower with extreme percentages of malicious nodes while
peaking at approximately 50% threat level. This is because
the algorithm is based on certainty functions that require more
computation to distinguish malicious and benevolent nodes
when they are fairly equal in number. TrustSense consumed
the least amount of energy in most of the threat level cases
due to reduced communication overhead using periodic trust
updates and caching of neighbor reputation information.

Figure 5 and 6 show the accuracy plot which represents the
probability of getting a satisfactory service/delivery. BTRM
and PeerTrust were seen to drop significantly in this regard
once the threat level crosses 60% while the network infiltrated
with 90% of malicious nodes. As expected, worse results were
realized in the oscillating adversary mode for all trust models.
EigenTrust happened to be the most stable and decreased
steadily with increasing threats while PowerTrust fluctuated
but maintained an approximately equal level of accuracy with
EigenTrust. TrustSense maintained a competitive value just
below EigenTrust.

The average number of hops taken to reach a reliable
cluster-head/server is shown in figure 7 and 8. BTRM had the
fewest hop counts while the others took over twice the path
length to successfully deliver packets. Except for PeerTrust,
other trust models showed a fairly positive correlation between
the threat level and the average path length. TrustSense was on
par with the majority of other trust models due to randomness
in its link selection entry algorithm that may not always pick
the closest node to the cluster-head.

After examining all three metrics and their relative impor-
tance in determining a quantitative estimation of the energy-
security trade-off, we normalized and assigned respective
weights to them in order to arrive at a percentage raw score.

AN =
A

Amax
(4)

(a) Average Energy Usage Plot (b) Average Accuracy Plot (c) Average Path Length Plot

Fig. 2. Static Performance

(a) Average Energy Usage Plot (b) Average Accuracy Plot (c) Average Path Length Plot

Fig. 3. Oscillating Performance

PN = 1− P

Pmax
(5)

EN = 1− E

Emax
(6)

Score = (WA ∗AN) + (WP ∗ PN) + (WE ∗ EN) (7)

Where A = accuracy, P = average path length, E =
average energy usage, and N is the normalized flag. Amax

was set to 100%, Pmax was set to the total number of
sensors in the network, basing the value on an assumption
that a packet transverses the whole network in worst case
scenarios, and Emax was set to the nearest 100,000 from the
maximum recorded value because there is nothing within the
simulation limiting/capping energy consumption. The values
40, 20 and 40 were assigned to the weights WA, WP , and
WE respectively to add up to a maximum trade-off score of
100. The average path length was considered least important
because it is more strongly related to latency than security or
energy.

As seen from figures 4 and 5, TrustSense held the highest
score in all cases where the malicious nodes make up over 20%
of the network. EigenTrust had a significantly lower score than
others in all cases due to its heavy resource usage. The table
I shows the average score for all reputation systems in order
of highest to lowest.

Fig. 4. Energy-Security Trade-off Score Plot

A. Discussion

It could be seen from the above test-results that TrustSense
offers a promising advancement in trust/reputation system
implementations with respect to resource management and
intrusion detection. It opens the potential to producing more
miniaturized and longer lasting sensors that will utilize the
extra available energy on functional computations with an
acceptable level of security for malicious insiders. However,
there are still some limitations to the system that confines it
applicability in general:

Fig. 5. Energy-Security Trade-off Score Plot(Osc)

TABLE I
AVERAGE TRADE-OFF SCORE

Reputation
System

Static
Network

Oscillating
Network

Average
Overall

TrustSense 76.35660327 76.44306371 76.39983349

PeerTrust 72.58753665 68.95800678 70.77277172

BTRM 70.38680544 68.41885262 69.40282903

PowerTrust 71.13915581 67.25755844 69.19835713

EigenTrust 52.14577244 48.92040303 50.53308774

• As with other trust/reputation systems, there are topology
constraints and TrustSense is not an exception as it can
only function in a clustered network.

• It might be more expensive getting tamper-proof and
long-range cluster-head nodes to facilitate the trust man-
agement and evaluation.

• TrustSense will not work on highly latent networks like
opportunistic systems due to the assumption of reliable
and near-real-time communication amongst nodes.

In the future, we plan to address these limitations in our
system in such a way that the balance attained between
reliability and energy-efficiency is not skewed.

V. CONCLUSION AND FUTURE WORK

We conceptualized and prototyped TrustSense, a
trust/reputation system for clustered wireless sensor networks
that utilizes energy conservation techniques like caching and
periodic trust-updates from cluster-heads to attain minimal
resource overhead. We also incorporated data anomaly
detection using spatial correlation methods, packet loss
detection and path estimation. The simulation was carried
out using TRMSim-WSN. We compared TrustSense with
four other trust reputation systems (PowerTrust, EigenTrust,
BTRM and PeerTrust) based on three common metrics which
are the accuracy, average path length to a reliable server
and average energy consumption. The experimental results

show a significant improvement in the energy-to-resiliency
trade-off with varying percentages of malicious nodes in the
network both in static and oscillating adversary scenarios.
We believe this is an additional step in the right direction
towards achieving a highly versatile and energy efficient trust
reputation scheme for sensor networks.

REFERENCES

[1] V. P. Illiano and E. C. Lupu, “Detecting Malicious Data Injections in
Wireless Sensor Networks: A Survey,” ACM Comput. Surv., vol. 48, pp.
24:1–24:33, oct 2015.

[2] B. Yu and M. P. Singh, “An Evidential Model of Distributed
Reputation Management,” in Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems: Part
1, ser. AAMAS ’02. New York, NY, USA: ACM, 2002. [Online].
Available: http://doi.acm.org/10.1145/544741.544809

[3] C. O. O. Hyun Seo, “A Malicious and Malfunctioning Node Detection
Scheme for Wireless Sensor Networks,” Wireless Sensor Network,
vol. 04, no. 03, 2012.

[4] F. G?mez M?rmol and G. Mart?nez P?rez, “Providing trust in wireless
sensor networks using a bio-inspired technique,” Telecommunication
Systems, vol. 46, pp. 163–180, 2011.

[5] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The Eigentrust
Algorithm for Reputation Management in P2p Networks,” in Proceed-
ings of the 12th International Conference on World Wide Web, ser.
WWW ’03. New York, NY, USA: ACM, 2003, pp. 640–651.

[6] E. Abramov, E. Basan, and O. Makarevich, “Trust Management System
for Mobile Cluster-based Wireless Sensor Network,” in Proceedings
of the 8th International Conference on Security of Information and
Networks, ser. SIN ’15. New York, NY, USA: ACM, 2015.

[7] O. Hoceini, S. Talbi, and R. Aoudjit, “A New Trust Management
Scheme with Energy Efficiency in Wireless Sensor Networks
(NEES),” in Proceedings of the International Conference on Intelligent
Information Processing, Security and Advanced Communication, ser.
IPAC ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2816839.2816873

[8] W. Wu, X. Cheng, M. Ding, K. Xing, F. Liu, and P. Deng, “Localized
Outlying and Boundary Data Detection in Sensor Networks,” vol. 19,
aug 2007.

[9] E. C. H. Ngai, J. Liu, and M. R. Lyu, “On the Intruder Detection
for Sinkhole Attack in Wireless Sensor Networks,” in 2006 IEEE
International Conference on Communications, vol. 8, jun 2006, pp.
3383–3389.

[10] Y. Zhang, N. Hamm, N. Meratnia, A. Stein, M. van de Voort, and
P. Havinga, “Statistics-based outlier detection for wireless sensor net-
works,” International Journal of Geographical Information Science,
vol. 26, no. 8, pp. 1373–1392, aug 2012.

[11] B. Lagesse, M. Kumar, J. Paluska, and M. Wright, “DTT: A Distributed
Trust Toolkit for pervasive systems,” in IEEE International Conference
on Pervasive Computing and Communications, 2009. PerCom 2009,
Mar. 2009, pp. 1–8.

[12] “DEVELOPMENT OF A SECURE CLUSTER-BASED WIRELESS
SENSOR NETWORK MODEL.” [Online]. Available: http://izv-tn.tti.
sfedu.ru/?p=5884&lang=en

[13] B. Lagesse, M. Kumar, and M. Wright, “AREX: An Adaptive System
for Secure Resource Access in Mobile P2p Systems,” in Eighth Inter-
national Conference on Peer-to-Peer Computing , 2008. P2P ’08, Sep.
2008, pp. 43–52.

[14] F. G. Marmol and G. M. Perez, “TRMSim-WSN, Trust and Reputa-
tion Models Simulator for Wireless Sensor Networks,” in 2009 IEEE
International Conference on Communications, jun 2009.

[15] R. Zhou and K. Hwang, “PowerTrust: A Robust and Scalable Reputation
System for Trusted Peer-to-Peer Computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 4, pp. 460–473, apr 2007.

[16] L. Xiong and L. Liu, “PeerTrust: supporting reputation-based trust for
peer-to-peer electronic communities,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 7, pp. 843–857, jul 2004.

http://doi.acm.org/10.1145/544741.544809
http://doi.acm.org/10.1145/2816839.2816873
http://izv-tn.tti.sfedu.ru/?p=5884&lang=en
http://izv-tn.tti.sfedu.ru/?p=5884&lang=en

	I Introduction
	II Related Works
	III System Design
	III-A Threat Model
	III-B TrustSense Design Decisions
	III-B1 Types of topologies system could work with
	III-B2 Assumptions that could be made about the nodes in the network
	III-B3 Prior information needed
	III-B4 How new nodes get reputation information
	III-B5 How trust/reputation evaluated
	III-B6 Representation of trust
	III-B7 Trust management/distribution
	III-B8 How reputation is computed
	III-B9 Classification of activities
	III-B10 Identification of good behavior and isolation/punishment of bad ones

	IV Experimental Simulations and Results
	IV-A Discussion

	V Conclusion And Future Work
	References

