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What Truly Matters in Trajectory Prediction for Autonomous Driving

Secret Sauce: Balancing computation speed vs prediction accuracy

Single sentence describing the work: The paper describes the importance
of trajectory planning while comparing the prediction gap to real time
changes being made.
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Leapfrog Diffusion Model for Stochastic Trajectory Prediction
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e Focuses on stochasticity for trajectory prediction
e Idea is to learn a rough, yet sufficiently expressive distribution to
initialize denoised future trajectories instead of plain gaussian
e Tackles two problems:
o To increase the real time inference
o Capture the sufficient multi-modality



Problem: diffusion models show great promise
for human trajectory prediction, but denoising
inference is too slow for real-time deployment
Approach: Train an “initializer” that predicts the
mean, variance, and future position of agents
from noisy initalization

Claim: Leapfrog significantly shortens inference
time online

Evaluation: They look at prediction accuracy
and inference time on multiple human-trajectory
datasets, showing their approach outperforms
SOTA methods.

Leapfrog Diffusion Model for Stochastic Trajectory
Prediction (Isaac Remy)

Proposed leapfroginitializer
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Figure 1. Leapfrog diffusion model uses the leapfrog initializer to
estimate the denoised distribution and substitute a long sequence of
traditional denoising steps, accelerating inference and maintaining
representation capacity.



NashFormer: Leveraging Local Nash Equilibria for Semantically Diverse
Trajectory Prediction (Jake Gonzales)

e Present NashFormer: a framework for trajectory prediction that leverages
game-theoretic IRL to improve coverage of multi-modal predictions
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Robots That Can See: Leveraging Human Pose for Trajectory
Prediction (Nivii Kalavakonda)

Fig. 3: Overview of the HST architecture. From
J the robot’s sensors we extract the scene context,
the historic position tracks of each agent, and
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- vision based skeletal keypoints/head orientation
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Dropout via cross-attention (XA). After multimodality is
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e Goal: Predict future human trajectories from input features including position history for humans,
head orientations (when available) and 3D skeletal keypoints using a Human Scene Transformer

e Result: Found new agents with limited historical data as a major contributor to error and
demonstrate the complementary nature of 3D skeletal poses in reducing prediction error in such
challenging scenarios



Threat assessment design for driver assistance system at
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e Model using support vector machine > ®
(intention classification) and rapidly exploring ‘/ L
trees for threat assessment and detection 7 e 7
module in a vehicle ® ®
e Reachability analysis to predict collision u
e If collision is imminent, determine evasive

maneuver to minimize ‘threat’ of collision
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What Truly Matters in Trajectory Prediction for

Autonomous Driving?

Phong Tran, Haoran Wu, Cunjun Yu, Panpan
Cai, Sifa Zheng, David Hsu

e Standard behavior prediction metrics
evaluate predictions against recorded
future behavior

e When deployed as part of the
autonomous system, the predictions will
be used to influence the robot’s plan,
which will then influence other agents

e Itis important to be aware of this
interaction when evaluating prediction
systems
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Figure 2: Dynamics Gap. (a) In static evaluation,
the agent’s motion is determined and unaffected by
predictors. (b) In the real-world, different predic-
tors result in varied behaviors of the agent, which
directly affects the ground truth of prediction.
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