Prediction

Quickfire paper summaries

What Truly Matters in Trajectory Prediction for Autonomous Driving

Secret Sauce: Balancing computation speed vs prediction accuracy

Single sentence describing the work: The paper describes the importance of trajectory planning while comparing the prediction gap to real time changes being made.

Leapfrog Diffusion Model for Stochastic Trajectory Prediction

- Focuses on stochasticity for trajectory prediction
- Idea is to learn a rough, yet sufficiently expressive distribution to initialize denoised future trajectories instead of plain gaussian
- Tackles two problems:
 - To increase the real time inference
 - Capture the sufficient multi-modality

Leapfrog Diffusion Model for Stochastic Trajectory Prediction (Isaac Remy)

- **Problem:** diffusion models show great promise for human trajectory prediction, but denoising inference is too slow for real-time deployment
- **Approach:** Train an "initializer" that predicts the mean, variance, and future position of agents from noisy initalization
- Claim: Leapfrog significantly shortens inference time online
- **Evaluation:** They look at prediction accuracy and inference time on multiple human-trajectory datasets, showing their approach outperforms SOTA methods.

Figure 1. Leapfrog diffusion model uses the leapfrog initializer to estimate the denoised distribution and substitute a long sequence of traditional denoising steps, accelerating inference and maintaining representation capacity.

NashFormer: Leveraging Local Nash Equilibria for Semantically Diverse Trajectory Prediction (Jake Gonzales)

• Present NashFormer: a framework for trajectory prediction that leverages game-theoretic IRL to improve coverage of multi-modal predictions

Solution and Architecture

Problem

Robots That Can See: Leveraging Human Pose for Trajectory Prediction (Nivii Kalavakonda)

Fig. 3: Overview of the HST architecture. From the robot's sensors we extract the scene context. the historic position tracks of each agent, and vision based skeletal keypoints/head orientation when feasible. All features are encoded individually before the agent features are combined via cross-attention (XA) using a learned query tensor. The resulting agent-timestep-tokens is passed to our Agent Self-Alignment laver which enables the use of subsequent full self-attention (FSA) layers. Embedded scene context is attended to via cross-attention (XA). After multimodality is induced and further FSA layers the model outputs the parameters of a Normal distribution for each agent at each prediction timestep. We can represent the full output structure as a Gaussian Mixture Model (formula in bottom right) over all possible futures where the mixture coefficients w come from the Multimodality Induction. Both cross-attention (XA) and full self-attention layers use the Transformer layer (top right) with different input configurations for Query (Q), Key (K), and Value (V).

- Goal: Predict future human trajectories from input features including position history for humans, head orientations (when available) and 3D skeletal keypoints using a Human Scene Transformer
- Result: Found new agents with limited historical data as a major contributor to error and demonstrate the complementary nature of 3D skeletal poses in reducing prediction error in such challenging scenarios

Threat assessment design for driver assistance system at intersections

- Model using support vector machine (intention classification) and rapidly exploring trees for threat assessment and detection module in a vehicle
- Reachability analysis to predict collision
- If collision is imminent, determine evasive maneuver to minimize 'threat' of collision

What Truly Matters in Trajectory Prediction for Autonomous Driving?

Phong Tran, Haoran Wu, Cunjun Yu, Panpan Cai, Sifa Zheng, David Hsu

- Standard behavior prediction metrics evaluate predictions against recorded future behavior
- When deployed as part of the autonomous system, the predictions will be used to influence the robot's plan, which will then influence other agents
- It is important to be aware of this interaction when evaluating prediction systems

Figure 2: Dynamics Gap. (a) In static evaluation, the agent's motion is determined and unaffected by predictors. (b) In the real-world, different predictors result in varied behaviors of the agent, which directly affects the ground truth of prediction.

Ethan Pronovost