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Announcements

* No lecture Wednesday

* Sign up for a presentation time slot!
* See course website

* Guest lecture record uploaded
* OH after class
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[Last time

* Introduce the concept of a “safety filter”
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[Last time

* Introduce the concept of a “safety filter”
* Introduce the idea of a “satety concept”
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[Last time

* Introduce the concept of a “safety filter”
* Introduce the idea of a “satety concept”

* Introduce HJ reachability as a way to define safe/unsafe sets
* Frame as an optimal control problem.

Vi, + max min{ min (0, avgi’t) - f(x, u, d))} =0

ot weU deD

V(z,0) = F(x)
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Today

 Continue HJ reachability discussion
 Control barrier functions
 Data-driven methods

AA598B Decision-Making & Control for Safe Interactive Autonomy

6



Ingredients of a HJ reachability problem
oV (x,t)

oV (x,t) . . B
-+ mapemind min(0, “ 20 paa) b =0

V(z,0) = F(x)

* Dynamics

Control bounds

Disturbance bounds

Initial value function, aka, collision set

State domain, aka grid size and limits

Reach/avoid setup
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Can apply to relative dynamics

Hamilton-Jacobi-Isaacs partial differential equation

e _V(xD) AT
ER G R P A b
g V(x,0) = v(x)

Measure of safety

—— Human seeks collision
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Aircraft collision avoidance
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We can construct different types of satety
concepts

» Constant velocity assumption (VO)

oV (x,t) : . oV (z,t) B
-+ mapemind min(0, S f(aud)) | =0
V(z,0) = F(x)
* Hard braking assumption
oV (x, 1) : . oV (z,1) B
o el 2&%{ min(0, ——= - f(x,u,d)) ¢ =0
 Forward reachable sets V(2,0) = F(z)
* Where can I definitely reach even under worst-case disturbances
- maemind min(0, 2 f(a ) | =0

V(z,0) = F(x)
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We can get creative

* State dependent control sets
* Also coupled constraints, but harder

* More “interesting” initial value
* Velocity-aware to encode collision severity
* Region-specitic collisions
* Learned value function

* Change agent assumptions. Reach-reach, Reach-avoid, avoid-avoid

* State augmentation to include parameters
* Parameterized formulation

e Reaction-time

 Can string together multiple reachability problems. Solution of one is the
initial condition for other

W



Types of safety filter logic

Least restrictive
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Types of safety filter logic

Minimally interventional
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Using HJ BRTs as safety filters

No filter Least restrictive Min. interv.

i) i
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https://youtube.com/shorts/ydhvZ29HHBo?feature=share
https://youtube.com/shorts/5uyLyYURqwM?feature=share
https://youtube.com/shorts/3Mq6-QPljbg?feature=share

Safety — performance tradeoft

/V(z(t),t)l[V(z(t),t) < 0]t

t

Integral when
V<0
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What are “reasonable” assumptions about how other
agents behave?

Hamilton-Jacobi-Isaacs partial differential equation

aV(x,t) e - dV(x,t) Hl=o
T L e
o 2 V(x,0) = v(x)

Overly-conservative assumptions

=
( lead to impractical safety concepts!

How to pick “reasonable” choices for U and D?

Leung, K., Bajcsy, A., Schmerling, E., and Pavone, M., Towards data-driven synthesis of autonomous vehicle safety concepts, , 2022

w AA598B Decision-Making & Control for Safe Interactive Autonomy
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https://arxiv.org/abs/2107.14412

Unification of Satety Concepts via Optimal Control Theory

Depends on the assumptions you make about other agents when evaluating safety

Hamilton-Jacobi Reachability
Open-loop Closed-loop
“non-reactive” policies “reactive” policies

AL
- I

e - h

\. ‘J \. ‘J

Consider all possible Consider only a subset of | | Guard against all possible Guard against a subset of
behaviors possible behaviors policies possible policies
Full forward reachable set e.g., hard-braking (SFF) Including worst-case outcomes Assumptions on other agent’s behaviors
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We can learn “reasonable controls” from
human-human interaction data

Given a dataset of states and controls: (x ,u®), (x@,u®@),._, (x(N ), uM) we want to learn U(x)

TN Learn U(x)

\ - controls %
Xox s !/
WX X
XY

N o -

Unsafe
controls

Leung, K., Veer, S., Schmerling, E., and Pavone, M.,
Learning Autonomous Vehicle Safety Concepts from Demonstrations
American Control Conference, 2023,

W

Key insight: Humans take controls that keep
them safe. Taking controls outside the boundary

will lead to an undesirable outcome.

Data lives inside a control invariant set.

Need to learn a control invariant set!
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https://arxiv.org/abs/2210.02761

Control barrier functions describe control
Invariant sets

Control invariant set

19



Control barrier functions describe control
Invariant sets

Control barrier function

Choi et al 2021

W
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https://arxiv.org/abs/2104.02808

Control barrier functions describe control
Invariant sets

Control barrier function

Choi et al 2021

W
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https://arxiv.org/abs/2104.02808
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Safety filter as a QP

Idea: Project control into feasible safe control set
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Learning CBFs from demonstrations

Given a dataset of states and controls: (x ,u®), (x@,u®@),._, (x(N ), uM) we want to learn U(x)

* Use data to learn parameters of CBF!

Uy
AV Learn U(x)
N
,’ X >§< X\
ree XXX
| Safe
| controls %
"Xy !
\ & ,/ Unsafe
S=- controls
Uq
Robey et al 2020
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https://arxiv.org/abs/2004.03315

S0...1s a safety filter all we need for safe
autonomy?

* Safety needs to be considered in all aspects of the autonomy
stack
* Perception: not all perception errors are equal!
* Prediction: not all prediction errors are equal!

 Planning: avoid situations that require safety safety filter to activate!

* Reason about potential risks
« Contingency planning
* Graceful degradation

* Control: need a careful balance between safety and practicality

« Cannot be overly conservative but still encompass reasonable assumptions of
others
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CBFs in generative models

A safety & dynamics-aware cost function for guided diffusion models
Do (ui_l |ul) ~ N(ui_l; Ug (ui, i), Zi) Neural Network

Data

Destructing data by adding noise ——> Noise

Data «——— Generating samples b denoisig

s

Noise

Mizuta, K. and Leung, K., CoBL-Diffusion: Diffusion-Based Conditional Robot Planning in Dynamic Environments Using Control Barrier and Lyapunov Functions, In
IEEE/RS] International Conference on Intelligent Robots & Systems, 2024
(https://arxiv.org/abs/2406.05309)

AA598B Decision-Making & Control for Safe Interactive Autonomy
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https://arxiv.org/abs/2406.05309

CBFs in generative models

A safety & dynamics-aware cost function for guided ditfusion models
po(ui=tul) ~ N(ui™; 30

Reverse Process w/ Do (ui_l |u‘) ~ N(ui—l; Ug (ui, i) + 7, Vzi)

Guidance
K T
CBF & CLF , _ z «  CBF Reward for safety
guidance I k=1 t=OVuth ot CLF Reward for goal-reaching

L = IEEE/RS] International Conference on Intelligent Robots & Systems, 2024

‘@ Mizuta, K. and Leung, K., CoBL-Diffusion: Diffusion-Based Conditional Robot Planning in Dynamic Environments Using Control Barrier and Lyapunov Functions, In
) (https://arxiv.org/abs/2406.05309)

w AA598B Decision-Making & Control for Safe Interactive Autonomy
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https://arxiv.org/abs/2406.05309

CoBL-Diffusion: Guiding trajectory diffusion
models with dynamics—aware safety

Integrate Control Barrier +
[ Legend: . dynamics Lyapunov reward U-Net
N sN—=1
&0y / / ST /
— N—l > > /\O
Up:r : : ug_Tr. = Xo:T
DN izt 1 U-Net | --- | U-Net o
ué)VT ! .  — 0T 'A
— + CoBL —— ~ CoBL
\ Ug.T )
IIIIIIIIIIIIIIIIIIIIIIII —

Reverse diffusion

* Dynamically-feasible trajectory generation
* Use Control Barrier & Lyapunov Functions as guidance functions

Mizuta, K. and Leung, K., CoBL-Diffusion: Diffusion-Based Conditional Robot Planning in Dynamic Environments Using Control Barrier and Lyapunov Functions, In
& [EEE/RS] International Conference on Intelligent Robots & Systems, 2024

(https://arxiv.org/abs/2406.05309)

AA598B Decision-Making & Control for Safe Interactive Autonomy 27



https://arxiv.org/abs/2406.05309

Safety is accounted for during trajectory
generation, rather than after-the-fact

® . O 'Q/\
- \
: 8 é\\/\/w 0 88 O\'
@, @
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CBFs for explaining responsibility
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Recall, the CBF safety filter

Single agent
u®*®® = argmin ||u — u9®|3 s.t. Vb(z)! f(z,u) + a(b(z)) > 0.
ueld \ ~ J
CBF safety constraint
Multiple agents

des

exec
UL N = argmm Z |ws —

.....

[E

s.t. Vb(x)" ) + Zgz + a(b(x)) > 0

Issues?



Uly...,UN,E

S.t.

A responsibility-aware safety filter

N
argmin > (illus — ug®|13 + Billusll3) + Boe®
i=1
i N
Vb()" [ F(x) + > gi(x)ui | + a(b(x)) > —e
i=1
Uy € Z/{l, LUN € Un
e > 0.

Responsibility allocation: each agent’s incentive to deviate
Regularization (if y; = 0)

Slack variable

Remy, L, Fridovich-Keil, D., and Leung, K.,
e Learning responsibility allocations for multi-agent interactions: A differentiable

=
N

W

optimization approach with control barrier functions

o
—
~—

2.0
1.5 -
1.0 -
0.5 1
0.0

Agent 2

fully resp,

—0.5 A
—1.0 |
—1.5 1

% desired
@ 7y =0.00
@ =025
@ =050
@® =075
@ =100

0<y;<1,y"1=1

How to select y;’s?
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Learn responsibility allocation from data

1

H‘l.;n W | Z A(ul:N7 ulN(’Y)) Outer prOblem
(xz7u§:N)€D
N
st. @iy(y) = argmin > (illus — w13 + Balluil3) + B2€’
...... Ns€ T4
s.t. Vb(x ) + Zg (%) 2 =€ TInner problem
uyp € Z/[l L UN € Z/{N
e > 0.

Need to differentiate inner problem w.r.t. y
b
o

Differentiable quadratic program
'A"'

https://github.com/kevin-tracy/qpax
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HJ reachability for feasible scenario generation

* Generating realistic yet challenging scenarios is a crucial piece in V&V of an autonomous system

(a) Conservative Scenario (b) Excessive Adversarial Scenario (c) Ideal Adversarial Scenario
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Figure 1: Illustration of adversarial yet AV-feasible scenarios in a two-lane traffic setting. The CBV
employs three distinct policies, resulting in different scenarios: (a) Conservative scenario, where the
policy is less adversarial; (b) Excessive adversarial scenario, resulting in an unavoidable collision;
and (c) Ideal adversarial scenario, effectively balancing adversarial and AV’s feasibility.

Chen at al 2024 https://arxiv.org/abs/2406.02983
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DeepReach

* Use a neural network to approximate the HJ value function

h(zi,t:;0) = hi(xs,8:; 0) + Aha(zs, £ 0),
hi(zi, t;;0) = ||Vo(zs,t:) — U(zs)||L(t; = T),
ha(zi,t::0) = | min{Dth(a:z-,ti) + H(zi, 1),

I(z;) — Vo(wz‘,tz‘)}”-

Bansal and Tomlin 2020 https://arxiv.org/abs/2011.02082

1 [ —]

| @

-5
X, 11 X4 1 03 X4 0.7

X2

Fig. 1: The slices of the value functions and BRTs for z3 = x/2.
DeepReach recovers a value function (middle) that corresponds closely to
the ground truth value function (left), computed using a principled HJI VI
solver [7]. The two BRTs also align closely (right) — they overlap in the
green region, the pink region is the error between the two BRTs.
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H]J reachability + Reinforcement learning

e Our central contribution is a modified form of the dynamic
- ‘ programming safety backup (5) which induces a contraction

mapping in the space of value functions and is therefore

amenable to reinforcement learning methods based on tem-

poral difference learning [10, 24, 25].
h.‘ L

v =0.85 v =0.96 v =0.99

-

v =0.998 v = 0.99997 v = 0.99999

Fig. 1: Multiple snapshots of the neural network output of our safety

Olleamingalgonithin forsa doublesmtepritorsyste JAs wexammeal ithe Initial conditions =~ Unsafe jumping Safe sitting Safe standing
discount factor v — 1 during Q-learning, our learned discounted safety Fig. 6: Learned half-cheetah safety policies aimed to keep the head and front
value function asymptotically approaches the undiscounted value, allowing leg off the ground. Left to right: episode starting configuration; an unsafe
us to recover the safe set and optimal safety policy with very high accuracy. jumping policy learned using a sum of discounted heights; a safe sitting
policy learned using discounted safety or (less reliably) discounted sum of
Fisac et al 2019 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8794107 contact penalties; a safe standing policy learned using discounted safety.

https://scholar.google.com/citations?hl=en&user=HvjirogAAA AJ&view_op=list_works
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Takeaways

* Safety is hard.

* Control theoretic frameworks provide an interpretable
inductive bias

* Active research in “data-driven safety”
 Using data to inform parameters of safety models
 Using safety models to inform data-driven solutions
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W

Thank you!

* Good luck on your project!

9 Mon, Nov 25 Safe control Il

Wed, Nov 27 No lecture
Fri, Nov 29 Homework 3

10 Mon, Dec 2 Final presentations |
10 Wed, Dec 4 Final presentations |l

Finals Wed, Dec 11 Final report

Homework & talk

Finals Fri, Dec 13 .
summaries

* Homework and talk summaries need to be submitted by Friday
finals week

* Please do course evaluation — if more people enroll in the future, I
can get a TA/grader ©
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