AA 598B Special Topics # Decision-Making & Control for Safe Interactive Autonomy Instructor: Prof. Karen Leung Autumn 2024 https://faculty.washington.edu/kymleung/aa598/ #### Announcements - No lecture Wednesday - Sign up for a presentation time slot! - See course website - Guest lecture record uploaded - OH after class #### Last time • Introduce the concept of a "safety filter" #### Last time - Introduce the concept of a "safety filter" - Introduce the idea of a "safety concept" #### Last time - Introduce the concept of a "safety filter" - Introduce the idea of a "safety concept" - Introduce HJ reachability as a way to define safe/unsafe sets - Frame as an optimal control problem. $$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$ $$V(x,0) = F(x)$$ ### Today - Continue HJ reachability discussion - Control barrier functions - Data-driven methods ### Ingredients of a HJ reachability problem $$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$ $$V(x,0) = F(x)$$ - Dynamics - Control bounds - Disturbance bounds - Initial value function, aka, collision set - State domain, aka grid size and limits - Reach/avoid setup ### Can apply to relative dynamics #### Hamilton-Jacobi-Isaacs partial differential equation #### Aircraft collision avoidance $$\begin{bmatrix} \dot{x}_{\text{rel}} \\ \dot{y}_{\text{rel}} \\ \dot{\theta}_{\text{rel}} \end{bmatrix} = \begin{bmatrix} -v_{\text{a}} + v_{\text{b}} \cos \theta_{\text{rel}} + y_{\text{rel}} u_{\text{a}} \\ v_{\text{b}} \sin \theta_{\text{rel}} - x_{\text{rel}} u_{\text{a}} \\ u_{\text{b}} - u_{\text{a}} \end{bmatrix}$$ # We can construct different types of safety concepts • Constant velocity assumption (VO) $$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$ $$V(x,0) = F(x)$$ Hard braking assumption $$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$ $$V(x,0) = F(x)$$ - Forward reachable sets - Where can I definitely reach even under worst-case disturbances $$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$ $$V(x,0) = F(x)$$ #### We can get creative - State dependent control sets - Also coupled constraints, but harder - More "interesting" initial value - Velocity-aware to encode collision severity - Region-specific collisions - Learned value function - Change agent assumptions. Reach-reach, Reach-avoid, avoid-avoid - State augmentation to include parameters - Parameterized formulation - Reaction-time - Can string together multiple reachability problems. Solution of one is the initial condition for other ## Types of safety filter logic Least restrictive ## Types of safety filter logic Minimally interventional ## Using HJ BRTs as safety filters https://youtube.com/shorts/5uyLyYURqwM?feature=share https://youtube.com/shorts/3Mq6-QPIjbg?teature=shar ### Safety – performance tradeoff ## What are "reasonable" assumptions about how other agents behave? #### Hamilton-Jacobi-Isaacs partial differential equation $$\frac{\partial V(x,t)}{\partial t} + \min \left\{ 0, \max_{u \in U} \min_{d \in D} \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,d) \right\} = 0$$ $$V(x,0) = v(x)$$ Overly-conservative assumptions lead to impractical safety concepts! How to pick "reasonable" choices for U and D? Leung, K., Bajcsy, A., Schmerling, E., and Pavone, M., Towards data-driven synthesis of autonomous vehicle safety concepts, https://arxiv.org/abs/2107.14412, 2022 #### Unification of Safety Concepts via Optimal Control Theory Depends on the assumptions you make about other agents when evaluating safety ## We can learn "reasonable controls" from human-human interaction data Given a dataset of states and controls: $(x^{(1)}, u^{(1)}), (x^{(2)}, u^{(2)}), \dots, (x^{(N)}, u^{(N)})$ we want to learn U(x) **Key insight**: Humans take controls that keep them safe. Taking controls outside the boundary will lead to an undesirable outcome. Data lives inside a control invariant set. Need to learn a control invariant set! Leung, K., Veer, S., Schmerling, E., and Pavone, M., **Learning Autonomous Vehicle Safety Concepts from Demonstrations** *American Control Conference*, 2023, https://arxiv.org/abs/2210.02761 ## Control barrier functions describe control invariant sets **Control** invariant set ## Control barrier functions describe control invariant sets **Control barrier function** ## Control barrier functions describe control invariant sets **Control barrier function** ### ★ desired Safety filter as a QP Idea: Project control into feasible safe control set ### Learning CBFs from demonstrations Given a dataset of states and controls: $(x^{(1)}, u^{(1)}), (x^{(2)}, u^{(2)}), \dots, (x^{(N)}, u^{(N)})$ we want to learn U(x) • Use data to learn parameters of CBF! Robey et al 2020 https://arxiv.org/abs/2004.03315 # So...is a safety filter all we need for safe autonomy? - Safety needs to be considered in all aspects of the autonomy stack - Perception: not all perception errors are equal! - Prediction: not all prediction errors are equal! - Planning: avoid situations that require safety safety filter to activate! - Reason about potential risks - Contingency planning - Graceful degradation - Control: need a careful balance between safety and practicality - Cannot be overly conservative but still encompass reasonable assumptions of others ### CBFs in generative models • A safety & dynamics-aware cost function for guided diffusion models $$p_{\theta}(u^{i-1}|u^i) \approx N(u^{i-1}; \mu_{\theta}(u^i, i), \Sigma^i)$$ Neural Network Mizuta, K. and Leung, K., CoBL-Diffusion: Diffusion-Based Conditional Robot Planning in Dynamic Environments Using Control Barrier and Lyapunov Functions, In IEEE/RSJ International Conference on Intelligent Robots & Systems, 2024 (https://arxiv.org/abs/2406.05309) #### CBFs in generative models A safety & dynamics-aware cost function for guided diffusion models $$p_{\theta}(u^{i-1}|u^i) \approx N(u^{i-1}; \mu_{\theta}(u^i, i), \Sigma^i)$$ Neural Network Reverse Process w/ Guidance $$p_{\theta}(u^{i-1}|u^i) \approx N(u^{i-1}; \mu_{\theta}(u^i, i) + g, V\Sigma^i)$$ CBF & CLF guidance $$g = \sum_{k=1}^{K} \sum_{t=0}^{T} \nabla_{u_t} W_k(x_t, u_t)$$ • CLF Reward for safety CLF Reward for goal-reaching Mizuta, K. and Leung, K., CoBL-Diffusion: Diffusion-Based Conditional Robot Planning in Dynamic Environments Using Control Barrier and Lyapunov Functions, In IEEE/RSJ International Conference on Intelligent Robots & Systems, 2024 (https://arxiv.org/abs/2406.05309) # CoBL-Diffusion: Guiding trajectory diffusion models with dynamics-aware safety - Reverse alliusic - Dynamically-feasible trajectory generation - Use **Control Barrier & Lyapunov Functions** as guidance functions Mizuta, K. and Leung, K., CoBL-Diffusion: Diffusion-Based Conditional Robot Planning in Dynamic Environments Using Control Barrier and Lyapunov Functions, In IEEE/RSJ International Conference on Intelligent Robots & Systems, 2024 (https://arxiv.org/abs/2406.05309) # Safety is accounted for *during* trajectory generation, rather than after-the-fact ### CBFs for explaining responsibility #### Recall, the CBF safety filter #### Single agent $$u^{\text{exec}} = \underset{u \in \mathcal{U}}{\operatorname{argmin}} \|u - u^{\text{des}}\|_{2}^{2} \text{ s.t. } \nabla b(x)^{T} f(x, u) + \alpha(b(x)) \ge 0.$$ CBF safety constraint #### Multiple agents $$u_{1:N}^{\text{exec}} = \underset{u_1, \dots, u_N}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \|u_i - u_i^{\text{des}}\|_2^2$$ **Issues?** s.t. $$\nabla b(\mathbf{x})^T \left[\tilde{f}(\mathbf{x}) + \sum_{i=1}^N g_i(\mathbf{x}) u_i \right] + \alpha(b(\mathbf{x})) \ge 0$$ $u_1 \in \mathcal{U}_1, ..., u_N \in \mathcal{U}_N.$ ### A responsibility-aware safety filter $$\underset{u_1,...,u_N,\epsilon}{\operatorname{argmin}} \sum_{i=1}^{N} \left(\gamma_i \|u_i - u_i^{\operatorname{des}}\|_2^2 + \beta_1 \|u_i\|_2^2 \right) + \beta_2 \epsilon^2$$ s.t. $$\nabla b(\mathbf{x})^T \left[\tilde{f}(\mathbf{x}) + \sum_{i=1}^N g_i(\mathbf{x}) u_i \right] + \alpha(b(\mathbf{x})) \ge -\epsilon$$ $$u_1 \in \mathcal{U}_1, ..., u_N \in \mathcal{U}_N$$ $$\epsilon \ge 0.$$ - Regularization (if $\gamma_i = 0$) - Slack variable #### How to select γ_i 's? Remy, I., Fridovich-Keil, D., and Leung, K., Learning responsibility allocations for multi-agent interactions: A differentiable optimization approach with control barrier functions #### Learn responsibility allocation from data $$\left| \min_{\boldsymbol{\gamma}} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}^{i}, u_{1:N}^{i}) \in \mathcal{D}} \Delta(u_{1:N}^{i}, \tilde{u}_{1:N}^{i}(\boldsymbol{\gamma})) \right| \text{ Outer problem}$$ s.t. $$\tilde{u}_{1:N}^{i}(\boldsymbol{\gamma}) = \underset{u_{1},...,u_{N},\epsilon}{\operatorname{argmin}} \sum_{i=1}^{N} \left(\gamma_{i} \| u_{i} - u_{i}^{\operatorname{des}} \|_{2}^{2} + \beta_{1} \| u_{i} \|_{2}^{2} \right) + \beta_{2} \epsilon^{2}$$ s.t. $$\nabla b(\mathbf{x})^{T} \left[\tilde{f}(\mathbf{x}) + \sum_{i=1}^{N} g_{i}(\mathbf{x}) u_{i} \right] + \alpha(b(\mathbf{x})) \geq -\epsilon$$ $$u_{1} \in \mathcal{U}_{1},...,u_{N} \in \mathcal{U}_{N}$$ $$\epsilon \geq 0.$$ Inner problem #### Need to differentiate inner problem w.r.t. y #### Differentiable quadratic program https://github.com/kevin-tracy/qpax ## HJ reachability for feasible scenario generation • Generating realistic yet challenging scenarios is a crucial piece in V&V of an autonomous system Add a HJ value function term in their adversarial policy learning algorithm Figure 1: Illustration of adversarial yet AV-feasible scenarios in a two-lane traffic setting. The CBV employs three distinct policies, resulting in different scenarios: (a) Conservative scenario, where the policy is less adversarial; (b) Excessive adversarial scenario, resulting in an unavoidable collision; and (c) Ideal adversarial scenario, effectively balancing adversarial and AV's feasibility. Chen at al 2024 https://arxiv.org/abs/2406.02983 ### DeepReach • Use a neural network to approximate the HJ value function $$h(x_i, t_i; \theta) = h_1(x_i, t_i; \theta) + \lambda h_2(x_i, t_i; \theta),$$ $$h_1(x_i, t_i; \theta) = ||V_{\theta}(x_i, t_i) - l(x_i)|| \mathbb{1}(t_i = T),$$ $$h_2(x_i, t_i; \theta) = ||\min \{D_t V_{\theta}(x_i, t_i) + H(x_i, t_i),$$ $$l(x_i) - V_{\theta}(x_i, t_i)\}||.$$ Fig. 1: The slices of the value functions and BRTs for $x_3 = \pi/2$. DeepReach recovers a value function (middle) that corresponds closely to the ground truth value function (left), computed using a principled HJI VI solver [7]. The two BRTs also align closely (right) – they overlap in the green region, the pink region is the error between the two BRTs. #### HJ reachability + Reinforcement learning Fig. 1: Multiple snapshots of the neural network output of our safety Q-learning algorithm for a double-integrator system. As we anneal the discount factor $\gamma \to 1$ during Q-learning, our learned discounted safety value function asymptotically approaches the undiscounted value, allowing us to recover the safe set and optimal safety policy with very high accuracy. Fisac et al 2019 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8794107 https://scholar.google.com/citations?hl=en&user=HvjirogAAAAJ&view_op=list_works Our central contribution is a modified form of the dynamic programming safety backup (5) which induces a contraction mapping in the space of value functions and is therefore amenable to reinforcement learning methods based on temporal difference learning [10, 24, 25]. Initial conditions Unsafe jumping Safe sitting Safe standing Fig. 6: Learned half-cheetah safety policies aimed to keep the head and front leg off the ground. *Left to right:* episode starting configuration; an unsafe jumping policy learned using a sum of discounted heights; a safe sitting policy learned using discounted safety or (less reliably) discounted sum of contact penalties; a safe standing policy learned using discounted safety. #### Takeaways - Safety is hard. - Control theoretic frameworks provide an interpretable inductive bias - Active research in "data-driven safety" - Using data to inform parameters of safety models - Using safety models to inform data-driven solutions ### Thank you! Good luck on your project! | 9 | Mon, Nov 25 | Safe control II | | |--------|-------------|------------------------|----------------------------| | 9 | Wed, Nov 27 | No lecture | | | 9 | Fri, Nov 29 | н | omework 3 | | 10 | Mon, Dec 2 | Final presentations I | | | 10 | Wed, Dec 4 | Final presentations II | | | Finals | Wed, Dec 11 | F | inal report | | Finals | Fri, Dec 13 | | omework & talk
ummaries | - Homework and talk summaries need to be submitted by Friday finals week - Please do course evaluation if more people enroll in the future, I can get a TA/grader ☺