AA 598B Special Topics

Decision-Making & Control for Safe Interactive Autonomy

Instructor: Prof. Karen Leung

Autumn 2024

https://faculty.washington.edu/kymleung/aa598/

Announcements

- No lecture Wednesday
- Sign up for a presentation time slot!
 - See course website
- Guest lecture record uploaded
- OH after class

Last time

• Introduce the concept of a "safety filter"

Last time

- Introduce the concept of a "safety filter"
- Introduce the idea of a "safety concept"

Last time

- Introduce the concept of a "safety filter"
- Introduce the idea of a "safety concept"
- Introduce HJ reachability as a way to define safe/unsafe sets
 - Frame as an optimal control problem.

$$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$

$$V(x,0) = F(x)$$

Today

- Continue HJ reachability discussion
- Control barrier functions
- Data-driven methods

Ingredients of a HJ reachability problem

$$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$

$$V(x,0) = F(x)$$

- Dynamics
- Control bounds
- Disturbance bounds
- Initial value function, aka, collision set
- State domain, aka grid size and limits
- Reach/avoid setup

Can apply to relative dynamics

Hamilton-Jacobi-Isaacs partial differential equation

Aircraft collision avoidance

$$\begin{bmatrix} \dot{x}_{\text{rel}} \\ \dot{y}_{\text{rel}} \\ \dot{\theta}_{\text{rel}} \end{bmatrix} = \begin{bmatrix} -v_{\text{a}} + v_{\text{b}} \cos \theta_{\text{rel}} + y_{\text{rel}} u_{\text{a}} \\ v_{\text{b}} \sin \theta_{\text{rel}} - x_{\text{rel}} u_{\text{a}} \\ u_{\text{b}} - u_{\text{a}} \end{bmatrix}$$

We can construct different types of safety concepts

• Constant velocity assumption (VO)

$$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$

$$V(x,0) = F(x)$$

Hard braking assumption

$$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$

$$V(x,0) = F(x)$$

- Forward reachable sets
 - Where can I definitely reach even under worst-case disturbances

$$\frac{\partial V(x,t)}{\partial t} + \max_{u \in \mathcal{U}} \min_{\mathbf{d} \in \mathcal{D}} \left\{ \min(0, \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,\mathbf{d})) \right\} = 0$$

$$V(x,0) = F(x)$$

We can get creative

- State dependent control sets
 - Also coupled constraints, but harder
- More "interesting" initial value
 - Velocity-aware to encode collision severity
 - Region-specific collisions
 - Learned value function
- Change agent assumptions. Reach-reach, Reach-avoid, avoid-avoid
- State augmentation to include parameters
 - Parameterized formulation
- Reaction-time
 - Can string together multiple reachability problems. Solution of one is the initial condition for other

Types of safety filter logic Least restrictive

Types of safety filter logic Minimally interventional

Using HJ BRTs as safety filters

https://youtube.com/shorts/5uyLyYURqwM?feature=share

https://youtube.com/shorts/3Mq6-QPIjbg?teature=shar

Safety – performance tradeoff

What are "reasonable" assumptions about how other agents behave?

Hamilton-Jacobi-Isaacs partial differential equation

$$\frac{\partial V(x,t)}{\partial t} + \min \left\{ 0, \max_{u \in U} \min_{d \in D} \frac{\partial V(x,t)}{\partial x} \cdot f(x,u,d) \right\} = 0$$

$$V(x,0) = v(x)$$

Overly-conservative assumptions lead to impractical safety concepts!

How to pick "reasonable" choices for U and D?

Leung, K., Bajcsy, A., Schmerling, E., and Pavone, M., Towards data-driven synthesis of autonomous vehicle safety concepts, https://arxiv.org/abs/2107.14412, 2022

Unification of Safety Concepts via Optimal Control Theory

Depends on the assumptions you make about other agents when evaluating safety

We can learn "reasonable controls" from human-human interaction data

Given a dataset of states and controls: $(x^{(1)}, u^{(1)}), (x^{(2)}, u^{(2)}), \dots, (x^{(N)}, u^{(N)})$ we want to learn U(x)

Key insight: Humans take controls that keep them safe. Taking controls outside the boundary will lead to an undesirable outcome.

Data lives inside a control invariant set.

Need to learn a control invariant set!

Leung, K., Veer, S., Schmerling, E., and Pavone, M., **Learning Autonomous Vehicle Safety Concepts from Demonstrations** *American Control Conference*, 2023, https://arxiv.org/abs/2210.02761

Control barrier functions describe control invariant sets

Control invariant set

Control barrier functions describe control invariant sets

Control barrier function

Control barrier functions describe control invariant sets

Control barrier function

★ desired Safety filter as a QP Idea: Project control into feasible safe control set

Learning CBFs from demonstrations

Given a dataset of states and controls: $(x^{(1)}, u^{(1)}), (x^{(2)}, u^{(2)}), \dots, (x^{(N)}, u^{(N)})$ we want to learn U(x)

• Use data to learn parameters of CBF!

Robey et al 2020 https://arxiv.org/abs/2004.03315

So...is a safety filter all we need for safe autonomy?

- Safety needs to be considered in all aspects of the autonomy stack
 - Perception: not all perception errors are equal!
 - Prediction: not all prediction errors are equal!
 - Planning: avoid situations that require safety safety filter to activate!
 - Reason about potential risks
 - Contingency planning
 - Graceful degradation
 - Control: need a careful balance between safety and practicality
 - Cannot be overly conservative but still encompass reasonable assumptions of others

CBFs in generative models

• A safety & dynamics-aware cost function for guided diffusion models

$$p_{\theta}(u^{i-1}|u^i) \approx N(u^{i-1}; \mu_{\theta}(u^i, i), \Sigma^i)$$
 Neural Network

Mizuta, K. and Leung, K., CoBL-Diffusion: Diffusion-Based Conditional Robot Planning in Dynamic Environments Using Control Barrier and Lyapunov Functions, In IEEE/RSJ International Conference on Intelligent Robots & Systems, 2024 (https://arxiv.org/abs/2406.05309)

CBFs in generative models

A safety & dynamics-aware cost function for guided diffusion models

$$p_{\theta}(u^{i-1}|u^i) \approx N(u^{i-1}; \mu_{\theta}(u^i, i), \Sigma^i)$$
 Neural Network

Reverse Process w/ Guidance

$$p_{\theta}(u^{i-1}|u^i) \approx N(u^{i-1}; \mu_{\theta}(u^i, i) + g, V\Sigma^i)$$

CBF & CLF guidance
$$g = \sum_{k=1}^{K} \sum_{t=0}^{T} \nabla_{u_t} W_k(x_t, u_t)$$
 • CLF Reward for safety CLF Reward for goal-reaching

Mizuta, K. and Leung, K., CoBL-Diffusion: Diffusion-Based Conditional Robot Planning in Dynamic Environments Using Control Barrier and Lyapunov Functions, In IEEE/RSJ International Conference on Intelligent Robots & Systems, 2024 (https://arxiv.org/abs/2406.05309)

CoBL-Diffusion: Guiding trajectory diffusion models with dynamics-aware safety

- Reverse alliusic
- Dynamically-feasible trajectory generation
- Use **Control Barrier & Lyapunov Functions** as guidance functions

Mizuta, K. and Leung, K., CoBL-Diffusion: Diffusion-Based Conditional Robot Planning in Dynamic Environments Using Control Barrier and Lyapunov Functions, In IEEE/RSJ International Conference on Intelligent Robots & Systems, 2024 (https://arxiv.org/abs/2406.05309)

Safety is accounted for *during* trajectory generation, rather than after-the-fact

CBFs for explaining responsibility

Recall, the CBF safety filter

Single agent

$$u^{\text{exec}} = \underset{u \in \mathcal{U}}{\operatorname{argmin}} \|u - u^{\text{des}}\|_{2}^{2} \text{ s.t. } \nabla b(x)^{T} f(x, u) + \alpha(b(x)) \ge 0.$$
CBF safety constraint

Multiple agents

$$u_{1:N}^{\text{exec}} = \underset{u_1, \dots, u_N}{\operatorname{argmin}} \quad \sum_{i=1}^{N} \|u_i - u_i^{\text{des}}\|_2^2$$

Issues?

s.t.
$$\nabla b(\mathbf{x})^T \left[\tilde{f}(\mathbf{x}) + \sum_{i=1}^N g_i(\mathbf{x}) u_i \right] + \alpha(b(\mathbf{x})) \ge 0$$

 $u_1 \in \mathcal{U}_1, ..., u_N \in \mathcal{U}_N.$

A responsibility-aware safety filter

$$\underset{u_1,...,u_N,\epsilon}{\operatorname{argmin}} \sum_{i=1}^{N} \left(\gamma_i \|u_i - u_i^{\operatorname{des}}\|_2^2 + \beta_1 \|u_i\|_2^2 \right) + \beta_2 \epsilon^2$$

s.t.
$$\nabla b(\mathbf{x})^T \left[\tilde{f}(\mathbf{x}) + \sum_{i=1}^N g_i(\mathbf{x}) u_i \right] + \alpha(b(\mathbf{x})) \ge -\epsilon$$
$$u_1 \in \mathcal{U}_1, ..., u_N \in \mathcal{U}_N$$
$$\epsilon \ge 0.$$

- Regularization (if $\gamma_i = 0$)
- Slack variable

How to select γ_i 's?

Remy, I., Fridovich-Keil, D., and Leung, K., Learning responsibility allocations for multi-agent interactions: A differentiable optimization approach with control barrier functions

Learn responsibility allocation from data

$$\left| \min_{\boldsymbol{\gamma}} \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}^{i}, u_{1:N}^{i}) \in \mathcal{D}} \Delta(u_{1:N}^{i}, \tilde{u}_{1:N}^{i}(\boldsymbol{\gamma})) \right| \text{ Outer problem}$$

s.t.
$$\tilde{u}_{1:N}^{i}(\boldsymbol{\gamma}) = \underset{u_{1},...,u_{N},\epsilon}{\operatorname{argmin}} \sum_{i=1}^{N} \left(\gamma_{i} \| u_{i} - u_{i}^{\operatorname{des}} \|_{2}^{2} + \beta_{1} \| u_{i} \|_{2}^{2} \right) + \beta_{2} \epsilon^{2}$$
s.t.
$$\nabla b(\mathbf{x})^{T} \left[\tilde{f}(\mathbf{x}) + \sum_{i=1}^{N} g_{i}(\mathbf{x}) u_{i} \right] + \alpha(b(\mathbf{x})) \geq -\epsilon$$

$$u_{1} \in \mathcal{U}_{1},...,u_{N} \in \mathcal{U}_{N}$$

$$\epsilon \geq 0.$$

Inner problem

Need to differentiate inner problem w.r.t. y

Differentiable quadratic program

https://github.com/kevin-tracy/qpax

HJ reachability for feasible scenario generation

• Generating realistic yet challenging scenarios is a crucial piece in V&V of an autonomous system

Add a HJ value function term in their adversarial policy learning algorithm

Figure 1: Illustration of adversarial yet AV-feasible scenarios in a two-lane traffic setting. The CBV employs three distinct policies, resulting in different scenarios: (a) Conservative scenario, where the policy is less adversarial; (b) Excessive adversarial scenario, resulting in an unavoidable collision; and (c) Ideal adversarial scenario, effectively balancing adversarial and AV's feasibility.

Chen at al 2024 https://arxiv.org/abs/2406.02983

DeepReach

• Use a neural network to approximate the HJ value function

$$h(x_i, t_i; \theta) = h_1(x_i, t_i; \theta) + \lambda h_2(x_i, t_i; \theta),$$

$$h_1(x_i, t_i; \theta) = ||V_{\theta}(x_i, t_i) - l(x_i)|| \mathbb{1}(t_i = T),$$

$$h_2(x_i, t_i; \theta) = ||\min \{D_t V_{\theta}(x_i, t_i) + H(x_i, t_i),$$

$$l(x_i) - V_{\theta}(x_i, t_i)\}||.$$

Fig. 1: The slices of the value functions and BRTs for $x_3 = \pi/2$. DeepReach recovers a value function (middle) that corresponds closely to the ground truth value function (left), computed using a principled HJI VI solver [7]. The two BRTs also align closely (right) – they overlap in the green region, the pink region is the error between the two BRTs.

HJ reachability + Reinforcement learning

Fig. 1: Multiple snapshots of the neural network output of our safety Q-learning algorithm for a double-integrator system. As we anneal the discount factor $\gamma \to 1$ during Q-learning, our learned discounted safety value function asymptotically approaches the undiscounted value, allowing us to recover the safe set and optimal safety policy with very high accuracy.

Fisac et al 2019 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8794107 https://scholar.google.com/citations?hl=en&user=HvjirogAAAAJ&view_op=list_works

Our central contribution is a modified form of the dynamic programming safety backup (5) which induces a contraction mapping in the space of value functions and is therefore amenable to reinforcement learning methods based on temporal difference learning [10, 24, 25].

Initial conditions

Unsafe jumping

Safe sitting

Safe standing

Fig. 6: Learned half-cheetah safety policies aimed to keep the head and front leg off the ground. *Left to right:* episode starting configuration; an unsafe jumping policy learned using a sum of discounted heights; a safe sitting policy learned using discounted safety or (less reliably) discounted sum of contact penalties; a safe standing policy learned using discounted safety.

Takeaways

- Safety is hard.
- Control theoretic frameworks provide an interpretable inductive bias
- Active research in "data-driven safety"
 - Using data to inform parameters of safety models
 - Using safety models to inform data-driven solutions

Thank you!

Good luck on your project!

9	Mon, Nov 25	Safe control II	
9	Wed, Nov 27	No lecture	
9	Fri, Nov 29	н	omework 3
10	Mon, Dec 2	Final presentations I	
10	Wed, Dec 4	Final presentations II	
Finals	Wed, Dec 11	F	inal report
Finals	Fri, Dec 13		omework & talk ummaries

- Homework and talk summaries need to be submitted by Friday finals week
- Please do course evaluation if more people enroll in the future, I can get a TA/grader ☺

