AA 598B Special Topics

Decision-Making & Control for Safe Interactive Autonomy

Instructor: Prof. Karen Leung

Autumn 2024

<https://faculty.washington.edu/kymleung/aa598/>

AA598B Decision-Making & Control for Safe Interactive Autonomy 1

Announcements

- Guest lecture on Wednesday by Dr. Boris Ivanovic, Senior Research Scientist and Manager in NVIDIA Autonomous Vehicle Research Group
	- Submit talk review/reflection
- Homework 2 out tomorrow (will be light)
- Start thinking about project proposals
	- Due Nov 1 Friday
- Next Wednesday long paper discussion
- Useful video from IROS: <https://www.youtube.com/watch?v=QYbAvOPcy0s>

Project proposal

- **Research project**—A research project that is connected to topics covered in this course. It is encouraged for it be to connected to your PhD/MS research or other course projects. But the connection to the course must be evident and the contributions distinct.
- **Literature survey**—A deep dive into several papers on a chosen topic area, including your inclusion criteria, motivating questions, and insights.
- The grading for the project is as follows.
	- Project proposal due week 5 (5%)
	- Project presentation in week 10 (10%)
	- Project presentation peer review in week 10 (5%)
	- Project report due finals week (15%)

Last time

- Wrapped up behavior prediction models
	- Ontological "theory of mind" approaches
	- Phenomenological "deep generative model" approaches
	- Many different datasets and open-source code available
	- Many different metrics are used to evaluate prediction performance
	- Prediction models are being adapted for generate realistic human behaviors for simulators
		- Still a hard problem (stability, controllability, multi-agents, etc)

Today

- Start planning module!
	- Defining the problem
	- Techniques to solve the problem

Interaction-aware planning

Module #2

Traffic in the right lane is exiting a freeway.

Goal: Compute $u_{robot} = \pi(x_{robot}, x_{humans}, e)$

AA598B Decision-Making & Control for Safe Interactive Autonomy 8

What makes interaction-aware planning challenging? *(discussion)*

multiple agent interaction to combinatorial explosion to hard to find tractable

selecting a viewcone.

- · Sensing / tracking multiple agents can be hard . Is affect planning frequency uncertainty in humantendencies , models for uncertainty, ideally avoid strong assumptions
- · Conservative vs efficiency planning horizon?
- accounting for out of distribution events. · feedback from humansrobot
- adapting to new waseen settings food ODD

Schmerling et al 2018

GMM: gaussian mixture model

- . the mean is not a good measure of outcome.
- outcomes can be very distinct -> lead to very different plans

Need to account for how others may respond to your own actions

AA598B Decision-Making & Control for Safe Interactive Autonomy 11 and 12 and 12 and 12 an

Decision-making under uncertainty

AA598B Decision-Making & Control for Safe Interactive Autonomy 12

Planning problem: Find **actions** that accomplish the desired **task**

- Actions: How are actions represented?
- . Next robot state for the next timestep + tracking controller (PID, LOR)

- \circ control inputs. $U_{R} = \pi (x_{R_1...})$
- \bullet desired trajectory / sequence of waypoints + tracking controller.

Planning problem: Find **actions** that accomplish the desired **task**

Task: How is the task defined?

- objectivefunctions ^t constraints mathematical functions describing these
- · indicator function for fask success/failure.
- demonstrations of success failure
- . LLMs / define through lauguage.
- temporal logie, a formal language to express specifications. STL, LTL

• **Search-based**: Enumerate over all possible options and pick the best one BFS, DFS, A PRM, RRT ^{F} PMT

- **Search-based**: Enumerate over all possible options and pick the best one
- **Supervised learning**: Mimic what an expert did (i.e., behavior cloning)

- **Search-based**: Enumerate over all possible options and pick the best one
- **Supervised learning**: Mimic what an expert did (i.e., behavior cloning)
- **Optimization-based**: Assume problem dynamics and frame as optimization problem fmincon, cuxpy, rpop7.

- **Search-based**: Enumerate over all possible options and pick the best one
- **Supervised learning**: Mimic what an expert did (i.e., behavior cloning)
- **Optimization-based**: Assume problem dynamics and frame as optimization problem
- **Reinforcement learning**: Learn from interactions & optimize

CS599 GAbhishek Gupta

General optimal planning problem $\begin{bmatrix} \text{assume} & \text{no} & \text{human} \end{bmatrix}$ $\chi_K^{(\epsilon)}$ ϵ κ^{\prime} , μ_{κ} ϵ κ^{\prime} , μ_{κ} ϵ κ^{\prime} , ϵ κ^{\prime} , goal κ to find $u_{R}^{(0)}$... $u_{R}^{(1)}$ fhat accomplisher the fast. $M_{10}^{10.7}$ J ($R_{10}^{10.7}$, $M_{20}^{10.7}$) $S.t.$ $XR = f (XR', UR')$ dynamics
a $(X, [0:T])$ $(0:T)$ $(0:T)$ $(0:T)$ $(0:T)$ $(0:T)$ $(0:T)$ $(0:T)$ $(0:T)$ $g_i(x_k^{(0.171)}, u_k^{(0.17)}) \geq 0$ $i=1...$, G_{eg} controllimits obstacles speed h_j $(x_k^{(o:Tf)})$ $(x_k^{(o:T)})$ = 0 j = 1..., H equality initial state.
goal state eg. STL. Goal state

AA598B Decision-Making & Control for Safe Interactive Autonomy 19

With luminant(s) CVAR

\nWith luminant(s) CVAR

\nHint:

\n
$$
\frac{W_{1}(n)}{W_{2}(0:T)} = \int_{0}^{T} (x_{k}^{(0:T+1)} y_{k}^{(0:T)}, x_{k}^{(0:T+1)} y_{k}^{(0:T)}) \, dx
$$
\n1.4. $X_{k}^{(0)}$ = $\int_{0}^{T} (x_{k}^{(0)}, y_{k}^{(0:T)}) y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} \, dx$

\n1.5. $X_{k}^{(0)}$ = $\int_{0}^{T} (x_{k}^{(0)}, y_{k}^{(0:T)}) y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} \, dx$

\n1.6. $\int_{0}^{T} (x_{k}^{(0:T+1)} y_{k}^{(0:T)}, x_{k}^{(0:T+1)} y_{k}^{(0:T)}) \, dx$

\n1.7. $\int_{0}^{T} (x_{k}^{(0:T+1)} y_{k}^{(0:T)}, x_{k}^{(0:T+1)} y_{k}^{(0:T)}) \, dx$

\n1.7. $\int_{0}^{T} (x_{k}^{(0:T+1)} y_{k}^{(0:T)}, x_{k}^{(0:T+1)} y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} \, dx)$

\n1.7. $\int_{0}^{T} (x_{k}^{(0)}, y_{k}^{(0:T)}, x_{k}^{(0:T+1)} y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} \, dx)$

\n2. $\int_{0}^{T} (x_{k}^{(0)}, y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} \, dx)$

\n3. $\int_{0}^{T} (x_{k}^{(0)}, y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} \, dx)$

\n4. $\int_{0}^{T} (x_{k}^{(0)}, y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} y_{k}^{(0:T+1)} \, dx)$

\n5. $\int_{0}^{T} ($

 $D(P(S|u_{\frac{r}{k}})||P(S|u_{\frac{r}{k}}))$

Stochastic optimal control

AA598B Decision-Making & Control for Safe Interactive Autonomy 23

Planning with access to other agent's reward

(a) Car merges ahead of human; anticipates human braking

(b) Car backs up at 4way stop; anticipates human proceeding

(c) User drives human car

Fig. 1: We enable cars to plan with a model of how human drivers would react to the car's actions. We test the planner in a user study, where the car figures out that (a) it can merge in front of a human and that will slow them down, or (b) it can back up slightly at an intersection and that will make the human go first.

Sadigh et al 2016

At every iteration, the robot needs to find the $\mathbf{u}_{\mathcal{R}}$ that maximizes this reward:

$$
\mathbf{u}_{\mathcal{R}}^* = \arg \max_{\mathbf{u}_{\mathcal{R}}} R_{\mathcal{R}}(x^0, \mathbf{u}_{\mathcal{R}}, \mathbf{u}_{\mathcal{H}}^*(x^0, \mathbf{u}_{\mathcal{R}}))
$$
(5)

Here, $\mathbf{u}^*_{\mathcal{H}}(x^0, \mathbf{u}_{\mathcal{R}})$ is what the human would do over the next N steps if the robot were to execute $\mathbf{u}_{\mathcal{R}}$.

The robot does not actually know $\mathbf{u}_{\mathcal{H}}^*$, but in the next section we propose a model for the human behavior that the robot can use, along with an approximation to make (5) tractable.

$$
\mathbf{u}^*_{\mathcal{H}}(x^0, \mathbf{u}_{\mathcal{R}}) = \arg \max_{\mathbf{u}_{\mathcal{H}}} R_{\mathcal{H}}(x^0, \mathbf{u}_{\mathcal{R}}, \mathbf{u}_{\mathcal{H}})
$$

Planning with access to other agent's reward

To apply L-BFGS, we need the gradient of (5) with respect to $\mathbf{u}_{\mathcal{R}}$:

$$
\frac{\partial R_{\mathcal{R}}}{\partial \mathbf{u}_{\mathcal{R}}} = \frac{\partial R_{\mathcal{R}}}{\partial \mathbf{u}_{\mathcal{H}}} \frac{\partial \mathbf{u}_{\mathcal{H}}^*}{\partial \mathbf{u}_{\mathcal{R}}} + \frac{\partial R_{\mathcal{R}}}{\partial \mathbf{u}_{\mathcal{R}}}
$$
(11)

 $\frac{\partial R_{\mathcal{R}}}{\partial \mathbf{u}_{\mathcal{H}}}$ and $\frac{\partial R_{\mathcal{R}}}{\partial \mathbf{u}_{\mathcal{R}}}$ can both be computed symbolically through backward propogation, as we have a representation of $R_{\mathcal{R}}$ in terms of $\mathbf{u}_{\mathcal{H}}$ and $\mathbf{u}_{\mathcal{R}}$. For $\frac{\partial \mathbf{u}_{\mathcal{H}}^*}{\partial \mathbf{u}_{\mathcal{R}}}$, we use that $\mathbf{u}_{\mathcal{H}}^*$ is the minimum from (10), which means that the gradient of $R_{\mathcal{H}}$ evaluated at $\mathbf{u}_{\mathcal{H}}^*$ is 0:

$$
\frac{\partial R_{\mathcal{H}}}{\partial \mathbf{u}_{\mathcal{H}}}(x^0, \mathbf{u}_{\mathcal{R}}, \mathbf{u}_{\mathcal{H}}^*(x^0, \mathbf{u}_{\mathcal{R}})) = 0 \tag{12}
$$

Now, we can differentiate the expression in equation (12) with respect to $\mathbf{u}_{\mathcal{R}}$:

$$
\frac{\partial^2 R_{\mathcal{H}}}{\partial \mathbf{u}_{\mathcal{H}}^2} \frac{\partial \mathbf{u}_{\mathcal{H}}^*}{\partial \mathbf{u}_{\mathcal{R}}} + \frac{\partial^2 R_{\mathcal{H}}}{\partial \mathbf{u}_{\mathcal{H}} \partial \mathbf{u}_{\mathcal{R}}} \frac{\partial \mathbf{u}_{\mathcal{R}}}{\partial \mathbf{u}_{\mathcal{R}}} = 0 \tag{13}
$$

Finally, we can solve for a symbolic expression for $\frac{\partial u_{\mathcal{H}}^*}{\partial u_{\mathcal{D}}}$.

Planning with social considerations

[Social behavior for autonomous vehicles](https://www.pnas.org/doi/10.1073/pnas.1820676116)

$$
q_1=\cos(\varphi_1)r_1(\cdot)+\sin(\varphi_1)r_2(\cdot),
$$

Schwarting et al 2019

Planning with social considerations *[Courteous Autonomous Cars](https://arxiv.org/pdf/1808.02633)*

Planning with social considerations

[Legible and Proactive Robot Planning for Prosocial Human-Robot Interactions](https://arxiv.org/abs/2404.03734)

Geldenbott et al 2024

Planning with rules

[Receding Horizon Planning with Rule Hierarchies for Autonomous Vehicles](https://arxiv.org/abs/2212.03323)

AA598B Decision-Making & Control for Safe Interactive Autonomy 32

What if we take advantage of parallel computation?

- So far, the methods relied on some sort of gradient descent.
- What if we can't compute gradients easily?
- We can consider searching over the space via a sampling-based approach

Planning with ego-conditioned prediction *[Multimodal Probabilistic Model-Based Planning for Human-Robot Interaction](https://arxiv.org/abs/1710.09483)*

4096 candidate robot action sequences scored each planning loop. Fig. 5 .

Schmerling et al 2018

Model Predictive Path Integral (MPPI)

- 1. Start with nominal trajectory
- 2. Add noise to it to generate many trajectories
- 3. Evaluate cost of each trajectory
- 4. Compute weight for each trajectory
- 5. Compute weighted sum over controls to compute control

Game theory

© 2010 Encyclopædia Britannica, Inc.

https://www.britannica.com/science/game-theory/The-von-Neumann-Morgenstern-theory

[ALGAMES: A Fast Augmented Lagrangian](http://roboticexplorationlab.org/papers/algames_auro.pdf) Solver for Constrained Dynamic Games Autonomous Robots (AuRo 2021), *S. Le Cleac'h, M. Schwager, Z. Manchester*

The evolution of trust

<https://ncase.me/trust/>

Game theory

Definition: A mathematical framework for modeling scenarios in which multiple decision-makers (agents) interact, with each agent's outcome depending not only on its own actions but also on the actions of others.

Relevance: In human-robot interaction, game theory helps model how robots can make decisions while considering the possible actions of human agents.

General problem formulation

min $J^1(X, U^1)$
 X, U^1 $\min_{X, U^M} J^M(X, U^M)$ s.t. $D(X, U) = 0$, s.t. $D(X, U) = 0$, $\bullet\quad\bullet\quad\bullet$ $C(X, U) \leq 0$, $C(X, U) \leq 0$,

$$
\forall i \in [N] \begin{cases} \min_{X^i, U^i} \quad J^i(\mathbf{X}, U^i; \theta^i) \\ \text{s.t.} \quad x_{t+1}^i = f^i(x_t^i, u_t^i), \forall t \in [T-1] \\ x_1^i = \hat{x}_1^i \\ p g^i(X^i, U^i) \ge 0 \\ s g(\mathbf{X}, \mathbf{U}) \ge 0. \end{cases}
$$

AA598B Decision-Making & Control for Safe Interactive Autonomy 40

Payoff structure

- Zero sum two player games
	- Total payoff always sums to zero
	- One player's gain is exactly equal to the other player's loss
- General sum games
	- Payoff does not need to sum to zero
	- No strong sense of win or lose

Nash equilibrium

- At Nash equilibrium, every player is playing optimally given the choices of others,
	- No player has an incentive to deviate from their chosen strategy.

 $J_i(u_i^*, u_{-i}^*) \leq J_i(u_i, u_{-1}^*) \ \forall u_i \in U_i$

- Other types:
	- Subgame Perfect Equilibrium (Nash over multiple steps)
	- Correlated Equilibrium (follow recommendation from external source)
	- Bayesian Nash Equilibrium (Nash with incomplete information, have beliefs over others)

