

Human-robot interaction			
[] Dynamical system			
[] Joint state and relative state			
[] What is HRI hard?			
Dynamical Systems			
• model the motion of human and robot agents as a <i>dynamical system</i>			
What is a dynamical system? A set of quantities (ip. states) whose values evolve overtime.			
A set of quantities (ie. states) whose values evolve overtime.			
other external inputs (eg. controls, disturbances).			
· describe dynamics wrong start-space representation. (area using vectors [Linear algebra)			
State $x \in X \subseteq \mathbb{R}^n$, $n \in \mathbb{Z}_+$ $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$			
a minimum set of quantities needed to describe			
the system of nevert.			
eg. Bo position, velocity heading			
control UENCRM, MEZ, , U= [",]			
a get of quantitres whose values can be selected by, eg, a human or algorithm			
eg, acceleration, torque, your voite.			
NOTE: M us controls $U=K(x)$, K was a PID or leading. propertional ede.			
and focused on SISO			
but on this class, we are interested in MIMO => applying Lot.			

& also look at optimisation-based control.
distribance dED SR d= [di] distribances that can affect the system dynamics, state & controls eg- wind, ice, noise, augthry that is not explicitly modeled.
Observations yere R y= [9] Observations that can be measured by sensors on the system. eg. (MV), accelerance - CAPS, etc.
NOTE: assume system is fully observable y=x
dynamics $x = x(t), \dot{x} = \dot{d}\dot{x} \qquad \dot{x} = f(x, u, d, t) \begin{cases} continuous - time \\ y = g(x, u, d, t) \end{cases} \begin{cases} continuous - time \\ dynamics \end{cases}$ we can also have discrete time alynamics
$x_{t+1} = f_d(x_t, u_t, d_t, t)$ t: fince step.
· get CT dyn from physics · eg. Newton's 2nd (aw) [twegrate DT dynamirs. Properties of fc/fd
- typically dynamics are nonlinear. [AA[ME]EE 583)
- f can be linear &= Ax+Bu, Xiti = AXi+Bui (547,548)
- control affine systems $\dot{x} = f(x) + g(x)u + h(x)d$

Trajectonés a sequence leignal et states (2 controls)
CT: $\begin{cases} f,u(\cdot),d(\cdot) \\ \xi \end{cases}$ = trajectory starting at κ_0 , to, following ξ agramics f , executing $u(\cdot)$ & disturbance $d(\cdot)$ up to time t .
f, u(.), d(.) X _{ko,to} (t) = slate
T (xo, to, f, u(·), a(·)) make sure you define it clearly.
Smulating trajectorier -D INTEGRATE (CT) STEP FORWARD (DT)
For CT, you can use ODEAS, scipy. RK4(?) Scipy. rutegrate. [
eg. Simple unicycle $\begin{cases} y & x \neq 0 \\ y & x \neq 0 \end{cases}$ state: $\hat{x} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$
$\frac{1}{x} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} v \cos \theta \\ v \sin \theta \end{bmatrix} v = \begin{bmatrix} v \\ w \end{bmatrix} \qquad \hat{x} = f(\hat{x}) + g(\hat{x})u \text{? Yes'}$
$\begin{bmatrix} \dot{x} \\ \dot{y} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix} \begin{bmatrix} v \\ v \end{bmatrix}$ $f(x)$ $f(x)$ $g(x)$
add an integrator state $\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} v\cos\theta \\ v\sin\theta \end{bmatrix} = \begin{bmatrix} \omega \\ \alpha \end{bmatrix}$

Q: given a general nontinoon dyn. sys, can we do some "trick" to make it courtrel affine?

eg sunde braycle. V=WR

control affine? No: tans in nonlinear \$ = tan 8 77

XH, UH, FH XR, UR, FR $XR = [FR(XR, UR)]$ XH, UH, FH XR, UR, FR $XH = [FR(XR, UR)]$ XH, UH, H
- XR & XH (XH relative to XR) well Ur depends on - UH - what the human will do. · potentially future states [controls. knowing UH future, fH
$UR = T_R(X_R, X_H, U_{H,})$
similarly UH depends on - KR & XH (XH relative to XR) "UR - what the human will do. potentially future states (controls. knowng UR future, fR
UHE TH (XX, XH, UR,)
11/19/27/10/02/27
what (f there n-agents?
11/19/27/10/02/27

Pelative dynamics	
we can consider the relation	re state between two agents.
may get some reduction on	White & LP.
may go soive tackation to	gred Size
LIZE JXH	Tree? 7 +5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tree! 7 +s
Som,	Tree! 7 +5
ZX (
[Kver] = [COSOR SIND] [XH.	- % e]
Farer) F-21 NOK COSOK FAH	- yr]
$\chi_{rel} = \cos \theta R (\chi_H - \chi_R) -$	F SINOR (YH-YR)
Krel = 3	
•	Xvel 7
	=> \frac{2}{\text{Yred}} = \frac{\text{Yred}}{\text{Ored}}
Over = OH - OR	
· · · · · · · · · · · · · · · · · · ·	VH LVR J
	V K