
AA 598B Instructor: Leung

AA 598: Decision-making and Control for Safe Interactive Autonomy
Homework 3— (Recommended) Due date: Friday November 29th
Starter code: https://github.com/UW-CTRL/AA598-aut24

Goal. To become familiar with reachability concepts and computation of safe control sets.
Starter code instructions: Pull the latest changes from https://github.com/UW-CTRL/AA598-aut24/
tree/main. Don’t forget to first commit and push your previous homework to your own forked repo and
switch back the main branch! In addition to this homework’s files, you will need a few additional packages.
Activate your virtual environment and run

pip install --upgrade hj-reachability
pip install tqdm

NOTE: If you are working on a machine with a GPU, you can install JAX with GPU support, and it will
make computing the sets much faster! See JAX installation instructions for more details.

1 HJ reachability
In class, we learned about HJ reachability and how it is used to compute backward reachable sets/tube.

The Hamilton-Jacobi-Isaacs (HJI) PDE for a backward reachable tube (BRT) for an avoid set is given below.

∂V (x, t)

∂t
+max

u∈U
min
d∈D

min

{
0,

∂V (x, t)

∂x
· f(x, u, d)

}
= 0

V (x, 0) = F (x)
Intuitively, if the target set T is the set of state the system wishes to avoid and T = {x ∈ X | F (x) ≤ 0}

(i.e., negative values is inside the set), then we seek to find optimal controls u for the system that will keep
it outside T (i.e., max) subject to adversarial disturbances d that aims to push the system inside T (i.e., min).
A simple and intuitive way to define F is to use the signed distance function—the signed distance between
two circles is very easy to compute but can be more complicated for complex shapes.

We can use HJ reachability to compute BRTs describing interactions between a robot and human agent.
We achieve this by considering the relative dynamics between a robot and human agent, and then the hu-
man’s control inputs are treated as disturbances.

In class, we discussed that if we assume that both the robot and human can take any control/disturbance
inputs from their respective feasible sets, then this can lead to overly conservative. This short paper dis-
cusses this issue and presents research ideas towards the concept of “data-driven safety” and how we
should learn from data to encode reasonable assumptions about the behavior of agents. This paper presents
an approach to learn state-dependent control sets from data using Control Barrier Functions and incorpo-
rate them into the HJ reachability computation to reduce the over-conservatism in the BRT.

In this problem, you will use the HJ Reachability toolbox to compute the BRT with different choices of
control and disturbance bounds, and see how the size and shape of BRTs changes.

Let us model both the robot and human agent as dynamically-extended unicycles where x = [x, y, θ, v]T

and u = [ω, a]T .

ẋrob =


vrob cos θrob
vrob sin θrob

ωrob

arob

 , ẋhum =


vhum cos θhum
vhum sin θhum

ωhum

ahum


We can also impose velocity limits on each agent.

We define the relative position, centered on the robot, and relative heading to be,

prel =

[
xrel

yrel

]
=

[
cos θrob sin θrob
− sin θrob cos θrob

] [
xhum − xrob

yhum − yrob

]
, θrel = θhum − θrob

The relative state becomes xrel = [xrel, yrel, θrel, vrob, vhum]
T .

(a) Write down the dynamics describing the relative system. That is, what is the expression for ẋrel?
(Hint: You will need to apply the chain rule and some algebraic manipulation.)

(b) Are the relative dynamics control and disturbance affine? If so, express the dynamics to clearly indi-
cate the drift, control, and disturbance term.

1

https://github.com/UW-CTRL/AA598-aut24
https://github.com/UW-CTRL/AA598-aut24/tree/main
https://github.com/UW-CTRL/AA598-aut24/tree/main
https://github.com/jax-ml/jax#installation
https://arxiv.org/abs/2107.14412
https://arxiv.org/abs/2210.02761
https://github.com/StanfordASL/hj_reachability


AA 598B Instructor: Leung

(c) Take a look at the example notebook and starter code to get a sense of how to run a BRT computation
and how to construct your own custom dynamics. Fill in the RelativeDynamicUnicycle class
given the dynamics you derived above.

(d) If the Euclidean distance between the robot and human is less than rcol, then that is considered a
collision. Run the next few cells in the starter code to compute the BRT, and analyze the resulting
sets. Select three different configurations (i.e., different relative headings and velocities) and provide
a brief explanation of the shape/size of the BRT. Does it align with your intuition? Include the plots.

(e) Each agent could take any controls/disturbances from their respective feasible control/disturbance
sets U and D. The provided starter code you ran in the previous question assumed U and D reflect the
physical limits of a unicycle model. However, we can choose the set of controls/disturbance bounds
to be whatever we like. For instance, U and D do not need to be the same.

(i) Compute the BRT if we assume each agent cannot accelerate nor rotate, i.e., a ∈ [0, 0] and ω ∈
[0, 0]? What is the interpretation of the results? (Hint: it is a technique we discussed in the
prediction module). Select three different configurations (i.e., different relative headings and
velocities) and provide a brief explanation of the shape/size of the BRT. Does it align with your
intuition? Include the plots.

(ii) Compute the BRT if we assume each agent will maximally brake but is free to rotate. What is the
interpretation of the results? Select three different configurations (i.e., different relative headings
and velocities) and provide a brief explanation of the shape/size of the BRT. Does it align with
your intuition? Include the plots.

(iii) Suppose you are designing a cat-catching robot. We model both the robot and cat with the
unicycle dynamics but assume the cat can change its direction faster than the robot, but cannot
(de)accelerate as much as the robot. (Feel free to use different dynamics to make this a bit more
realistic). In this case, the robot wants to reach the target set, while we assume the cat wants
to evade capture and therefore wants to avoid the target set. Set up a BRT problem to reflect
these assumptions and compute the corresponding BRT. Select three different configurations
(i.e., different relative headings and velocities) and provide a brief explanation of the shape/size
of the BRT. Does it align with your intuition? Include the plots.

(iv) (Optional) Come up with different of assumptions about the dynamics/interaction and describe
how this is reflected in the BRT set up.

(v) (Optional) We can also free to select the initial value F however we like, as long as T = {x ∈
X | F (x) ≤ 0}. With the signed distance function, we only consider the distance to the collision
set using position information only. As such this choice of F does not consider collision severity.
For instance, a head on collision at high speeds is more dangerous than a side collision at low
speeds. Try to come up with different choices of F , explain your intuition behind this choice,
and describe the shape and size of the BRT you get from using it.

2 Safety Filter
A safety filter is a module we add on top of our planning and control stack that will adjust the desired

control as necessary to ensure a safety criterion is met. One such way to construct a safety filter is to use
Control Barrier Functions. Suppose we have a valid CBF b : Rn → R and extended class K∞ function
α : R → R where,

max
u∈U

∇b(x)T f(x, u) ≥ −α(b(x)), x ∈ X .

For a given state x ∈ X , the set of feasible safe controls as determined by the CBF is,

Usafe = {u ∈ U | ∇b(x)T f(x, u) ≥ −α(b(x))} (1)

We can project the desired control into the set of safe controls defined by the CBF inequality in (1). To
perform this projection, we can solve the following optimization problem (assuming each control input are
independent and must be within some interval). For a given x ∈ X and a desired control input udes, the
filtered safe control usafe is,

2

https://github.com/StanfordASL/hj_reachability/blob/main/examples/quickstart.ipynb


AA 598B Instructor: Leung

usafe = argmin
u

∥u− udes∥22

s.t. ∇b(x)T f(x, u) ≥ −α(b(x))

umin ≤ u ≤ umax

Note: we can add a slack variable to the CBF constraint to ensure the problem is always feasible, and
this can be handy since it is generally difficult to find a valid CBF, similar to how it is difficult to find a
(control) Lyapunov function.

(a) Show that the above optimization problem is a quadratic program if the dynamics are control affine.

(b) Consider the following (kinematic) unicycle model with state x = [x, y, θ]T and controls u = [v, ω]T .

ẋ =

v cos θv sin θ
ω


Let b(x) = x2+y2−r2 and α(x) = ax, a > 0. Write down the expression for ∇b(x)T f(x, u) ≥ −α(b(x)).
Describe the safe control set U safe as r and a varies. For a fixed value of r, what is an interpretation
for a? How does it affect your safety filter? Is this b a good choice? Why or why not?

3


	HJ reachability
	Safety Filter

