
AA 598B Instructor: Leung

AA 598: Decision-making and Control for Safe Interactive Autonomy
Homework 1— (Recommended) Due date: Friday October 18th

Starter code: https://github.com/UW-CTRL/AA598-aut24

Goal. To become familiar with basic supervised learning and generative modeling concepts and their uses
in predicting multimodal outcomes. Additionally, to become familiar with basic PyTorch utilities.
Dataset. In this homework, we will work with some very simple synthetically generated 1D data, wave data
and multimodal data. Fig. 1 shows a sample from each dataset. Each dataset consists of trajectory history
(shown in blue), and a trajectory future (not blue). For wave data, there is only one possible future. For
multimodal data, there are multiple possible futures. While the multimodal data is very simple, the
format is representative of human interaction data where the history could be observation history of the
environment, and the future could be the future states/controls of agents in the environment.
Note. Please keep your responses brief. Long-winded responses will result in zero points.

Fig. 1: Example of trajectory data that you are working with. Left: wave data. Right: multimoda data.

1 Basic regression problem
In this problem, you will train a neural network to perform a simple regression problem. Given a

trajectory history x, we want to predict a future trajectory y. We want to learn a function fθ(·) parameterized
by θ such that y ≈ fθ(x). First we try on
1.1 Multilayer perception (MLP)

We can just learn an MLP that treats the entire trajectory history as a concatenated vector and outputs
the future trajectory, again, as a concatenated vector.

(a) Implement a simple MLP (≈ 2 layers) and train it on the wave data. Describe your MLP architecture.
Report the test loss and include some plots showing the prediction on the test set. Briefly justify your
choice of hyperparameters.

(b) Briefly describe some potential benefits and limitations of using MLPs as the core architecture for
human behavior prediction.

1.2 Long-short term memory (LSTM)
It is common to use recurrent neural networks (RNN) to process time-series data. The idea is to process

the inputs sequentially—this makes a lot of sense if future inputs depend only on previous inputs. LSTMs
are a particular type of RNN [1].

(a) Implement a simple prediction model that uses an LSTM to encode the trajectory history and another
LSTM to decode the output. Describe your LSTM architecture. Report the test loss and include some
plots showing the prediction on the test set. Briefly justify your choice of hyperparameters.

(b) Briefly describe some potential benefits and limitations of using RNNs/LSTMs as the core architecture
for human behavior prediction?

(c) What happens if you choose a prediction horizon that is longer than the training data? Include a plot
of your prediction with an extended prediction horizon.
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2 Regression on multimodal outcomes
Let’s try the same type of models you have built but on data where for similar trajectory histories, the

future trajectories could have multiple outcomes. This is what we refer to as multimodality.

(a) Train another MLP and LSTM prediction model using the multimodal data. Report the test loss
and include some plots showing the prediction on the test set.

(b) Are these models successful in prediction the future trajectories well? Are the predictions what you
would expect? Briefly justify your answer.

Problem 3: Conditional Variational Autoencoder (CVAE)
Rather than performing regression (i.e., learn a function approximation such that y ≈ fθ(x)), we instead

can learn a conditional distribution such that y ∼ pθ(y | x) where the distribution is parameterized by θ.
Specifically, we want to learn pθ such that it matches the data distribution that generated the dataset. We
say that we want to learn a generative model, a model that can generate new samples that is similar to the
training data.

While there are many different ways to create generative model (we discussed in class), in this home-
work, we will look into conditional variational autoencoders due to its simplicity and also its use of a latent
space to capture salient information.

(a) Read (Multimodal Deep Generative Models for Trajectory Prediction: A Conditional Variational Au-
toencoder Approach [2], in particular Section III.A. Prove Equation (2) from the paper.

Ultimately, to train a CVAE, we seek to minimize the following objective:

L(x, y; θ, φ, ϕ) = E(x,y)∼pD(x,y)

−Eqφ(z|x,y)

log Decoder︷ ︸︸ ︷
pϕ(y | x, z)


︸ ︷︷ ︸

Negative log-likelihood

+DKL

Importance weight︷ ︸︸ ︷
qφ(z | x, y) ||

Encoder︷ ︸︸ ︷
pθ(z | x)


︸ ︷︷ ︸

KL divergence

 (1)

Describing each term in the loss:

(a) pθ(z | x): The encoder that takes input x and outputs a distribution over z (or parameters of the
distribution). The latent space can either be continuous or discrete. We explore both in this homework.

(b) pϕ(y | x, z): The decoder that takes input x and latent variable z, and outputs a distribution over y
(or parameters of the distribution). In this homework, we let pϕ(y | x, z) = N (µϕ(x, z),Σϕ(x, z))
where µϕ and Σϕ are neural networks. Note: for simplicity, we let Σϕ(x, z) = diag(log fϕ(x, z)) as this
ensures that Σϕ is positive definite.

(c) qφ(z | x, y): The importance weight which encodes what are likely values for z given x and y. This
importance weight is used to ensure that we are learning a meaningful pθ(z | x). Like pθ(z | x),
qφ(z | x, y) can be either continuous or discrete.

(d) The negative log-likelihood term measures how likely the data is under the distribution pϕ(y | x, z)
when z ∼ qφ(z | x, y). We take the mean over samples from qφ(z | x, y) where (x, y) are samples from
the training dataset.

(e) The KL divergence measures how similar distribution p is to q. Intuitively, the KL divergence term
encourages pθ(z | x) and qφ(z | x, y) to be similar so that pθ(z | x) can generate z that would likely
generate y.

Take a look at the starter code. It includes code (some for you to fill out) for constructing a CVAE,
training one, and visualizing the results. We will be using MLP for the encoder and decoder, but this can
easily be swapped for different neural architectures.

2

https://arxiv.org/abs/2008.03880
https://arxiv.org/abs/2008.03880


AA 598B Instructor: Leung

2.1 Continuous latent space
In the continuous latent space case, pθ(z | x) and qφ(z | x, y) are multivariate normal distributions.

(a) Complete the ContinuousCVAE class. Each function should be less than 5 lines long.

(b) Train the continuous CVAE model. Try training several times and test out different hyperparameters
to get a sense of how the results change. Briefly summarize your results and insights. Include a plot
of the prediction.

2.2 Discrete latent space
In the discrete latent space case, pθ(z | x) and qφ(z | x, y) are one-hot categorical distributions, and a

Gumbel-Softmax [3, 4] is used to parameterize the latent space to make it differentiable. A full implemen-
tation is provided.

(a) Take a look at the DiscreteCVAE class. Given latent dim and num categories, what shape is
the latent vector? How many possible values can it take on? Give an example of what values a latent
vector could take on.

(b) Train the discrete CVAE model. Try training several times and test out different hyperparameters and
latent space sizes to get a sense of how the results change. Briefly summarize your results and insights.
Include a plot of the prediction.

(c) Comparing your results with the continuous and discrete CVAE. What are some benefits/drawbacks
from using each?
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