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Abstract

A mathematical model for pulse propagation in a non-
linear fiber-optic communicationsline is presented where
linear loss in the fiber is balanced by a chain of
periodically-spaced, phase-sensitive amplifiers (PSAs).
A multiple scale analysis is employed to average over
the strong, rapidly-varying and periodic perturbations
to the governing nonlinear Schrodinger equation (NLS).
The analysis indicates that the averaged evolution is
governed by a fourth-order nonlinear diffusion equation
which evolves on a length scale much greater than that
of the typical soliton period.

In a particular limit, stable steady-state hyperbolic se-
cant solutions of the averaged equation are analytically
found to exist provided a minimum amount of overampli-
fication is supplied. Further, arbitrary initial conditions
within a wide stability region exponentially decay onto
the steady-state. Outside of this analytic regime, ex-
tensive numerical simulations indicate that soliton-like
steady-states exist and act as exponential attractors for
a wide region of parameter space. These simulations
also show that the averaged evolution is quite accurate
in modeling the full NLS with loss and phase-sensitive
gain.

The bifurcation structure of the fourth-order equation
is explored. A subcritical bifurcation from the trivial
solution is found to occur for a specific overamplifica-
tion value. Further, a limit point, or fold, is also found
which connects the stable branch of solutions with the
unstable branch from the subcritical bifurcation. The bi-
furcation structure can be further explored in parameter
space with the use of AUTO which is capable of tracking
steady-state solutions for a wide range of parameters.

For larger amplifier spacings, a small dispersive radi-
ation field 1s generated from the periodic forcing of the
loss and gain. The NLS with variably-spaced PSAs is
then considered in an effort to reduce the radiation field.
Numerical results indicate that the dispersive field is ef-
fectively attenuated depending upon the variability and
distribution of the amplifiers.

Part 1
Introduction

1. Historical Perspective

The 1960’s witnessed the development of a technological
advancement which proceeded to infiltrate and change
an enormous cross section of the engineering and phys-
ical sciences. This invention continues today to be a
central focus of modern day research and development.
This remarkable technological breakthrough is known as
the laser. The laser provided for the first time an in-
tense, coherent light source which could finally exploit
the nonlinear nature of many optical materials. In par-
ticular, Franken et al. discovered in 1961 the first nonlin-
ear effect in an optical crystal, namely second-harmonic
generation'. This discovery came one year after the first
successful demonstration of a working laser by Maiman'.
The doors were now open for a wide range of physical
phenomena to be investigated with the use of the laser,
and many fundamental results were achieved and con-
tinue to be achieved to the present day.

Of particular interest to this dissertation is the history
and development of optical fiber technology?™* which
was made possible through the use of the laser. In 1966,
optical fibers were suggested to be a good candidate for
supporting optical transmission. This fact was a con-
sequence of the guiding characteristics which the fiber
possessed due to the well known principle of total in-
ternal reflection. However, propagation distances at the
time were severely limited due to the power loss rates
which were of the order of 10> dB/km. This situation
changed drastically in 1970 when power loss rates were
brought down to 20 dB/km. Further progress in fabri-
cation technology proceeded to lower the loss rates even
further. Specifically, a power loss rate of 0.2 dB/km in
1979 was achieved. This remarkably low loss rate was
demonstrated to be wavelength dependent and was lim-
ited primarily by the fundamental process of Rayleigh



scattering. The availability of such low-loss fibers revo-
lutionized the field of optical fiber communications and
placed optical communications at the forefront of future
thinking in transcontinental and transoceanic communi-
cation links.

Paralleling these landmark developments in optical
fiber technology was an interesting and fundamental new
area in mathematics, namely soliton theory and the in-
verse scattering transform for nonlinear partial differen-
tial equations. The term ‘soliton’ was first introduced in
1964 by Kruskal and Zabusky®. Their work involved
numerical simulations of the Korteweg-deVries (KdV)
equation with periodic boundary conditions in order to
model the one-dimensional nonlinear oscillations of a lat-
tice. They discovered the formation of solitary waves
which passed through each other without deformations
due to the collisions and nonlinear interactions. Con-
sequently, these solitary waves were called solitons in
view of their particle like behavior. Two years following
the discovery of solitons, Gardner, Greene, Kruskal and
Miura® succeeded in giving a mathematical interpreta-
tion to these solitary wave solutions. Using inverse scat-
tering techniques, which were originally developed for
quantum mechanics, it was found that the KdV equa-
tion could be solved exactly for a localized initial condi-
tion. In particular, the inverse scattering technique was
a method by which one used an appropriate localized
initial condition as the form of the potential for which
a wave was to be scattered. One could then determine
the scattering data and eventually the form of the pulse
evolution from the localized initial condition. From this
analysis, it was found that the soliton solutions corre-
sponded to the bound states of the Schrodinger opera-
tor. Further, the particle picture of the solitary waves
was made complete.

In 1973, Hasegawa and Tappert” were the first to sug-
gest and show theoretically that an optical pulse propa-
gating in a dielectric fiber was governed by the so-called
nonlinear Schrddinger equation (NTLS). This equation,
which will be discussed further in the following chap-
ters, incorporated the nonlinear, cubic response of the
silica fiber upon the pulse intensity. At the time of its
derivation, neither a fiber with low enough loss (recall
that it was 1979 when the power loss rate dropped to
0.2 dB/km) or a laser which emitted light at the appro-
priate wavelength. Therefore, the nonlinear Schrodinger
equation as a proposed model governing the pulse prop-
agation could not be experimentally verified at the time.
However, in 1980, when both an appropriate laser and
low-loss fiber were available, Mollenauer et al.® demon-
strated the first successful propagation of an optical soli-
ton in a fiber.

Interestingly enough, in 1972, the year prior to
Hasegawa’s and Tappert’s derivation of the NLS for op-

tical solitons, Zakharov and Shabat® showed that the
NLS could be solved using the inverse scattering method
in a similar manner to that of the KdV. Here how-
ever, the inverse scattering was described by the complex
eigenvalues of a 2x2 Dirac-type equation whose poten-
tial corresponded to the initial localized envelope of the
NLS. The inverse scattering transform was made more
rigorous and general in 1974 by the AKNS scheme de-
veloped by Ablowitz, Kaup, Newell and Segur'®. The
AKNS scheme gave a general method for which to solve
a wide variety of exactly integrable nonlinear partial dif-
ferential equations which included the KdV, NLS and
sine-Gordon equations. This provided the basic frame-
work and understanding behind modern day soliton the-
ory''. In particular, the single soliton, two-soliton and
N-soliton solutions were well understood at that time.
NLS perturbation theory was then developed in an at-
tempt to ascertain the effects of differing perturbations
upon the leading-order soliton behavior!'?7'%. It was
found that the perturbations could have two distinct ef-
fects'®, namely perturbations could cause shifts in the
characteristic soliton parameters such as the amplitude,
width and frequency and perturbations could generate a
background dispersive radiation field. Apart from this,
the soliton solutions of the NLS were found to be re-
markably robust to a wide range of perturbations.

Armed with the analytical understanding of soliton
theory and its associated pulse dynamics, physically real-
izable communications systems based upon soliton trans-
mission were being developed. In fact, by the end of
the 1980’s, the bit rate-distance product was increased
by several orders of magnitude. These experimental re-
sults, which are largely due to Mollenauer, reaffirmed
the importance and potential of optical communica-
tions systems. Currently, Mollenauer and Nakazawa lead
the continued experimental effort to achieve higher bit-
rate distance products with minimal error over large,
transoceanic distances. Moreover, 1t is apparent at this
point that nonlinear optical fibers are the future in high-
speed, long-distance communications systems which is
hoped will eventually link the world in some kind of
global network.

2. Recent Issues

Although much progress has been made in the develop-
ment of soliton-based communications systems, there are
many issues which arise in physical systems which must
be addressed from both an experimental and theoretical
standpoint. Of particular interest in this dissertation are
some of the theoretical issues which are involved in un-
derstanding the pulse dynamics through fiber segments



which contain periodically-spaced amplifiers.

Specifically, when considering a physically realizable
long-distance communications system'”1® it becomes
necessary to compensate for the attenuation experienced
by a propagating pulse due to the Rayleigh scattering
mentioned in the last section. Typically, a long-distance
fiber optic communications link consists of segments of
fiber with amplifiers placed periodically along the link
to balance the loss associated with each segment of the
fiber'?. Therefore, the amplitude of the propagating
pulse experiences O(1) changes in its amplitude as it
propagates over long distances. It then becomes neces-
sary to understand how these amplitude changes modify
the effective pulse evolution over long-distances.

Often in cases of physical interest, the amplifier spac-
ing can be assumed to be much smaller than the typi-
cal dispersion length of the fiber. This assumption im-
plies that the periodic effect of the gain and loss can be
thought of as rapid fluctuations when considered from
the viewpoint of the length scale of the soliton period.
Therefore, the gain-loss forcings of the governing NLS
can be averaged over in order to derive some effective
evolution of the pulse propagation. Recently, Hasegawa
and Kodama'® have considered pulse propagation in op-
tical fibers where the loss is balanced by a chain of peri-
odically spaced erbium-doped amplifiers. Upon perform-
ing the averaging via a Lie transform method, the effec-
tive pulse evolution is shown to be governed to leading
order by the NLS equation. Therefore, when considering
these phase-insensitive amplifiers, i.e., the erbium-doped
amplifiers, the leading order evolution remains Hamil-
tonian in nature. Further, this loss-gain NLS system
is robust to a wide variety of perturbations. Hasegawa
and Kodama refer to the solution of the averaged pulse
propagation as the guiding-center soliton. These results
provide further evidence for the existence and stability
of soliton solutions in a physically realizable communi-
cations system.

Experimentally, the use of periodically spaced phase-
insensitive amplifiers has indeed been shown to be an
effective method for compensating for the attenuation
experienced in the fiber. However, the erbium-doped
fiber amplifiers work based upon a population inversion.
Therefore, there is a small amount of spontaneous emis-
sion noise which is incorporated into the propagating
pulse through the amplifiers. This noise, along with
acoustic noise?’, is responsible for the so-called Gordon-
Haus timing jitter?!, i.e., the random walk of solitons
caused by the spontaneous emission noise present in
the erbium-doped amplifier or by the acoustic noise.
This timing jitter imposes a fundamental limit upon
the bit rate-distance product. And although several fil-
tering schemes?? have been developed to help reduce
this effect, it still remains a significant restriction in a

fiber line which incorporates periodically-spaced erbium-
doped amplifiers.

As an alternative, the use of periodically spaced phase-
sensitive amplifiers (PSAs) has been proposed as a
method for compensating for the loss experienced by
a propagating pulse. Because PSAs are free of spon-
taneous emission noise?®?* (they are ideal quantum-
limited amplifiers with a 0 dB noise figure), they do not
contribute to the Gordon-Haus jitter of the propagating
solitons and therefore lead to a possible increase in the
maximum allowable bit rate-distance product. In con-
trast with the phase-insensitive amplifiers, PSAs natu-
rally filter in the phase of the propagating pulse. There-
fore, the PSAs exhibit a prefered direction of amplifica-
tion which will be discussed more fully in the body of
this dissertation.

Just as with its phase-insensitive counterpart, the
rapid fluctuations due to the loss and phase-sensitive
gain can again be averaged over in order to determine the
effective pulse evolution?®. This analysis is at the cen-
ter of the following chapters and constitutes the body
of this dissertation. The questions which must be ad-
dressed are those same questions which were addressed
for the phase-insensitive amplifiers, namely, does the use
of periodically spaced phase-sensitive amplifiers support
stable soliton-like pulse propagation, and how robust are
the localized solutions to perturbations? In the following
chapters, the analysis will strongly suggest that a fiber-
PSA line will be capable of supporting robust soliton-like
pulse propagation over distances which are much longer
than the typical soliton period.

Part 11

The Phase-Sensitive
Amplifier

3. Introduction

The aim of this chapter is to systematically derive, using
an asymptotic reduction, the governing set of equations
which describe the dynamics of a physically realizable
phase-sensitive amplifier (PSA). Tn particular, the PSA
considered will be that corresponding to a degenerate op-
tical parametric amplifier. An optical parametric ampli-
fier 1s essentially a description of the interaction of three
electromagnetic fields in a quadratic x(2) medium® 26, In
this process, a weak signal field at frequency wj 1s am-
plified by a much stronger pump field at frequency ws.
This interaction in the quadratic medium generates a
third field, known as the idler, at frequency ws such that
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Fig. 1.
fields at frequencies wi, w2 and ws. In (a) the process of

Photon description of the interaction of three

parametric amplification is depicted, i.e., two photons are
created at wy and w» with the annihilation of a single photon
at ws. In (b) the reverse is shown, the two photons at w; and
w> are simultaneously annihilated to create a photon at ws.
This is known as sum-frequency generation.

w3 = w1 + ws. (1)

From a quantum mechanical viewpoint, this process of
three wave interaction can be thought of as the annihi-
lation of one photon at ws creating simultaneously two
photons at w; and ws and vice-versa. This behavior 1s
depicted in Fig. 1. Since the pump field is considered to
be much stronger than either the signal or idler fields,
most of the interaction will serve to convert pump pho-
tons into signal and idler photons. And although the
reverse is possible, very few idler and signal photons will
be converted into pump photons due to their weak field
strengths.

Starting from Maxwell’s equations, a set of three cou-
pled amplitude equations will be derived for the signal,
idler and pump fields. In the asymptotic reduction car-
ried out to derive the respective amplitude equations,
several major assumptions and simplifications will be
made. These include the assumption of high-frequency
(large-wavenumber) quasi-monochromatic pulses with
slowly varying envelopes and the paraxial waveguide ap-
proximation'+?®, The high-frequency asymptotics to be
carried out is reminiscent of a WKB geometrical-optics
approach for rapidly-oscillating carrier waves. Once the
amplitude equations have been derived, they will be nor-
malized on the characteristic scalings of a physically re-
alizable system which will then determine the leading
order behavior associated with this particular phase-
sensitive amplifier. In general, differing types of PSAs
can be considered. However, 1t can be shown that they
have the same qualitative leading order behavior. There-
fore, the degenerate, parametric amplifier will serve as a
standard example of a phase-sensitive amplifier.

4. Maxwell’s Equations

As with all electromagnetic phenomena, the propaga-
tion of an optical field in a given medium is governed by
Maxwell’s equations. These equations are given by the
following

0B
VXE = —W, (2&)
oD
V.B = 0. (2d)

Here the electromagnetic field is denoted by E =
E(Z,fT,t) where #p = (z,y) is the vector transverse
to the direction of propagation and the magnetic field is
denoted by the vector H in a similar way. The D and B
fields represent the corresponding electric and magnetic
flux densities. In the absence of free charges, which is
the case of interest, the current density and free charge
density are both identically zero, i.e., J; = 0 and py = 0.

The flux densities D and B arise due to the elec-
tric and magnetics fields which propagate within a given
medium. Therefore, they reflect the constitutive laws of
any given material and are related to the electric and
magnetics fields in the following way

D = ¢gE4+P=¢cE (3a)
B = uH+ M, (3b)

where €5 and g are the free space permittivity and free
space permeability respectively, and P and M are the
induced electric and magnetic polarizations. At optical
frequencies, which is the case of interest, M = 0. In
Eq. (3a), the D field can also be expressed as ¢E where ¢
captures any nonlocal, linear and nonlinear response of
the medium to the applied electric field.

In what follows, interest will be given solely to the
electric field and the induced polarization. The mag-
netic field, which is related to its electric field counter-
part through the Maxwell’s equations, can be effectively
ignored. As a consequence, it becomes advantageous to
express Maxwell’s equations in terms of the E and P
fields alone. Upon taking the curl of Eq. (2a) and making
use of Eqs. (2b), (3a) and (3b), the full-vector Maxwell’s
equations for the electric field can be given by

1 0°E _ O°P(E)
2o T e @)

V’E -~ V(V-E) -

where ¢ = 1/, /€opig is the speed of light in vacuo and use
has been made of the vector identity Vx Vx E = V(V -



E) — V2E. Here the polarization vector P(E) depends
upon the electric field and the constitutive relations for
the material in which the field 1s propagating. Therefore,
P(E) must be modeled in such a way as to account for
both the linear and nonlinear responses of the medium
to the applied electromagnetic field.

In order to give a realistic description of the consti-
tutive laws associated with the material of interest, the
polarization field P(E) is modeled as follows

P t
<1

t
// dtydtox P (t —t1,t — o) : B(t1)E(ts) +

dtyx ™Mt — 1) E(ty) +

t
/// dtydtodtzx® (t — 11,1 —to,t —13)B(t1)E(t2)E(ts).

In the above expression, note that y(") denotes an (n+1)
rank tensor which is contracted with the given electric
field vectors. The linear response is represented by the
first term in the expression, whereas the quadratic and
cubic responses are given by the following two terms re-
spectively. Eq. (5) represents a general, nonlinear re-
sponse of the medium to an applied electric field. Tt
is interesting to note that the medium response is not
instantaneous. Rather, the response is temporally re-
tarded due in part to the collective inertia of the elec-
trons as they adjust to the applied electric field. Mathe-
matically, this relaxation process is what accounts for the
integral convolutions, which represent the electric field
history, over the appropriate time-decaying response ker-
nels Y™, ¥ and y®. However, it should be under-
stood that the dominant behavior of each kernel corre-
sponds to an impulse response to the applied electric
field. Note that the integrals in Eq. (5) are evaluated
only up to time ¢ due to causality constraints imposed
on the physical system, i.e the future electric field does
not contribute to the present medium response. Also,
note that the response kernels are dependent on the time
differences alone. This is a consequence of the time in-
variance of the medium response. In other words, the
medium response should be identical if the electric field
is applied at either time T or time T + Tp.

In order to simplify the governing equations, i.e.,
Eq. (4) and Eq. (5), it is convenient to assume the electric
field to be polarized along one direction in the medium
of propagation, i.e., assume E = F(z, t)R This is consis-
tent with the paraxial waveguide approximation which is
used to neglect the dependence of the electric field upon
the transverse structure. This simplification modifies the
spatial operators of Eq. (4) in the following manner; the
Laplacian operator becomes a function of the z scale

alone, i.e., V2 = (,?—; + Vi — aa_;. Further, note that

VD = 0 implies Ve - E + ¢V - E = 0. Upon assum-
ing ¢ depends only on the space coordinate through its
dependence on E, it is found that Ve - E = 0 which in
turn implies V - E = 0. Therefore the gradient of the
dot product (V - E) can be neglected. As a final simpli-
fication, the polarization given in Eq. (5) can be simply
rewritten as the sum of a linear and nonlinear part. In
particular, P = PX + PN’ where P’ includes the convo-
lution of the electric field over x(!) and PNL represents
the convolutions over the nonlinear quadratic and cu-
bic terms. With these simplifications and assumptions
in mind, Eqs. (4) and (5) reduce to the following one
dimensional wave formulation of Maxwell’s equations

REED) 1 92 §2pNL
5z " @ap P = ro 5 (6)
where
t
e+ E = E(t) +/ Aty (t = t1) E(ty) (7)

and

PNL t
:// dtydtox P (t —t1,t — 1) E(t)E(ts) +  (8)
0 — 00

€
t
/// dtydtodtsy® (¢ —ty,t —to,t —13)E(t1) E(ts) E(ts).

Here, it is further assumed that all field frequencies are
far from any resonances of the nonlinear material, and
therefore, Kleinman symmetry holds. This allows the
quadratic medium response to be expressed in terms of
the d-coefficient associated with the y(2) nonlinearity.
It is within the framework of this formulation that the
amplitude equations for the signal, idler and pump fields
will be derived.

Thus far, the only assumptions made on the electric
field dynamics are that of the paraxial waveguide ap-
proximation and a single direction of polarization. In
order to simplify Eq. (6) given the relations in Eqgs. (7)
and (8), further approximations involving the three wave
interaction will be considered. In particular, two major
assumptions will be made concerning the electric field.
The first of these assumptions utilizes the fact that the
signal, idler and pump fields correspond to the frequen-
cies wq,ws and wg respectively. In particular, assume the
electric field to be of the form

E(Z,t) = 61(2’t)6i(k1z—w1t) + gz(z’t)ei(sz—w2t)
Fea(e )it y e, o)

where the £1,&5 and &3 represent slowly varying en-
velopes in both time and space and c.c. represents the



complex conjugate. This assumption, known as the
quasi-monochromatic pulse approximation, allows the
governing equations to be separated into appropriate
frequency components. One further aspect of this ap-
proximation, which was touched on earlier, lies within
the high-frequency/large-wavenumber regime. In par-
ticular, for high-frequencies, Eq. (9) can be thought of
as rapidly-oscillating WKB-type waves. Since it is well
known that the WKB method is essentially the back-
ground theory for optical rays, the form of solution given
in Eq. (9) is consistent with the idea of guided modes
confined by the transverse inhomogeneity of the index
of refraction of the medium of propagation. A reductive
perturbation scheme can now be carried out utilizing
the assumptions concerning the high-frequency, quasi-
monochromatic waves with slowly varying envelopes.

Before proceeding further, a final assumption is made
which concerns the nonlinear polarization terms PN, In
order to make tractable the convolutions over the nonlin-
ear terms, the response to the electric field is assumed to
be instantaneous. Although this approximation ignores
the time-delayed response of the medium, the approx-
imation captures the dominant effects associated with
the nonlinearities and allows for a relatively simple and
analytically tractable analysis. This assumption on PV
is a good approximation provided the pulse widths of in-
terest are much greater in duration than the relaxation
times of the medium of interest. Formally, this assump-
tion is modeled by assuming the convolution kernels to
be of the following form

YA —t1,t —ts) = x Dt —11)d(t —t2)  (10a)

YO =ty t —tg,t —t5) =
X®§(t —11)8(t — t2)d(t — t3), (10b)

where y(2) and y(®) are now scalars which measure the
strength of the nonlinear response of the medium in ques-
tion. Tt will later be assumed that in the materials of
physical interest, the quadratic term dominates the cu-
bic nonlinearity and therefore, the cubic nonlinearity can
be neglected. For the present, however, the dominant ef-
fect associated with the cubic nonlinearity will be kept
in the analysis. The evaluation of the nonlinear convo-
lutions now becomes a trivial matter and the reductive
perturbation scheme is continued.

Upon inserting Eq. (9) into Eq. (6) and using Eq. (10)
above, the following expression can be derived for the
terms which are proportional to exp(i(k1z — wit)),

; o’e o€
i(k1z—wit 1 . 1 2
6( ) |: 822 +21k’1¥—k1 81
1 82 i(k12—w
g [ @) (1)

t
—|—/ dtlx(l)(t—tl)gl(z,tl)eiwl(t_tl))]

— 00
2
= oo % [ei(klz—wlt) (X(Z)gszsgBeiAkz + X(S) |€3|2€1)} )
Here £ represents the slowly-varying amplitude of the
signal field, Ak = ks — k1 — ko represents the wavenum-
ber mismatch and the pump field has been assumed to be
much larger than either that of the signal or idler fields,
e, ||€1]],|E2]] < [|€3]]. Only those terms proportional
to exp(i(ki1z — wit)) are kept due to their resonance be-
havior, i.e., higher harmonics are neglected in the present
analysis. Similar expressions can be obtained for those
terms which are proportional to exp(i(kez — wat)) and
exp(i(ksz — wst)). These then would correspond to the
amplitude equations associated with the idler and pump
fields respectively.
The linear convolution of the electric field can be eval-
uated using the appropriate change of variables & = t—1;.
It then follows that

t
/ dtlx(l)(t—tl)gl(z,tl)eiwl(t_tl)
- / dExD(E)E (.t — )€ (12)
0

Since the function y(!) is primarily considered an impulse
(instantaneous) response to the applied electric field, it
can be argued that £ is slowly-varying in time and space
in comparison with this dominant impulse response, 1.e.,
&1 1s slowly-varying in comparison to the response time
of y(). Therefore, the £; can be expanded in a Taylor
series as follows,

021 (1) ,

1 28261(,2,15)
at 2 +

¢ ot?

(13)

gl(zat_g) = gl(zat)_€

Introducing this expansion into the Eq. (12) and noting
the following

\ = /0 YD (€)e it de
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it can be found that

t
/ dtlx(l)(t—tl)gl(z,tl)eiwl(t_tl)
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where the subscripts on x now denote differentiation
with respect to wi, ie., x,, = 0x/0wi and x,,,, =
0?x/0w?. Tn order to make use of Eq. (14), it must be
multiplied by a factor of exp(i(k1z —wit)) and differenti-
ated twice with respect to time. This will then give the
appropriate linear response of the medium to the applied
electric field.

In considering the nonlinear response of the medium
to an applied electric field, the primary interest 1s upon
the dominant behavior described by the foregoing model
of Egs. (8) and (10). Therefore, upon differentiating the
right hand side of Eq. (11), only the leading order terms
are kept for both the cubic and quadratic nonlinearities.
It is important to remember that the envelope amplitude
is slowly-varying in time and space. Therefore, each spa-
tial or time derivative lowers the term in question by an
order of magnitude. These small effects may be investi-
gated, but they are not of interest in what will follow.

Upon combining the preceding results, noting that the
envelope is slowly-varying in time and space, and sim-
plifying, 1t 1t 1s found that the signal field envelope is
governed by

o2, . 9e, ) 1[5,
W—i—Qlkla—z_kl €1+C—2 w1(1+x)€1
2 ogy 1 . 9%e,
+Z[(W%X)w1 + QW1]W - 5[(W%X)w1w1 + 2] o2
wi

=-— Y Perese®* 4 yOlgg)?ey + - } ’
where the dots represent the higher order terms, both
linear and nonlinear, associated with the material re-
sponse. The aim is to now make use of the reductive
perturbation scheme in order to balance at subsequent
orders those effects which are of the same order of mag-
nitude. In considering Eq. (15), it must be kept in mind
that derivatives with respect to time and space become
smaller. Further, it must also be recalled that the high-
frequency /large-wavenumber limit is being considered.
Therefore, the leading order balance gives

) _ Wi .

B =210+ ¥a), (16)
where yp represents the real part of y. This then deter-
mines the dispersion relation wy (k1) or ki (wq). Since the
phase velocity is given by ¢, = w1/k1 = ¢/\/1 4+ xg(w1),
the index of refraction can then be expressed as a func-
tion of the linear response, i.e., n(wi) = /1 + xp(w1).
This is the index of refraction attributed solely to the
linear response. The nonlinear terms can act to modify
this index of refraction depending upon the magnitude
of the interacting fields.

(15)

From Eq. (16), it is easy to show that the following

relations now hold

1 .
lekll C—2 [(W%XR)wl =+ 2(.01]
1

2 2
kikd" + (K))* = 502 [(WiXR)uww, +2]
where the prime now denotes differentiation with respect
to wi. These expressions are used in conjunction with

Eq. (15) in order to show the following
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Thus, the reductive perturbation method along with
the various assumptions and approximations have re-
duced the governing Maxwell’s equations to the ampli-
tude equation (17).

A coordinate change can further simplify the form of
Eq. (17). From an optics viewpoint, it is preferred that
the pulse be viewed from a fixed position as a function
of time. The transformation into this moving coordinate
system is easily carried out by introducing the following
change of variables

1

t——=z
vlg

¢ =z

where v14 = 1/k] is the group velocity of the signal field.
This change of variables will modify both the spatial and
temporal derivatives in Eq. (17). Performing the change
of variables into the ‘center-of-mass’ frame of the signal
field and keeping only the leading order terms, it 1s found
that

0&4 wijg B _ik_’fﬁz&
9C 22T T T2 a2
9
. W * i z
+i = (yPesgse e +xPles)’er). (18)
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Here, the second term on the left, which is proportional
to the constant y7, accounts for any attenuation or ab-
sorption in the medium. The term denoted by yr repre-
sents the imaginary part of y. This can be more clearly
understood upon assuming that x has a small imagi-
nary part, i.e., X = Xg + ixr where x5 < x. This can
further be explored from the viewpoint of the Kramers-
Kronig relations which describe the relationship between
the real and imaginary parts of the index of refraction
when the integral over the kernel x(!) is formulated cor-
rectly. The Kramers-Kronig relations also imply that



a medium which has an instantaneous linear response
to an applied electric field is dispersionless and lossless.
This 1s not the case of interest here. As noted above, the
real part will account for the index of refraction, while
the imaginary part models the loss/absorption mecha-
nism in the medium. Therefore, the leading order behav-
ior of the amplitude equation accounts for linear disper-
sion, intrinsic loss/absorption, and nonlinear coupling to
the pump and idler fields.

It was noted earlier that the terms proportional to
exp(i(kaz — wat)) and exp(i(ksz — wat)) could also be
investigated. A procedure similar to the foregoing can
be easily carried out for the amplitude equations of both
the idler and pump fields. The change of variables of
the idler and pump fields i1s made now into the signal’s
moving coordinate system. There will then be additional
terms in both the idler and pump field equations due to
the group velocity difference of the signal with that of the
idler and pump. In total then, there will be three partial
differential equations®”?® which are coupled through the
nonlinearities, namely,

35 . 826 . * i z
3—21 +01E1 = —lg1W21 + lUl(X(z)gzgzse Ak

+X(3)|53|251)
0E, 9%
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where the following constants have been defined for ¢ =

1,2,3
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Ak = kg —ki — ko. (20f)

In general, solving for the signal, idler and pump fields
is a difficult task left primarily to numerical simulations.

In the next section, it will be shown that much of the
dominant behavior can be largely understood from sim-
plified versions of Eqs. (19). However, the present model
represents qualitatively all the major physical phenom-
ena of the three wave interaction in a nonlinear medium;
these include dispersion, attenuation/absorption, group-
velocity mismatch, phase-mismatch and nonlinear cou-

pling.

5. Degenerate Optical Parametric Amplifier

As indicated in the previous section, the full equations
governing the three wave field interactions in a non-
linear medium are rendered analytically intractable in
Egs. (19). In what follows, a physically realizable PSA
will be considered whose characteristic scalings simplify
considerably the governing equations. Specifically, a de-
generate parametric amplifier is considered. It is degen-
erate in the sense that the frequency associated with the
pump field is exactly twice that of the incoming signal
field. Therefore, the idler field which is created as a con-
sequence of the signal-pump interaction is at the same
frequency as that of the signal field itself, i.e., wi = ws.
The signal and idler fields can then be combined and
thought of as a single ‘signal’ field. In the analysis that
follows, the pump field has been assumed to be much
larger in amplitude and much longer in duration than
either the signal or idler fields. In particular, the pump
can be assumed to be undepleted by the nonlinear inter-
action and can be then taken to be essentially constant.
This will be made more clear from the characteristic scal-
ings which will be introduced shortly.

Attention is now given to simplifications and approx-
imations which are consistent with retaining the lead-
ing order behavior of the three wave interaction. In
most cases of interest, i.e., materials for which para-
metric amplification is carried out, the quadratic non-
linearity dominates the cubic nonlinearity which allows
the cubic term to be neglected in the analysis, i.e.,
x? <« y®). Further, over the length scale of inter-
est, the nonlinear medium can be considered essentially
lossless. These assumptions, along with the assumption
that the phase-mismatch Ak is identically zero, i.e., per-
fect phase-matching is achieved, simplifies significantly
the equations governing the three wave interaction.

In order to clarify these statements made concerning
the pump, signal and idler fields, it becomes necessary
to nondimensionalize the Eqgs. (19) on the characteristic
scales of the problem. Therefore, define the following set
of nondimensional variables

Z = (/¢ (21a)



& = n/m (21b)
S = &,/&, (21c)
I = €y/E, (21d)
P = €3/6,, (21e)

where (p corresponds to the characteristic length of the
nonlinear medium, g defines a characteristic pulse width
of the signal field, and €, and £, define the characteristic
amplitudes of the signal and pump fields respectively.
Recall it has been assumed that Ak = 0,6 = 0 and
x®) = 0. Further, since the PSA is degenerate, wy =
wo and the sum of the signal and idler fields becomes
the effective ‘signal’ field. Eqs. (19) then reduce to the
following
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where use has been made of Eqs. (21) and (20).
It is convenient to establish the appropriate orders of
magnitude of the various terms of Eq. (22). In what fol-
lows, the nonlinear medium will be assumed to be a KTP
crystal (KTiOPQy, Potassium Titanyl Phosphate)?®. Tn

particular, the following characteristic measures are con-
sidered

+ i(e1xPE,Co)IF P (22a)

(22b)

(22c¢)

23a

(o ~ b mm

¢

Mo 50 ps 23b

(23a)
(23b)
Ep/Es ~ 20 (23¢)
(23d)
(23¢)

¢

Y =2d® ~ 6x 1072 m/V

Ep ~ 48 x10° V/m. 23e
The wavelength of interest, which corresponds to soli-
ton based communications systems, 1s A = 1.55 microns.
Numerical simulations of the Eqs. (22) using Eqs. (23)
are shown in Figs. 2. The initial signal and pump pulses
are assumed to be hyperbolic secants while the idler field
is initially zero. Note the amplification and gain associ-
ated with the signal and idler fields through a small

Fig. 2.
pump fields. In (a) and (b) the signal and idler fields are
depicted. The initial signal field is a hyperbolic secant while
the initial idler field was zero. In (c), the combined signal and
idler fields are depicted. This represents the effective ‘signal’
field output of the PSAs. The pump field in (d) is shown to
be essentially undepleted with a slight group-velocity drift.

Qualitative behavior of the signal, idler, and

section of KTP crystal. Moreover, note that the pump
field remains largely unaffected through the interaction.

It is clear from these figures that the nonlinear inter-
action is the dominant effect. More precisely, it can be
found that the coefficients associated with the dispersion
are of O(107%). Note that if the dispersion can be ig-
nored in Eqgs. (23), then the coupled set of equations for
the three wave interaction can be solved exactly via the
inverse scattering transform3°. The coefficients of non-
linear coupling for the signal and idler fields are O(1)
while that for the pump is of O(1072). The remaining
terms are associated with the group-velocity mismatch
and can be found to be of O(1073). Figures 3a and 3b
represent contour plots of the pump field and the com-
bined signal and idler fields respectively. Recall that the
pump pulse was moved into the coordinate system trav-
eling with the group velocity of the signal pulse. There-
fore, the pump field drifts noticeably as seen in Fig 3a.
However, because the pump pulse has been assumed to
be wider in duration than the signal pulse, the com-
bined signal-idler field 1s essentially unaffected as seen
in Fig 3b.

Through this physical example, it has been found that
the effects of the dispersion, group-velocity mismatch
and nonlinear coupling of the pump field to the signal
and 1dler can all be considered higher order effects.
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Fig. 3.  Contour plots of the pump and signal-idler fields.
The pump field in (a) is shown to exhibit a drift in the group
velocity. In (b), the signal-idler fields have a much smaller
drift since the pump field is assumed to be much wider in
duration than the signal field.

Therefore by considering only the dominant terms of the
three wave interaction, it is found that

as

37 = iBPJ (24a)
oI . .

> = iBPS (24b)
OP

a—Z = 0, (24C)

where B = (le(z)gpco). Eq. (24c) explicitly demon-
strates the fact that to leading order, the pump field can
be considered constant and undepleted. Therefore, the
three wave interaction is reduced to solving the coupled
set of equations, Eq. (24a) and Eq. (24b), for the signal
and idler fields.

6. Jump Conditions

In this section, the solutions of Eq. (24a) and (24b) are
considered. This leading order behavior of the signal
and idler fields corresponds to the qualitative features
of a general phase-sensitive amplifier, i.e., the quadratic
coupling of the signal (idler) to the complex conjugate of
the idler (signal). The solutions for the signal and idler
fields can be easily obtained by differentiating Eq. (24a)
with respect to 7 and using Eq. (24b) to eliminate the
0I* /07 term. In particular, it is found that

S(7,€)

1(7,€)

where 3 = B|P| is the gain associated with the PSA
and it has been assumed that the idler field is initially
zero, i.e., 1(0,€) = 0. The assumption concerning the
initial amplitude of the idler field clearly stems from the

S(0,¢&) cosh 57 (25a)

i(P/|P])S(0,€)" sinh 82,  (25b)
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fact that the initial interaction is solely due to the sig-
nal and pump fields. The idler field is, in a sense, an
artifact of this initial interaction. As mentioned in the
previous section, the idler frequency is commensurate
with that of the signal field. Therefore, the idler can be
considered part of the outgoing signal field at frequency
wy. Denoting the total outgoing field at frequency wy by
Q(7,&) = S(7,&) + I(7,£), it then becomes apparent
upon using Eq. (25) that

Q(7,€) = Q(0,€) cosh BZ + ¥ 7)Q*(0, &) sinh 37,
(26)

where €'%(?) = iP/|P| corresponds to the phase of the
pump pulse P. The combined signal-idler field Q(7,¢&)
represents the total gain of the incoming signal field
through a section of quadratic x(?) material. Eq. (26)
then can be understood to represent the transfer func-
tion or ‘jump’ condition associated with a degenerate
optical parametric amplifier. This behavior, which cou-
ples the output to the initial amplitude and its complex
conjugate, represents the qualitative behavior associated
with a phase-sensitive amplifier.

It can be noted at this point that a convenient quadra-
ture decomposition exists which decomposes the effective
‘signal’ pulse into gain and loss components. In particu-
lar, the quadrature decomposition

Q = [A+iBle'*/? (27)
will separate the signal pulse into phase-locked A and
anti-phase-locked B quadratures which experience ex-
ponential gain and exponential attenuation respectively.
Note that B in this case is not that given in Eq. (24).
More will be said about this in upcoming chapters.

7. Phase-Mismatch and Bandwidth Considerations
in a Fiber PSA

This section is concerned with understanding the band-
width limitations imposed on the pulse propagation
when the effect of phase-mismatch is considered. In
essence, the frequency dependence of Ak = Ak(w) is in-
vestigated. This is important in understanding whether
or not a more physically realizable model for the pulse
propagation with PSAs is required in order to under-
stand the qualitative structure given in the preceding
section. As was shown in the last two sections, the as-
sumption of perfect phase-matching, i.e., Ak = 0, con-
siderably simplified the leading order behavior of the
phase-sensitive amplifiers. The idea now is to phase-
match the center frequency of the propagating pulse with
the PSAs. The hope is that the spectral bandwidth of



the pulse is much smaller in comparison with the band-
width of the PSAs so that the phase-mismatch can be
neglected.

In particular, phase-matching in a fiber PSA is consid-
ered. Briefly, a fiber PSA exploits the fiber nonlinearity
in order to provide phase-sensitive gain to a propagating
pulse. The fiber amplifier configuration is based upon
a Sagnac interferometer3!. Tt can be shown that this
method behaves to leading order in the same manner
as a type I phase-matched x(2) PSA where, of course,
the appropriate constant associated with the gain is now
dependent upon the (3 material. The basic model gov-

erning this process is simply3%33
dg _ .
37" iDlq|%q, (28)

where ¢ represents total field, D = 3X(3)w0/86nAeff,
Aepy is the effective core area of the fiber, and the dis-
persion and loss are negligible for the length of fiber be-
ing considered. Equation (28) has the solution ¢(.7)
7(0) exp(iD|q(0)]?>Z). Upon assuming that the field am-
plitude is a sum of the pump and signal fields, it can
be found that the fiber amplifier acts to leading order
in a similar manner to a y(2) amplifier. In particular,
the effective gain coefficient of the fiber PSA is given
by Depp = In(2Dz4|P|?)/24 where z, is the amplifier
length. This holds provided the pump field is much
larger than the signal field being amplified. Therefore,
for the case of phase-matching, the fiber PSA equations
once again give the jump condition of Eq. (26) where
the effective gain coefficient 37 is now given by De;;.
Details of this amplifier can be found in Reference3?:33,
The phase-mismatch for a fiber PSA is given by

Ak = 2ks — ks — k. (29)
Consider then the case for which the center-frequency
of the propagating pulse is wg. In particular, suppose
that the propagating pulse contains spectral components
which are not commensurate with wy but are off by w.
Since the frequency of the pump pulse corresponds to
the center frequency of the signal pulse, the following re-
lations must hold for the coupled frequency components
wy and ws of the propagating pulse and wg of the pump

W) = wptw (30a)
we = wp—w (30b)
w3 = wo. (30c)
Upon inserting Eq. (30) into Eq. (29) it is found
Ak = 2ks(wo) — ka(wo — w) — k1(wo + w), (31)
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where Ak 1s the phase-mismatch in the fiber PSA. Ap-
plying a Taylor expansion to Eq. (31) reduces the phase-
mismatch to the following

Ak = —wzk”(wo) . (32)
Here, use has been made of the fact that the type I
phase-matching requires that k1 (wo) = ka(wo) = k(wo).
The value of k" (wp) can be found in standard texts on
nonlinear optical fibers®>3. Note that the characteristic
length of a fiber amplifier is approximately 100 m.

It now becomes necessary to investigate the interac-
tion of the frequency components at wy and ws. Previ-
ously, the assumption Ak = 0 was one of the significant
simplifications made in deriving the jump condition of
Eq. (36). This condition allows for a straightforward
decomposition of the signal into phase-locked and anti-
phase-locked quadrature components. In what 1s to be
considered now, the phase-mismatch is assumed to be
zero only for the center frequency of the propagating
pulse. Therefore, the phase-mismatch Ak must be in-
corporated into the nondimensionalized equations (24).

In the Fourier domain, the coupling of the frequency
components are governed by the following set of equa-
tions' 26

dqlw) _ . . iAk(w)Z

5, = iod (—w)e (33a)
0" (—w) _ ., —iAR(w)Z

37 = —ia"g(w)e , (33b)

where §(+w) represents the spectral component located
at woFw, a 18 the gain coefficient which depends on 3,
and Ak(w) is given by Eq. (32). Equation (33) can be

readily solved!, and it is shown to yield the following

an = b )ew. (34)
whete Q(7) = (i(w) @ (~))7. g = /AP = (AR/2P

with a = (cosh(g7) — i(Ak/2g)sinh(¢7) ) exp(iAk/2)
and b = i(a/g)sinh(g7) exp(iAk/2). The eigenvalues
of the above matrix determine the gain of the pulse as a
function of the frequency. In particular, it is found that

A+ = Re{a} & \/Re{a}? -1,

where Ay corresponds to the gain quadrature of interest.

The gain as a function of the frequency can be more
simply understood by studying the real part of the ef-
fective gain g = +/|a|*> — (Ak/2)2. This gives a good
idea of the bandwidth associated with the fiber PSA.
Here, a 100 m section of fiber is considered with values of
k" = —17,—-20 and -22 ps?/km for values of |a]z, = 1.0

(35)
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Fig. 4. In (a) and (b), the effective gain, i.e., Re{g},
is plotted as a function of the frequency for |a|ze = 1
(el*l?e = 2.72) and |a|z. = 1.609 (e|*1** = 5.0) respectively
given k" = —17, =20 and -22 ps® /km.

and |a]z, = 1.609. Note that each of these values for
k" give rise to approximate PSA bandwidths (FWHM)
of 2.0 THz, 1.9 THz and 1.8 THz for |a|z, = 1.0 and
2.7 THz, 2.5 THz and 2.4 THz for |o|z, = 1.609. A
200 m fiber PSA can also be considered and is shown to
give bandwidths of 1.4 THZ, 1.3 THz and 1.2 THz for
|a]z, = 1.0.

It is interesting to further compare the bandwidth
of the fiber PSA with the bandwidth of a propagating
soliton-like pulse solution. In particular, it will be as-
sumed that the initial characteristic width of a hyper-
bolic secant pulse is 50 ps. This corresponds to a fre-
quency bandwidth of 11.4 GHz. Figures 5a-b depict the
bandwidth associated with a 100 m fiber PSA (k"
17 ps?/km and |a|z, = 1.0) along with the frequency
bandwidth of the 50 ps hyperbolic secant pulse. Note
that the gain is nearly uniform across the entire profile
of the pulse. This is seen in more detail from Fig. bb.
These figures suggest the possibility that the bandwidth
constraints in the regime of 50 ps pulses are negligible.

BANDWIDTH OF FIBER-PSA BANDWIDTH OF FIBER-PSA

BANDWIDTH OF|
/ 50 PS PULSE
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0
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Fig. 5. Qualitative comparison of the bandwidth of a
fiber-PSA (k" = —17 ps®/km) with a normalized 50 ps (11.4
GHz) pulse. In (a), the pulse spectrum is seen to be ex-
tremely narrow in comparison to the PSA bandwidth.
(b), a blown up version depicts the normalized pulse spec-
trum more clearly.
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Fig. 6. A physically realizable PSA employing a degen-

erate optical parametric amplifier for use in an optical com-
munications line

In fact, upon looking more closely at the frequency re-
sponse, 1t is found that the edge of the localized pulse
experiences a gain difference of O(10~8) from the center
frequency of the propagating pulse. Therefore, treating
the PSAs as frequency independent is an excellent ap-
proximation.

8. Summary

Through the assumptions and approximations made in
the preceding sections, it has been shown that the un-
derlying behavior of the phase-sensitive amplifier in the
simplest case is governed by Eq. (26). This leading order
behavior is a consequence of the asymptotic reduction
of the full vector Maxwell’s equations in the quadratic
medium and the appropriate asymptotic regime. In the
following chapters, this leading order behavior of the
PSAs will be incorporated into a physically realizable
optical communications line (see Figure 6). Tn this case,
all of the asymptotic reductions and scalings used to de-
rive the coupled amplitude equations and the simplified
behavior given by Eq. (26) remain valid. Moreover, since
the length scale of the amplifier itself is negligible in com-
parison with that of the communications line, the am-
plifiers can be essentially treated as a strongly localized
forcing, i.e., a delta function. With this in mind, Eq. (26)
can be thought of as the appropriate jump condition as-
sociated with a phase-sensitive amplifier. In particular,
it 1s found that

Q4 =cosha Q_ + '@ sinha QF (36)

where @4 denotes the signal pulse just before (4) and
just after (-) the amplifier. Further, the total gain as-
sociated with each amplifier is given by a = 57, where
Z4 is the length of the amplifier and @ = B|P| as before.
Eq. (36) therefore describes the qualitative features of a
PSA and explicitly demonstrates the phase dependence
through the coupling of the signal field to its complex
conjugate.

This chapter is concluded by the following general re-
marks. Although the PSA behavior has been tremen-
dously simplified to give Eq. (36), Section 7 consid-
ered the case for which the phase-mismatch was not



zero across the entire signal field profile, i.e., the fre-
quency response of the PSA was investigated. The
bandwidth of the PSA was explored for a fiber am-
plifier, and i1t was found that the bandwidth limita-
tions have a negligible effect on the amplifier dynam-
ics.  Therefore, Eq. (36) is in general quite accu-
rate. Moreover, the assumptions considered thus far,
which correspond to quasi-monochromatic fields, high-
frequency /large-wavenumber and the paraxial waveg-
uide approximation, all remain valid when the PSAs are
considered 1n an optical communications system. There-
fore, the PSAs present a realistic candidate for loss com-
pensation in a fiber optic communications line.

Part III

Averaged Pulse
Propagation using
Phase-Sensitive
Amplifiers

9. Introduction

It has been well established that the evolution of an
optical soliton in a length of fiber which is attenuated
by linear loss behaves according to the cubic nonlinear

Schrédinger equation (NLS)347
+1 S |f]|2q_ e q
2kc? 2kc?2 )
(37)

Here k" = §?k/0w? < 0 (anomalous dispersion regime),
w and k denote the angular frequency and wavenumber
of a propagating pulse, y represents the imaginary part
of the linear response kernel to applied electric field, and
x®) is a measure of the nonlinear cubic susceptibility.
Note that ¢(z,t) represents the pulse envelope in the
reference frame moving with the group velocity of the
propagating pulse. Equation (37) can be derived via the
same asymptotic reduction used to obtain the envelope
equations of Chapter 2 for the phase-sensitive amplifiers.
In fact, as was noted in the previous chapter, many of
the underlying assumptions used to derive the coupled
amplitude equations (19) are carried over to the deriva-
tion of Eq. (37). In particular, a polarization preserv-
ing, single-mode fiber 1s considered for which Maxwell’s
equations are once again reduced to a simple formula-
tion. Further, the assumptions of high-frequency (large-
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wavenumber) carrier waves and the paraxial waveguide
approximation remain valid within the context of pulse
propagation in an optical fiber. These facts, which are
used in conjunction with the disparate length scales of
the large propagational distance and small transverse
core structure of the fiber provide the natural setting
for the asymptotic reduction of Maxwell’s equations to
a one dimensional wave equation.

The major differences between the derivation of the
envelope equations of the phase-sensitive amplifier and
the nonlinear Schrédinger equation (37) arise due to
the material properties and nonlinear response of the
medium in question. Fused-silica fiber is a centrosym-
metric medium, 1.e., fibers display inversion symmetry,
and therefore y(2) = 0. Moreover, the dominant behav-
ior of the cubic nonlinearity neglects the higher harmon-
ics, or nonresonant terms, and is dependent upon the
magnitude of the electric field alone. This fact allows
the index of refraction to be expressed as a sum of the
linear and nonlinear response terms as follows

n(w, B) = no(w) + na(w)| E|* (38)
where ny > 0. Tt is clear from Eq. (38) that those parts
of a propagating pulse which are of larger magnitude ex-
perience a higher index of refraction. This fact allows the
pulse to experience a self-phase modulation and to retain
a highly localized structure upon propagation through a
section of dispersion-shifted fiber. If in addition, the dis-
persion and self-phase modulation are exactly balanced,
Eq. (37) with x; = 0 gives rise to nondispersive soli-
ton solutions which are of the hyperbolic secant form.
The hyperbolic secant soliton solution of the NLS can
be thought of as the result of a fundamental balance
between the linear dispersion and the cubic Kerr nonlin-
earity.

Prior to discussing the qualitative features associated
with solitons, it is helpful to normalize Eq. (37) upon the
relevant physical scalings of an optical communications
line. Tt is then found that

0Q _i9*Q .
a—ZI %W—T—FHQFQ_P}/Q’ (39)

where @, 7 and T have been normalized on the pulse
width #g (full-width at half maximum — FWHM) such

that
7 \2 1
o = (1—76) — (40a)
2%ke? £1.76\°
2 _
E2 = N (T) (—k") (40b)
Py = 6Z0a (40C)



where Z is the dispersion length, Ej is the peak-field
amplitude and § = w?x/2kc? is a measure of the power
loss rate. For a typical dispersion-shifted fiber at a wave-
length of A = 1.55 um, for example, Z; = 500 km for
to = 50ps and § = 0.02763km™" which gives a total
power loss rate of 0.24dB/km. Recall that ¥’ < 0 so
that the optical fiber is operated in the anomalous dis-
persion regime necessary for soliton propagation. As a
final note, the effective transverse structure of the fiber,
i.e., its cross section, can be accounted for through the
normalization of the peak-field amplitude. This can
be more fully understood from considering the relation
nyg = X3/2acn0 where o, is a geometric factor depen-
dent upon the index of refraction profile. This relation
can be used in Eq. (40) to express the peak-field ampli-
tude in terms of the geometric transverse structure of
the fiber. In typical applications, which will be pursued
below, v, ~ 1/2.

As noted earlier, Eq. (39) with ¥ = 0 is known to
exhibit a robust set of soliton solutions™. In particular,
a general single-soliton solution, which can be derived
using the inverse scattering transform, can be expressed
in the following form

Q(7Z,T) = 2nsech[2n(T — 452)]6—22'@4.42'(52_772)2.
(41)

The parameters 1 and & characterize the soliton; 27 being
its amplitude and inverse width and 4¢ its velocity rela-
tive to some reference frame. In what will follow, the pa-
rameter £ can be taken to be identically zero without loss
of generality, i.e., the NLS can always be transformed
so that & = 0. Associated with the single-soliton solu-
tion of Eq. (41) is an infinity of conservation laws which
arise due to the Hamiltonian structure of the NLS. This
completely integrable structure allows the single-soliton
solution to be robust to perturbations of the governing
NLS equation. In particular, perturbations of the NLS
have been shown to modify the hyperbolic secant solu-
tion in two ways. First, the soliton parameters, which
are constants of the motion for the unperturbed case, can
now vary with distance of propagation. In the perturba-
tions of interest, this variation in the soliton parameters
occurs on a length scale which is much longer than the
typical evolution, 1.e., it can be thought of as adiabatic.
The second way in which perturbations effect the soli-
ton solution given by Eq. (41) is in the generation of a
background radiation field which is superimposed upon
the single-soliton solution. Rigorous study of the dis-
persive radiation field is a nontrivial matter as it can
exhibit quite complicated behavior. Numerous studies
have been conducted on various perturbations which are
of physical interest. And although the dispersive radia-
tion field which is generated exhibits much complicated
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Fig. 7. Schematic of a nonlinear optical fiber transmis-

sion line in which loss is balanced by a chain of periodi-
cally-spaced, phase-sensitive amplifiers (PSAs).

behavior, the leading order soliton solution, with the
appropriate slow evolution of its parameters, has been
shown to be robust and stable. Along with its nondis-
persive behavior, it 1s this fact which makes solitons ideal
candidates for use as bits in long-haul communications
systems.

10. Formulation

In considering an optical communications system where
loss and gain are present, which is the case of interest of
this dissertation, the governing NLS must be modified in
order to incorporate the effects of periodic amplification
and linear loss which are incurred in the pulse propa-
gation (see Fig. 7). These modifications involve the ad-
dition of appropriate perturbing terms, which are not
necessarily small, that can correctly account for the lin-
ear attenuation and phase-sensitive gain. In particular,
pulse propagation in a length of fiber where linear loss
in the fiber 1s balanced by a chain of periodically spaced
phase-sensitive amplifiers is considered. Moreover, the
case for which the amplifier spacing 7; is much less than
the soliton period Zy, i.e., Z;/Zy = el where ¢ < 1 and
[ ~ O(1), is investigated'®'?. Given these considera-
tions, the modified pulse evolution can be shown to be
governed by,
92
g—g:%gz—gﬂwfmr l[—FQ
€

w(@)ares(Z)e]. o

where T' = §7; /1 is the linear loss coefficient in the fiber,
¢ 1s the phase of the pump pulse associated with the
PSA, and @ represents the pulse envelope which has been
normalized on the soliton period through Eq. (40). The
h(Z/e) and f(7/€) terms represent the periodic gain of
the phase-sensitive amplifiers and are given by

h(¢) = (cosha—=1)>"d(¢C—nZ)  (43a)
F(¢) = sinha > 6(¢C—na), (43b)

n=1



where « 18 the gain coefficient associated with the ampli-
fiers as given in Chapter 2. Because the amplifiers act on
a length scale which is essentially negligible in compari-
son with the remaining length scales of the problem, they
can be simply modeled as periodic delta function forc-
ings'®. Note that the phase-sensitive nature of the am-
plifiers arises through the coupling to the complex conju-
gate through the term exp(ig)f({)@*. In Eq. (42), the
nonlinearity and dispersion have been explicitly made
small in comparison with the loss and gain terms. This
is expected from the characteristic scalings of the prob-
lem, i.e., the amplifier spacing is much less than the typ-
ical length scale of the soliton evolution. Therefore, the
loss and gain can be effectively treated as strong, peri-
odic, and rapidly-varying perturbations to the govern-
ing NLS equation. These perturbations can be averaged
over, which is done in the next section, in order to de-
termine an effective pulse evolution over distances much
longer than that of the soliton period.

If instead, phase-insensitive amplifiers are consid-
ered™® Eq. (42) would no longer be coupled to its com-
plex conjugate, i.e., the amplification would no longer be
a parametric process and f(¢) = 0. Further, h(¢) would
be modified in order to account for the total gain as-
sociated with the amplifiers. In this case, averaging the
rapid fluctuations due to the loss and gain gives back the
NLS as the effective leading order behavior of the pulse
propagation on the characteristic length scale of the soli-
ton period. Through its coupling to the complex conju-
gate, phase-sensitive amplifiers will be shown to give a
strikingly different averaged behavior than that which is
normally associated with phase-insensitive amplifiers.

11. Quadrature Decomposition

Before averaging Eq. (42), it is important to understand
the dynamics of the PSAs. In particular, consider the
jump conditions across a single amplifier. It was shown
in Chapter 2 that the following jump condition applies

Q4 =cosha Q_ + ¢e?sinha Q* (44)

where @4 indicates the pulse just after (4) and before
(=) an amplifier. Again, ¢ represents the phase associ-
ated with the pump pulse of the amplifier, and « is the
gain coefficient of the amplifier. It can be shown that
a natural, or convenient, set of variables exists in which
to investigate the pulse dynamics. This idea is moti-
vated from the phase-sensitive nature of the amplifiers
being considered, i.e., PSAs exhibit a ‘prefered’ direction
of amplification. By decomposing the propagating pulse
into two orthogonal quadratures,

Q = (A +iB)e'®/?, (45)
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the dynamics of the pulse propagation can be separated
into those components which are phase-locked and those
which are anti-phase-locked with respect to the amplifier.
Inserting Eq. (45) into Eq. (44) gives the following jump
conditions for the two quadratures A and B,

A_|_ = 6QA_
B_|_ = 6_QB_.

(46a)
(46Db)

The phase-locked quadrature A experiences exponen-
tial gain across an amplifier while the anti-phase-locked
quadrature B is exponentially attenuated. Therefore, as
the pulse propagates through a chain of amplifiers, the
B quadrature will be attenuated by both the amplifiers
and the linear loss of the fiber. This quadrature compo-
nent will then be quickly attenuated after several ampli-
fiers and will not remain an O(1) quantity as the pulse
evolves. In contrast, the A quadrature experiences both
loss (from the fiber) and gain (from the amplifiers). The
idea in the next section will be to balance the loss and
gain in the phase-locked quadrature and average over
this in order to derive an effective long-distance evolu-
tion equation for the pulse propagation.

It will now be made clear how the quadrature decom-
position in Eq. (44) formulates the pulse propagation
in terms of a natural and convenient set of coordinates.
Using the quadrature decomposition in Eq. (42), i.e., in-
serting Eq. (45) into Eq. (42) and collecting real and
imaginary parts, gives the following set of coupled equa-
tions

A 1

57+ (T —h(Z/) = f(2]9)A
1823 2 2 K
=53 — (A + BB+ 5B (4Ta)
OB 1
57+ - =h(Z/)+ [(Z]e)B
18214 2 2 K
:iﬁ—i_(A _|_B)A—§A. (47b)

Here, the reference phase of each PSA has been assumed
to change from one amplifier to next, i.e., ¢ = ¢(7),
and specifically, the present analysis assumes the phase
rotation of the reference phase to be constant so that
d¢/d7 = k. Tt is clear from Eq. (47) that the perturb-
ing terms associated with @, i.e., the loss and gain, are
diagonalized by the quadrature decomposition. This de-
coupling allows for a relatively straightforward averaging
of the phase-locked quadrature A which determines the
effective evolution of the pulse propagation. Note that
the quadrature decomposition further serves to eliminate
the coupling of the propagating pulse to its complex con-
jugate. In fact, Eqgs. (47) are now a set of real, coupled
equations.



12. Multiple-Scale Averaging

It is now appropriate to investigate the pulse dynamics
as dictated by Eq. (47). The aim of this section will be
to average over the rapid fluctuations caused by the loss
and gain using a multiple-scale approach. The method of
multiple-scales allows for the separation of relevant phys-
ical phenomena which occur on fundamentally different
length scales®. A multiple-scale approach is a natural
consequence of the disparate characteristic length scales
involved in the formulation of the problem of interest.
From the analysis thus far, it has been assumed that
the gain and loss occur on a length scale which is much
shorter in comparison to the length scale of the disper-
sion and nonlinearity, i.e., the soliton period. This fact
can be utilized to show the averaged pulse evolution oc-
curs on a length scale which is much longer than that of
the soliton period. Therefore define the following char-
acteristic length scales

¢
£

where ( corresponds to the length scale of the amplifier
spacing and ¢ will be shown to be the ‘extended’ length
scale on which the averaged evolution of the pulse is
captured. These length scales separate the rapid fluctu-
ations of the loss and gain from the slow evolution of the
envelope which occurs on the longer length scales Z and
¢. Tt is interesting to note that the multiple-scale ex-
pansion is similar in spirit to the Lie transform methods
used by Kodama and Hasegawa for the guiding-center
soliton'®. Both methods effectively capture, via aver-
aging, the effective evolution behavior on longer length
scales.

As discussed in the previous section, the analysis 1s
formulated in terms of the quadrature variables A and
B. Since a multiple-scale analysis is being performed,
the quadrature decomposition is now dependent on the
new variables ( and &. The quadrature decomposition 1s
then

Z/e (48a)

e, (48b)

Q= (A(C.Z.6T)+iB((, 2,6 T) )22, (49)
where the phase has been assumed to be dependent on
the Z-scale only, i.e., d¢/dZ = k. This multiple scale
quadrature decomposition modifies the 7 derivative of
the coupled quadrature equations (47). The equations
governing the pulse dynamics are then as follows,

G (U= h(0) — (0 A
= g{_g_; - LB} + € {—%—?} (50a)
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%+(F—h(C)+f(C))B
0B
:G{_ﬁ_Z—i—LA}’ (50b)
where L = (%66—;2—1— (A? 4+ B?) — %) As previously

noted, the rapid fluctuations which occur on the ( length
scale have been decoupled and diagonalized via the
quadrature separation. As will be seen, this allows for a
relatively simple averaging of the phase-locked quadra-
ture.

The next step in the analysis, which is clear from the
asymptotic orderings given in Eqgs. (50), is to simply ex-
pand the quadratures in powers of ¢ as follows,

A= A" peAt AT 4.

(51a)

B B+ eB '+ 2B+ - -,

= (51b)
Recall that this allows for the separation of fluctuations
which are merely local on the ( scale from those which
contribute to the pulse dynamics on the longer length
scales 7 and &. The perturbation expansion successively
captures at each order the dynamics of the pulse prop-
agation on the three distinct length scales (, 7 and §.
Note that the appropriate jump conditions across the
amplifiers at each order are given by,

Al = eA'_ (52a)
B, = e *B'_, (52b)
where i = 0,1,2,... and a again corresponds to the am-

plifier gain.
At leading order, the pulse dynamics is found to be
governed by the following uncoupled set of equations

OA°

L hQO AT = 0 (5
AT hQ I B = 0. ()

Note that in between amplifiers 2(¢) = f(¢) = 0. There-
fore, when the pulse is between amplifiers, the leading
order behavior of both quadratures reduces to trivial first
order differential equations whose solutions exhibit expo-
nential decay. Each quadrature component is therefore
attenuated by a factor of e~T! between amplifiers. The
jump conditions given by Eq. (52) are now imposed on
the leading order solutions and it is found that

A1) = R(Z,€,T)e~ M (54a)

BY(ly) = P(Z,¢,T)e "1 (54b)



A—Quadrature Amplitude

¢
Fig. 8. Qualitative behavior of the rapid fluctuations
which occur in the phase-locked quadrature A on the ¢ length

scale. Note the balance between the loss and gain over each
successive fiber/amplifier segment.

These are the leading order solutions after one pass
through an amplifier. After traversing a chain of N
such amplifiers, the solutions are similar and are given
by A%(Nly) = R(Z,&,T)eN=TD and BY(Nly) =
P(Z,&,T)e~N(@+TD Tt becomes clear that the leading
order solution of the B quadrature decays quickly away
to zero after only a few amplifiers due to the attenu-
ation from both the fiber and amplifiers. The leading
order solution to the phase-locked quadrature A experi-
ences both loss and gain. These effects can be balanced
by imposing periodicity on the leading order solution.
The balancing of the loss and gain in the phase-locked
quadrature is depicted in Fig. 8. This then gives the
following relation between the loss and gain coefficients,

(55)

Here, the loss and gain are balanced to O(e?). This al-
lows for slight over or under amplification from the PSAs
through the parameter a. To summarize the leading or-
der results, the loss and gain have been balanced in the
phase-locked quadrature to give a periodic solution in (
while the anti-phase-locked quadrature is shown to decay
quickly to zero and be of higher order, i.e., it exhibits an
initial transient behavior and is of O(¢) or higher there-
after.

Proceeding to the next order, O(¢), gives the following
coupled set of equations

o = Tl + 4.

gA" . 0A°

W-i— (T =h()=f(Q))A = 97 (56a)

dB! 1 0

3—C+(F—h(C)+f(C))B = LoA”,  (56b)
where Ly = (%687?2 + (A%?2 - %) and the jump condi-

tions of Eq. (52) are imposed. Tt is convenient to study
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each quadrature equation separately. First, consider the
equation for the correction term A'. Looking between
amplifiers gives a first order differential equation with
a periodic forcing —9A°/8Z. In order for a solution to
exist for Al, the forcing —9A°/87 must be in the range
of the homogeneous operator for A'. This is equivalent
to the forcing being orthogonal to the null space of the
adjoint leading order operator for A%, i.e., Fredholm’s al-
ternative must be satisfied®®. This solvability condition
essentially restricts the solution A' to the space of pe-
riodic functions and removes any secular growth terms
which would lead to unbounded growth. The solvability
condition requires that

l
/ el (_@) d¢ = 0.
0

0z
Using the leading order solution Ag = R(Z,¢,T)e~ ¢ in
Eq. (57) gives the following condition for the evolution
of the envelope of A°,

(57)

3_R =0. (58)
07

Recall that the Z scale corresponds to the typical evo-
lution scale of a soliton, i.e., the length scale of the lin-
ear dispersion and nonlinear self-phase modulation. This
fundamental result explicitly shows that the PSAs do not
allow the pulse to evolve on the soliton period. Rather,
the evolution is forced to occur on a fundamentally dif-
ferent length scale than what is normally expected'®.
This is in contrast to the behavior exhibited by phase-
insensitive amplifiers for which the averaged evolution
occurs on the length scale of the soliton period. The
longer length scale & will be shown to inherit the slow en-
velope evolution of the propagating pulse. The suppres-
sion of the pulse evolution on the soliton period can be
understood from the fact that the PSAs compensate for
phase variations experienced by the propagating pulse
between amplifiers which are due to the linear dispersion
and nonlinear self-phase modulation. In other words, the
PSAs work to keep a flat phase profile across the prop-
agating pulse. Since dR/37 = 0, the equation for Al
reduces to a simple homogeneous differential equation
for which we can take A' = 0.

The above conclusions can be further supported and
understood from solving for the correction term B!. Us-
ing A° = R(¢,T)e ¢ and the appropriate jump condi-
tion given by Eq. (52b) in Eq. (56) gives the following

1 /%R 1
1 b _ -r¢ 1 53 —sr¢
=3 <—8T2 K?R) Ce QFR e +
lem« O’R I 4 _, _r¢
[74 p—— <—8T2 — K?R) + ER e"“cosha| e 5. (59)



As previously mentioned, the quadrature correction B!
provides further evidence concerning the attenuation of
phase variations of the pulse between amplifiers. By con-
sidering B' just after an amplifier, it is found that

(62}%
oT?
Note that the effects of linear dispersion and nonlinear
self-modulation, which correspond to the first and third
terms in Eq. (60) respectively, are both in the attenu-
ated, anti-phase-locked quadrature of the PSAs. The
quadrature separation therefore shows that the PSAs
give rise to a mechanism whereby the attenuation of
phase variations of a propagating pulse lead to the sup-
pression of the pulse evolution on the length scale of the
soliton period. The averaged evolution 1s now captured
at higher order and shown to evolve on the extended
length scale &.

Therefore, continuing the perturbation expansion to
higher order in the phase-locked quadrature, O(¢?), gives
the following

-
1 le

_ l 3 —2«
By = 4sinh o KR) + 2aR °c o (60)

DA & )
W—i—TA _LOB .

(61)

2
O = he) = 1) = -

¢
The second term on the right hand side of Eq. (61),
(@/l)A®, comes about from the O(€?) deviation from the
exact balance of the loss and gain given in Eq. (55). Just
as in the case of Eq. (56), the forcing terms in Eq. (61)
must satisfy an orthogonality condition in order for a
solution to exist, i.e., in order for the solution A% to

be periodic and contain no secular growth terms. The
solvability condition is

! 0 ~
/ el (_aaig + %AO - LoBl) ¢ = 0.
0

Notice that the solvability condition gives the evolution
of A® on the the length scale ¢. Prior to evaluating the
integral given by Eq. (62), it will be useful to introduce a
convenient set of rescalings for the envelope R, the time
T, the distance ¢ and the overamplification &. These
rescalings are given as follows

(62)

1 — e—2miN /2
r = g7 (63b)
_ l
£ = (5 coth a) 13 (63c)
Ao = l—ztanhag. (63d)
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The rescaling of the envelope amplitude (with £ = 1) is
the same rescaling used when considering soliton prop-
agation with erbium-doped amplifiers, i.e., the guiding-
center soliton rescaling!®. This amplitude rescaling cor-
responds to normalizing on the average energy of the
pulse over one amplifier and fiber segment. The phase
rotation x 1s also scaled out by the proper scaling in
the amplitude and time. These rescalings along with
Eq. (62) give the following equation for the pulse evolu-

tion
N1z
4\ or?
8*U B

FUA )
+ 38U (aT) +(B+ )= =0,

oU

2
_ 1) U=AalU-U34U?
o ) o +

or? (64)

where § = (2 — tanh /). Eq. (64) is a fourth-order,
nonlinear, dissipative equation which governs the pulse
dynamics over the long length scale . Equation (64)
is the central result of this dissertation and will be the
focus of study throughout the remaining chapters.

Upon a careful investigation of Eqs. (50), (56), and
(61), it can be understood why the pulse evolution is
governed by the fourth-order equation Eq. (64). First
note that the quadrature correction B!, in Eq. (56b),
is forced by the NLS-type operator LoAY at O(e). In
Eq. (61), B! in turn forces the phase-locked quadrature
at O(e?) with the operator LoB!. This gives the fourth-
order, iterated-NLS type structure governing the pulse
evolution as shown in Eq. (64). And although the evo-
lution equation inherits much of the structure from the
underlying NLS equation, it is important to note that the
evolution is of a non-Hamiltonian nature, and therefore,
the dynamics will resemble that of dissipative systems.

The central question and concern now is whether the
new, averaged evolution equation is capable of support-
ing stable pulse solutions. In the next two chapters, an
investigation is made of the existence and stability of
pulse solutions which are governed by Eq. (64) in appro-
priate asymptotic parameter regimes. This is followed by
numerical simulations which present evidence of the ex-
istence of stable pulse solutions valid for a wide range of
parameter values, including physically realizable values
of the parameters as applied to soliton based communi-
cation systems.

13. Summary

It has been the aim of this chapter to investigate the use
of phase-sensitive amplifiers as a method for compensat-
ing for linear loss in a fiber optic communications line.
In particular, the object was to develop a method which



would allow the averaged pulse evolution to be investi-
gated over long distances. The two essential steps in this
direction included the quadrature decomposition given
by Eq. (45) and the averaging via the multiple scales of
Eq. (48). The quadrature separation was shown to diag-
onalize the rapidly varying components associated with
the loss and gain. Moreover, it allowed the governing
equation to be, in a sense, decoupled from its complex
conjugate dependence. When the quadrature separa-
tion was used in conjunction with the multiple scales,
a clear asymptotic ordering resulted which allowed for
a straightforward averaging procedure to be carried out.
As a result, a fourth-order, nonlinear, dissipative am-
plitude equation (64) was derived which governed the
pulse evolution on a length scale much longer than that
of the soliton period. The evolution occurs on an ex-
tended length scale due to the PSAs attenuation of phase
variations across the pulse profile. This averaged equa-
tion behaves in a markedly different manner than that
of its phase-insensitive counterpart. Whereas the phase-
insensitive evolution retains its Hamiltonian structure at
leading order, the phase-sensitive amplifiers give rise to
a dissipative evolution structure.

As was mentioned in the preceding section, Eq. (64)
represents a fundamental result of this dissertation. It
will be shown in the next chapter that nonlinear, soliton-
like pulses can propagate with little or no distortion
over long distances in the parameter regime which cor-
responds to a soliton based communications system, i.e.,
a regime for which the amplifier spacing is much less
than the soliton period. This fact is somewhat surpris-
ing in view of the fact that the pulse is continually un-
dergoing O(1) changes in its amplitude as depicted in
Figure 8. However, this result is consistent with the
guiding-center soliton dynamics of phase-insensitive am-
plifiers. And just as with phase-insensitive amplifiers,
the initial power level of the soliton-like pulse is slightly
higher than the ideal soliton power. This fact can be
understood from the averaging used for both the phase-
sensitive and phase-insensitive amplifiers , i.e., the av-
eraged evolution gives rise to a corresponding averaged
power which is less than the initial power of the pulse.
Therefore, the initial pulse power must be enhanced by

the factor ((1 —6_2”)/2F1)1/2 which is given in the
rescaling of the pulse amplitude Eq. (63a).

The analysis carried out in this chapter for phase-
sensitive amplifiers in a fiber optic line once again attests
to the remarkable robustness of solitons under strong
perturbations. And although the PSAs break the Hamil-
tonian structure associated with the NLS, the underlying
dynamics of Eq. (64) inherits a strong affiliation with the
NLS. The relationship between Eq. (64) and the NLS
will be further explored in the remaining chapters. It
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will suffice to say at this point that much of the analysis
concerning the stability of propagating pulses will rely on
the structure of the linearized operator associated with

the NLS.

Part IV
Existence and Stability
of Pulse Solutions

14. Introduction

The question which must be addressed at this point con-
cerns the existence of stable pulse solutions governed by
Eq. (64). Tn general, the stability and dynamics of pulse
solutions of Eq. (64) can only be investigated through
numerical simulations. However, the aim of the next sec-
tion 1s to investigate analytically a parameter regime for
which the averaged evolution is simplified via asymptotic
and perturbation methods. It is then hoped that the
qualitative structure of the results might remain valid
outside of the asymptotic regime explored. In particu-
lar, a parameter regime is explored, which although un-
physical, provides preliminary evidence for the existence
of stable pulse solutions. This regime corresponds phys-
ically to taking a very small amplifier spacing and over-
amplification, i.e., Tl <« 1 and Aa < 1, for U ~ O(1).
Within this regime, it is reasonable to expect that a sta-
ble pulse solution might exist since the amplifiers and
loss act as small perturbing terms to the governing NLS
equation. Further, it would not be surprising to find the
solution to be of the hyperbolic secant type due to the
underlying structure and dominance of the NLS. These
conjectures follow from what is known of the robust na-
ture of the soliton solutions of the NLS.

In fact, if T = 0 in Eq. (64), then U = Ay sech ALr

where A+ = V1 +2VAa«a. The two solution branches

are plotted in Fig. 9. Tt is remarkable that an exact
solution for Eq. (64) for Tl = 0 is known for all val-
ues of Aa. From this fact and Fig. 9, it can be seen
that there are two regions which are of analytic inter-
est. Region 1 corresponds to the small amplifier spacing
and small overamplification regime mentioned in the pre-
ceding paragraph. This region will be explored in Sec-
tion 15. In Section 19 of the next chapter, region 2 will
be explored by once again making use of asymptotic and
perturbation methods. It will be found that a subcritical
bifurcation occurs at (U, Aa)) = (0,1/4).

Although the results from the asymptotic analysis are
valid only for a limited range in parameter space, full
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Fig. 9.  Plot of the maximum amplitude for the two so-
lution branches
U = Airsech Ayt where Ay = (1% 2(Aa)1/2)1/2. Region
1 is the asymptotic regime explored in the next section while
region 2 is an asymptotic regime explored in the next chapter.

numerical simulations will show that in fact the qualita-
tive behavior is preserved for a wide range of parameter
space. The results of these numerical simulations will be
presented in Section 16. Further, the next chapter will
explore the bifurcation structure of Eq. (64) for a wide
range of parameters. In particular, the focus will be in
exploring the range of physically realizable parameters
associated with a soliton based communications system.
What will be of interest is the range for which the fiber-
PSA line supports long-distance pulse propagation.
Before presenting the results of the asymptotic analy-
sis and numerical simulations, some comments concern-
ing the dimensionless parameters are required in order
to aid in the understanding of the range of physical val-
ues investigated. In the runs that follow it is of interest
to note that Tl = §7; where J is the linear field ampli-
tude loss rate (e.g., d = 0.02763 km for a power loss rate
of 0.24 dB/km) and 7; is the amplifier spacing in km.
With this definition of T'/ in mind and with the aid of
Eq. (63c), the relevant length scale of propagation can

be shown to be given by,
£ - 2 7
~ tanh(67;) Zo

which gives € in terms of Z. Recall that Z was the orig-
inal length scale which was normalized upon the soliton
period. Further, the overamplification can be expressed

as
Z\?
=47 —
« l+<Z0)

which gives the total amplifier gain. Therefore in the
remaining numerical simulations, the parameters which

Ao
2tanh(d7;)
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will be varied include the amplifier spacing 7; and the
overamplification A« which is given by Eq. (63d). These
comments apply mainly to Section 16 for which physi-
cally realizable values of the parameters are considered.

15. Pulse Stability for Small Amplifier Spacing

Equation (64) is now considered when the amplifier spac-
ing is small. In this case, the close PSA spacing causes
very little attenuation of the pulse to occur between am-
plifiers which in turn requires a correspondingly small
amount of phase-sensitive gain. Therefore, the pertur-
bations which modify the governing NLS equation can
be thought of as small perturbations to the leading order
single-soliton solution. An investigation of this asymp-
totic regime provides analytic evidence for the existence
and stability of a propagating pulse. Although this
regime is somewhat unrealistic physically, it is mathe-
matically convenient because a simple, closed form solu-
tion of the hyperbolic secant type is found in this limit.
Since the parameter 2 in Eq. (64) is an even functions
of Tl, let § = (T1)? <« 1 and expand as follows

US4+ 60U +5%0% + ...
Jat +6%a% + .. ..

U
Aa

(65a)
(65b)

In addition, define the length scale ¢ = 6¢, and make
use of another multiple-scale expansion to capture any
slow growth in U caused by the perturbation measured
in . It will turn out that the slow length scale o will
capture at O(6?) a condition on the overamplification
which insures the stability of the leading order solution.

At leading order in 4, O(1), Eq. (64) becomes
aue (1 9? U
3—E+<§W+(U)_§)U_O.

It is easy to show that the hyperbolic secant solution
Uy = sech 1 satisfies the above steady-state equation.
Note that the shape of this pulse agrees with what is ex-
pected physically as § approaches zero — a limit where
the fluctuations caused by the attenuation and phase-
sensitive amplification are negligible — namely, the hy-
perbolic secant shape associated with a soliton solution
of the nonlinear Schrodinger equation. The structure of
Eq. (66) is clearly inherited from the underlying NLS
equation. This strong connection with the NLS struc-
ture will be extensively used to prove the linear stability
of the leading order hyperbolic secant solution in the
parameter regime being considered.

Before proceeding further in the expansion, it is inter-
esting to note the following properties associated with
the fourth-order operator of Eq. (64), i.e., Us + N(U) =

(66)



0. When expanded in powers of § using Eqs. (65), it is
found that

N(U) = LoL_U°+3§[L_LyU" — Ho(U°,a')]
+ 07 [L Ly U? — Hy(U°, U o' a®)] 4 -+ (67)

where L_L_U%is a nonlinear operator given in Eq. (66)
and Hpy represents the perturbing terms which force the
higher order correction terms UN*+! | and

1 1

Ly = =3 9% =3 (U + 3 (68a)
1 1

L. = -3 9% — (U + 3 (68h)

are the real and imaginary parts of the linearized oper-
ators associated with the NLS equation. The structure
and dependence of Eq. (64) upon the underlying NLS
behavior is made explicitly clear through the leading or-
der and linearized operators L_L_ and L_L4 respec-
tively. Fortunately, many properties of the L, and L_
operators, both of which are self-adjoint, are well under-
stood38. In particular, the spectrum of each operator is
known. L contains two discrete modes, one which is at
A = —3 and the other at A = 0, with a continuous spec-
trum starting at A = 1. L_ can be shown to have one
discrete spectral component at A = 0 with a continuous
spectrum also starting at A = 1. These characteristic
features of the spectra of L, and L_, namely the dis-
crete spectrum and their associated eigenfunctions, are
explicitly given in what follows. The discrete zero mode
solution of L_ is given by the hyperbolic secant, i.e.,

L_(secht) = 0.
The two discrete modes associated with Ly are given by
Ly (sech rtanh7) =0
Ly (sech? 1) = —3sech? .

Although much is understood concerning the spectra of
L4 and L_, the spectrum of the linearized operator is
what will determine the behavior of the perturbations
measured in §. Therefore, the spectrum of —L_ L, be-
comes the key to understanding the pulse stability.

The focus for the remainder of this section will be to
investigate the spectral composition of the linearized op-
erator. In particular, it is convenient to separate the
spectrum into two distinct categories. In the follow-
ing Subsection 15 A, the zero modes and their corre-
sponding stability are investigated. An analysis pertain-
ing to the remainder of the spectrum follows in Subsec-
tion 15B. The reason for this separation becomes clear
upon considering the linearized operator —L_ L. Note

that —L_ L4 is a non self-adjoint operator since L_ and
L4 do not commute and therefore its spectrum is un-
known aside from the two zero mode solutions which
are investigated in Subsection 15A. As a consequence,
the most one can hope for is some kind of bounds upon
the remaining spectral components of the linearized op-
erator. In Subsection 15B, it can be shown that the
spectrum is bounded away from the origin in the left
half plane and therefore, no instabilities can arise due
to the remaining spectral components. This will suffice
to insure the existence and stability of the leading order
hyperbolic secant solution.

A. Zero Modes of the Linearized Operator and Their
Stability

It can be shown that —L_ L, contains two zero eigen-
values with corresponding eigenmodes given by,

L_Li(sech rtanhr) =0
L_Li(sech 7 — rtanh rsech 7) = 0.

The zero mode solutions of the adjoint linearized op-
erator —L4 L_, which will be important in determin-
ing the appropriate solvability conditions associated with
the forcings Hp, can be shown to satisfy,

LyL_(secht)=0
LiL_(rsecht)=0.

As will be made clear in what follows, the behavior of
the zero modes of the linearized operator and its adjoint
are fundamental in understanding the stability of the
leading order solution.

Returning now to the perturbation expansion at the
next order, O(d), it is found that

out
3 + L_LyU' = Ho(U% o)
ou° 1 e
_ 770 2 Lrr0N2 1770
= U5 =)" = U 5 +a'U". (69)

Since the homogeneous part of the linear equation for

Ul

1
8@%+L_L+ Ul =0,

has the symbolic solution

UE) = et U 0),



it becomes necessary to determine the effects of the per-
turbation upon the two zero eigenvalues in order to as-
certain the stability of Eq. (64). As noted earlier, the
remainder of the spectrum will be dealt with shortly
in Subsection 15B. One of the two zero eigenmodes
arises due to the translation invariance of Eq. (66),
i.e., sech T tanh 7, and therefore this eigenvalue remains
zero under perturbation since Eq. (64) is also transla-
tionally invariant. The remaining zero mode, sech 7 —
Ttanh 7sech 1, is affected by the perturbation, however,
and the stability of a pulse is determined by this sin-
gle eigenvalue provided once again that the rest of the
spectrum does not give rise to any instabilities.

Since Eq. (69) has homogeneous solutions, solvability
conditions are required in order for a solution of the per-
turbed problem to exist®. Tt is necessary that the forc-
ing, Hy, be orthogonal to the null space of the adjoint
linearized operator. A condition is therefore associated
with each of the zero eigenmodes. These are as follows,

(Hg,secht) = 0 (70a)

(Ho,Tsecht) = 0, (70b)

where (h, g) = ffooo hgdr denotes the inner product with
respect to 7. Note that in the case of interest, both h
and g are real and complex conjugation is not neces-
sary in the definition of the inner product. Upon forc-
ing the right hand side of Eq. (69) to satisfy the above
orthogonality relations, it is found that the first condi-
tion, Eq. (70a), is automatically satisfied, but the second
condition, Eq. (70b), is only satisfied if o' = 0. With
al = 0, the following solution is obtained for U!

Ut = —(1/6)sech 7 4+ h(o)(sech 7 — rtanh 7 sech 7),
(71)

where h(c) is arbitrary at this order.

At the second order, O(d?), the situation is similar,
in that a forced (inhomogeneous) equation is obtained
which can only be solved if the orthogonality conditions
of Egs. (70) are satisfied. However, Hy is now replaced
by the appropriate forcing H; associated with the second
order equation, i.e., (Hy,secht) = (Hy,Tsecht) = 0
where H is given by the following

Hi= —asU° — %—Ul +30°%(U")? = 10U (U)?
_4U0U16627U?1 - aUTO 83Url (aUO) vt (72)

0 2aZUO

E( ) or2
Solvability determines h(o) by producing the equation
dh 5 8 16
do- (20[2—2]1 +9h_ﬁ) (73)

It is straightforward to show that a steady-state solution
of Eq. (73) exists and is stable provided «y > (4/405),
or equivalently, Ao > (4/405)(T1)* = Aa, (when T is
small). Therefore, when this condition is satisfied, the
above analysis implies that a stable steady-state pulse
solution of Eq. (64) should exist provided, of course,
the remainder of the spectrum contains no components
which give rise to instability.

The critical value Aa,. determines the minimum
amount of overamplification necessary for stable pulse
solutions to occur. The need for a small amount of over-
amplification is consistent with the use of PSAs. As
was noted in Chapter 2, there 1s a small amount of de-
cay due to ‘losses’ in the anti-phase-locked quadrature.
These ‘losses’ are actually due to the sum-frequency gen-
eration which occurs when a small portion of the signal
field is converted into the pump field at twice the fre-
quency. This process is depicted in Fig. 1b. For values
of Aa below Aay, it is expected that a pulse decays to
zero. Of course, these results are only valid when T
is small, but they are nonetheless indicative of the re-
sults obtained using numerical simulations for values of

Tl ~ O(1).

B. Spectral Estimates for the Linearized Operator
when Excluding the Zero Modes

Although the two zero modes of the spectrum of —L_ 7L
have been determined, the remainder of the spectrum of
this non self-adjoint operator remains unknown. And
since the linearized operator determines the stability of
the leading order solution, the spectrum of —L_ L, must
be further investigated. This subsection will show that
the spectrum of —L_ L, is bounded to the left of the
origin with the exception of the two zero modes which
were previously determined in Subsection 15 A. This re-
sult will be shown to imply the exponential stability of
the leading order hyperbolic secant solution provided a
minimum amount of overamplification is supplied. Note
that the spectrum being bounded to the left of the ori-
gin represents modes which decay and are stable. This
result, in conjunction with those of the previous sub-
section, demonstrate the existence of stable hyperbolic
secant pulse solutions.

It now remains to be shown that the remainder of the
spectrum of the —L_ L operator is bounded to the left



of the origin. This is equivalent to showing that pertur-
bations to the leading order hyperbolic secant solution
of Eq. (69) are attenuated as ¢ gets large, i.e., there are
no spectral components which give rise to an instability.
The question of stability is then completely understood
within the framework of the behavior of the linearized
perturbation U which satisfies

aut

3

=—L_LyU" (74)
It has already been shown that two zero modes exist for
the operator —L_ L. Further, the stability properties
corresponding to these modes have been investigated. In
order to determine the remaining spectral components,
Ul is confined to the space which is orthogonal to the
two adjoint zero modes of —L_ L. Therefore, the two
zero modes of —L 4 I_ are projected out as follows
=0

(U, sech ) (75a)

(U, rsech 1) = 0. (75b)
This then imposes two constraints on the evolution of U
and effectively removes the two zero modes associated
with the previous stability analysis.

The approach used to determine the stability of U =
0 is Liapunov’s direct method3”. The idea is to define
a positive definite quantity which is somehow associated
with the ‘energy’ of the problem and to show this ‘en-
ergy’ is monotonically decreasing in ‘time’ (here ‘time’
represents &). In particular, the following Liapunov func-
tion V 1is defined

V=vU")=(U"LsU"Y. (76)
Weinstein3® shows that subject to the constraints given
in Egs. (75), the following inequalities hold for the Tia-
punov function defined in Eq. (76)

(U, Ly U > Cllul, (77)
where ||UY|| = (U!,U') and C is a positive constant.
This result clearly indicates that the Liapunov function
V or ‘energy’ is a positive definite quantity.

Using the definition of V given by Eq. (76) in conjunc-
tion with Eq. (74), the following property can be shown
to hold

VI E) = —2 (U, Ly Lo L4 UY), (78)
where 1 = d/dé and use has been made of the fact
Ly, L_,and Ly L_L4 are all self-adjoint operators. As
with all Liapunov functions, the rate of increase or de-
crease of the ‘energy’ will be crucial in determining sta-
bility. Therefore, it becomes necessary to understand
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some properties of the inner product (UY, Ly L_LyU?).
Since Ly is a self-adjoint operator, the following can be
shown to hold

(UlaL-l-L—L-l-Ul) = (WaL—W)a (79)
where W = L,U!. Upon using the constraint given
by Eq. (75a) and the fact that U! L_T_1W, a con-
straint for W can be derived from (U' sechr) =
(L_T_lVV, secht) = (W, L_T_lsech ) = 0. Tt is not dif-
ficult to show that the self-adjoint inverse operator
for Ly acting on a hyperbolic secant solution gives
L7'sech 7 = 1/2(rsech 7 tanh 7 —sech 7) where the arbi-
trary sech 7tanh 7 factor has been neglected. This then
imposes the following constraint on W,

(W, rsech 7 tanh 7 — sech ) = 0. (80)
But Weinstein® also shows that

subject to the constraint of Eq. (80). Written in terms of
the original variable U!, the following inequalities then

hold

(U Ly L L UY > Co(L U, LU = Cz(Ul,Li(Ul))
82

where (s is some positive constant.

Investigation of an associated Lagrange multiplier
problem for (Ul,L?I_Ul) provides one further inequal-
ity which can be shown to hold. These details will be
presented towards the end of this subsection. For the
present, the result will simply be stated as follows,

(U L3UY > C5(U', LaUY), (83)
where Cj3 is some positive constant. Making use of the
inequalities given by Eqs. (82) and (83) implies the fol-
lowing relation

V' < —205C5V, (84)
upon using Eq. (76) and Eq. (78). Therefore, the ‘energy’
decreases monotonically since V' is a negative definite
quantity. From Eq. (84) it can be shown that the Tia-
punov function, and hence the linear perturbation U’,
decays to zero exponentially in ¢ with some bound on
the exponential decay rate. In particular, by integrating
Eq. (84) directly, it is found that

V(U(€)) < V(U(0))e 20200, (85)

And upon using Eq. (77), the following is found to hold



VI(0) “acuca

Ul <
10l < =

(86)
Therefore, U' — 0 as € — 0 at an exponential rate equal
to or faster than 2C5C5 for any given initial condition
V(U(0)).

The preceding result hinges on the inequality given in
Eq. (83) which was stated without proof. Therefore, it
now remains to be shown that

(U LRUY) > Cs(U, Ly UY).

Specifically, it was this condition that gave rise to the in-
equality of Eq. (84) which by integration implied the ex-
ponential stability of the leading order hyperbolic secant
solution. Therefore, the following problem is considered

minimize (U", LiUl),

subject to the constraints

(Ut L Uty = (87a)
(U sech r) = (87b)
(U', rsech ) = (87¢)

It is clear that (Ul,L?I_Ul) is non-negative. Now, for
what follows define o = min (U', L3U'). As in the
work of Weinstein®®, the object is to assume that the
minimum is zero, i.e., « = 0, and show that this gives
rise to a contradiction. First however, it is necessary
to prove that a zero minimum is indeed attained by a
function in a proper admissible class. This will be done
shortly. For the present, however, the aim will be to
show that a = 0 gives rise to a contradiction.

The contradiction regarding the minimum follows in
a relatively straightforward manner by considering the
following Lagrange multiplier problem associated with
the constrained minimization above, 1.e.,

L?l_U1 = AL U' + Bsech T+ yrsech T, (88)

subject to the constraints given by Eq. (87). Taking
the inner product of this equation with respect to the
zero mode of Ly sech 7tanh 7| gives immediately v = 0.
Inverting, i.e., multiplying through by L_T_l, gives

LyU' = \U'— s (sech 7—r sech 7 tanh 7)+§ sech  tanh 7.
(89)
Taking the inner product again with respect to

sech 7 tanh 7 gives = 0 since the minimum at zero im-
plies A = 0. Upon inverting once more, it is found that

Ul = —%L_T_l (sech 7 — rsech 7 tanh 7) + w sech 7 tanh .
(90)
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The constraint (U1, 7sech 7) applied to the above equa-
tion forces w = 0 and further implies that U/' must be an
even function in 7. Taking the inner product now with
respect to sech 1 gives

(sechr, U') = —g(sech T, L_T_l (sech 7—7sech T tanh 7)).
(91)

The remaining constraint on U', namely (U, sech )
0, must now be satisfied. Since L_T_l is self-adjoint and

L_T_l sech 7 = sech 7 — 7sech 7 tanh 7, the above equation
can be written as

(sech 7, U1)

—§|| sech 7 — rsech 7tanh 7| = 0.

(92)

This can only be satisfied for 5 = 0. Therefore, since
G =+ =3 = w = 0, no solution exists for A = 0
and assuming that the minimum occurs at zero leads
to a contradiction. As a consequence, the minimum
must occur at some positive value, i.e., & > 0 and
(U, LAUYY > C3(U', LyU"), where Cj is some positive
constant.

The preceding Lagrange multiplier problem assumed
the zero solution to be attained. The focus now will
be to show that this 1s indeed true. In particular, it 1s
necessary to show that if A = 0, the minimum is attained
in the admissible class. This fact is required in order
validate the contradiction in the previous analysis of the
associated Lagrange multiplier problem.

Therefore, define {f,} to be a minimizing sequence,
i'e'a (fl/aL-I-fl/) = 1a (fl/aLifl/) \l/ 0 and (fl/aseChT)

(fu, msech ) = 0. The condition on the norm,
1T f,
5/_00 lf” + (87’

implies that || f,||g: and ||f,||2 are both bounded since
Eq. (77) with f,, holds. Here ||g||m~ = ffooo (9> +(0-9)*+
-+ (0" g)?)dr and the cases n = 0, 1 correspond to the
standard L, and H' Sobolov norms respectively. With
this mind, consider the following,

(o I21,) /_Oo
+(UY 2 —6(U) f2 — 6(U°)* (V1) ldr  (94)

where A = 92 and V = §,. Then for any 5 > 0, we can
choose f,, such that

o< |

2
(o Taty) = ) 6| dr =1

(93)

[(Af)? 4+ 2(VF) + f2

[(AL)? +2(V )" + £ +9(U°) fldr

[ee]
</
— 00

[6(U°)2f2 +6(U")*(Vf,)*ldr +n (95)



which in turn gives

o< [

[(AL)? + (V) + fdr

o

Since (fy, L4+ f,) = 1 implies that ||fu||g: is bounded,
this in turn implies, upon using Eq. (96), that || f|| g2 is
uniformly bounded. Thus a subsequence f, exists that
converges weakly to some H? function f,. And by weak
convergence, f, satisfies the orthogonality relations given
above. Further, it should follow as in Weinstein that
JUO2(2 + (VA)2)dr — [(U0)(f2 + (V1.)%)dr by
Holder’s inequality, interpolation and the uniform decay
of R. This further implies [(U%)*f2dr — [(U%)*f2dr.
Tt can then be concluded that f. # 0 by Eq. (96) since
7 is arbitrary.

Thus far, statements concerning the last three terms
of Eq. (94) have been made. Before we are able to show
that the minimum is attained at f., the first three terms
in Eq. (94) must be considered. By Fatou’s lemma, the
following holds for the third term

(UI(F7 + (V£)?ldr +n. (96)

I £cll2 < lim inf ] £y ]2 (97)
V=00

It should be further possible to use arguments similar

to Weinstein to say something concerning the remaining

two terms in Eq. (94). First, let ¢ € L? with ||[]o = 1.

By weak convergence of f, to f., it follows that

(¢, V)= lim inf(¢,Vf,) < lim inf ||V fu|2- (98)
Maximizing over all such , it is found that ||V fi]]2 <
lim,_y oo inf ||V £, ||2. In a similar manner, let € € L? with
[€]]2 = 1. By weak convergence of f, to f., it again
follows that
(&,Af) = h_}m inf(¢,Af,) < lim inf||Af|2- (99)
Maximizing over all such &, it is found that ||Af]]2 <
limye0 inf [|Afy|]2.
Combining all of the above results and using them in
Eq. (94) gives the following

(fo, L3 fe) < lim inf(fy,, L3 £) = 0, (100)

This implies (f*,L?I_f*) < 0. But from what is known
of the spectrum of L2 | i.e., it is non-negative, it follows
that

(f*aLif*) =0.

Therefore, the minimum is attained in the admissi-
ble class provided it can be shown that the weighted

(101)
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norm, with respect to Ly, of Eq. (87a) is equal to
unity. By Fatou’s lemma, the fact that [|[Vfi||2 <
limy o0 inf ||V fu ]2, and [(U%)? f2dr — [(U°)?f2dr, it
is found that

(for L fo) < lim inf(fy, Lyfy) = 1. (102)

Now suppose (f«,L4fs) < 1, then define g. =
fo/(fe, Ly £)M? which is admissible. Then (gu, L4 g4) =
1 with (g., L?I_g*) = 0. Therefore, the minimum is indeed
attained at zero with the condition on the norm being
satisfied.

To recapitulate, the stability of the linearized pertur-
bation was considered in the context of Liapunov’s direct
method. In particular, a positive definite Liapunov func-
tion V' was considered whose derivative with respect to
the ‘time’ variable, VV’/, was shown to be negative definite.
This was shown by considering an associated Lagrange
multiplier problem which was constrained to the space of
functions for which the zero modes were projected out.
Specifically, a contradiction was reached, provided the
solution was in the admissible class, which forced V' to
be negative definite and the leading order solution to be
asymptotically (exponentially) stable.

The foregoing analysis implies that the spectrum of
—L_TL4 contains two zero modes with all other modes
being bounded to the left of the origin. Therefore, the
stability of the leading order hyperbolic secant solution
is entirely determined from the previous analysis on the
two zero modes of Section 15 A. In particular, the lead-
ing order hyperbolic secant solution is exponentially sta-
ble for Aa > (4/405)(T1)* = Aa,.

In contrast with erbium-doped communications sys-
tems'® 19 initial perturbations of the propagating pulse
solution using PSAs exponentially approach the stable,
steady-state, leading order solution without the shed-
ding of a background radiation field. This behavior is
indicative of the fact that the phase-sensitive amplifiers
break the Hamiltonian structure of the underlying non-
linear Schrodinger equation. In contrast, an erbium-
doped fiber amplifier system preserves, to leading or-
der, the Hamiltonian structure associated with the NLS
which allows initial perturbations of the propagating
pulse to generate both shifts in the soliton parameters
and a background radiation field. Both systems, how-
ever, generate a small background radiation field from
the periodic forcing of the loss and gain.

16. Pulse Stability for Amplifier Spacing of O(1)

In the previous section, the stability of a steady-state
pulse solution is shown to exist for I'l <« 1. For physi-
cally realizable values of the amplifier gain, fiber loss
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Fig. 10. Evolution of initial hyperbolic-secant pulses
U(r,0) = sechr, (a), and U(r,0) = 1.8sechr, (b), show-
ing exponential decay onto the stable pulse solution. The
parameters are: I'l =1 (corresponding to an amplifier spac-
ing of 36 km), k = 1, and Aa = 0.1. The computations
were run to £ = 10 which explicitly shows the stability of the
pulses.

and dispersion length, the assumption that I'l is much
less than unity no longer holds. This section considers
the stability and evolution of propagating pulses when
Tl ~ O(1). Numerical simulations provide the most di-
rect and efficient method for studying this parameter
regime in which asymptotic results of the previous sec-
tions fail to hold. In what follows, stable pulse solutions
will be shown to exist and act as attractors for a wide
range of initial conditions and parameter values. Fur-
ther, the averaged evolution and the full NLS numerics
will be compared in order to determine the the validity
and accuracy of the effective evolution given by Eq. (64).
The numerical method used in solving Eq. (64) utilizes
a fourth-order Runge-Kutta method in time and filtered
pseudo-spectral method in space®®. The method

1.00 e I BARaRasE SARRRaZE IBRARERAN BRARRRRY I BNARRamT y
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Nondimensional Distance

Fig. 11.  Asymptotic approach onto the final steady-state
solution from initial conditions U(7,0) = Asech 1.57, where
A =1.9,1.6,1.3 and 1.2 respectively. Note that the transient
response to the initial amplitude is attenuated after a very
short distance of the nondimensional distance £. Further,
the steady-state is an attractor for a wide range of initial
amplitudes. The parameter values used are identical with
those of the previous figure.
combines the advantages of split-step”3?3 and explicit
Runge-Kutta methods*® and gives a relatively simple
fourth-order scheme with improved numerical stability
properties. The computational region in all of the runs
was taken to be larger than the region of interest and an
absorbing boundary layer was implemented to eliminate
any reflections from the edges of the computational do-
main. Numerical results were carefully checked by vary-
ing the number of Fourier modes, the time step and the
size of the computational domain. The remainder of this
section will focus on presenting the numerical results ob-
tained from solving Eq (64).

To begin, Fig. 10 shows two representative numerical
solutions of Eq. (64). Figure 10a is for an initial pulse
U(7,0) = sech 7 and Fig. 10b for U(7,0) = 1.8sech 7. In
both cases the solution exponentially approaches a stable
steady state as it evolves. Further evidence concerning
the asymptotic, exponential stability of the steady-states
for Eq. (64) is provided by Fig. 11 in which various initial
amplitudes are shown to decay onto the final steady-state
amplitude. The parameters used in these simulations
are Tl = 1 (which corresponds to an amplifier spacing
of roughly 36 km), x = 1, and Ae = 0.1. As was noted
in the stability analysis of the previous section, positive
values of Aa (i.e., overamplification) are necessary to
obtain the stable pulse solutions. In these simulations,
the pulses propagate 10 units in the long length scale ¢.

Figure 12 reflects the fact that a wide range of initial
pulse amplitudes and widths are capable of producing
stable pulse solutions. This figure was made by simply
solving Eq. (64) for many different initial pulses of
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Fig. 12.  Initial pulse amplitudes A and widths Ty which

give stable pulse solutions for Il = 1, k = 1, and Aa = 0.1.
The initial conditions U(T,0) = Asech(T/Ty), with different

values of A and Tp, were used.

the form U(r,0) = Asech(r/my) with different values
of A and 7y and noting the cases for which the stable
steady-state pulse solution was reached. Note that all
initial pulses within the shaded region asymptote to the
same stable steady-state which is approximately given
by 2sech(r/1.5). The numerical simulations were car-
ried out using the same parameter values as in Fig. 10,
e, 'l = 1, Kk = 1, and Aa = 0.1. Similar numeri-
cal simulations indicate that stable pulse solutions are
obtained for a wide range of I'l, which correspond to a
variety of physically realizable amplifier spacings.

In Fig. 13, the steady-state pulse profiles that are ob-
tained by solving Eq. (64) for different values of overam-
plification, A« are depicted. Note that for larger values
of overamplification small wings develop in the pulse’s
characteristic profile. This behavior is similar to what 1s
observed when phase-sensitive amplifiers are used in lin-
ear systems (a fiber/PSA line in which the nonlinearity
plays no role).*1:32

A crucial issue which 1s addressed at this juncture
concerns the validity of the approximation Eq. (64) for
the averaged evolution. A measure of the accuracy of
the averaged envelope equation, Eq. (64), is obtained by
comparing its solutions with numerical solutions of the
full nonlinear Schrodinger equation with loss and peri-
odic phase-sensitive amplification, Eq. (42). Figure 14a
shows such a comparison for a total propagation distance
of 10,000 km using the same initial pulse and physical
parameters as those used in the simulation in Fig. 10a.
Note that in this figure only the phase-locked quadra-
ture of the full simulation of the NLS equation, i.e., A in
Eq. (47), is plotted. Further, recall that due to the am-
plitude rescaling in Eq. (63a), the phase-locked quadra-
ture of the full NLS simulations must be rescaled by
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Fig. 13.  Final steady-state pulse profiles for different val-
ues of the overamplification parameter, Ao = 0.05, 0.10, and
0.20. Note the small wings in the pulse’s profile which de-
velop for the larger values of Aa.

the factor [(1 — exp(—2T1))/2T]'/? for comparison with
Eq. (64). Because the two solutions are indistinguishable
when plotted together, the difference between the two
pulses is shown in Fig. 14b. Note that the difference
is quite small, of order 107%, demonstrating that the
averaged equation is an accurate approximation to the
full NLS equation with loss and periodic phase-sensitive
gain.
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Fig. 14.  Comparison of the solutions of the averaged en-

velope equation and the full nonlinear Schrédinger equation
with loss and periodic phase-sensitive amplification, showing
the in-phase quadrature, (a), and the difference, (b), between
the two solutions. The parameters are I'l = 1.0, correspond-
ing to an amplifier spacing of 36 km, k = 1, and Aa = 0.1.
The solutions are plotted after a total propagation distance
of 10,000 km or 275 amplifiers.

The majority of the difference between the two solu-
tions can be attributed to second-order terms in the per-
turbation expansion (i.e., A3) which have been ignored
in this comparison. In addition, a small amount of linear
dispersive radiation of O(107°) can be seen in Fig. 14b.
It is largest in the vicinity of the main pulse and de-
creases away from it. This linear dispersive radiation 1s
not expected to appear in the multiple-scale expansion
because 1t i1s exponentially small in the perturbation pa-
rameter??. Such exponentially small terms typically do
not show up in perturbation expansions using powers
of the small parameter* unless special techniques are
employed.*3

It should be further noted that not all frequencies are
present in the linear dispersive radiation. A detailed
analysis of the linear response of an optical fiber line
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Fig. 15.  Spectral evolution over 10,000 km for an ampli-
fier spacing of 100 km and A« = 0.1. Note that only certain
frequencies, which are strongly dependent on the amplifier
spacing, pass through the chain of amplifiers with unity gain.
All other frequencies are attenuated.

employing phase-sensitive amplifiers®? shows that only
certain frequencies are able to maintain phase-matching
with the amplifiers as they propagate, and thus only
these frequencies experience an overall gain close to unity
as they pass through an optical fiber/PSA segment. The
periodic forcing of the gain and loss can be shown to de-
termine which frequencies become ‘transparent’ through
a fiber-PSA line. Therefore, these frequencies exhibit a
strong dependence upon the spacing between the am-
plifiers. For the calculations presented here the ampli-
fier spacing was taken to be exactly periodic and thus
the dispersive radiation is able to survive. In partic-
ular, Fig. 15 depicts the evolution of the spectrum of
the full NLS equation with loss and phase-sensitive gain.
For this figure, the amplifier spacing was chosen to be
100 km in order to more clearly depict the qualitative
features of the spectrum as it evolves. Note the clear
generation of several sideband frequencies. These side-
bands are responsible for producing a background radi-
ation field which is superimposed upon the soliton-like
pulse propagation. As the amplifier spacing is decreased
(increased), the amount of sideband frequency generated
likewise decreases (increases). This then determines the
amplitude of the background radiation field generated
through the periodic forcing of the loss and gain. In
a more realistic situation, where the amplifier spacing
varies somewhat with distance along the fiber line, this
linear dispersive radiation is expected to be significantly
reduced. The effect of variable amplifier spacing upon
the solitons is expected to be minimal, however, because
the solitons and the PSAs will be phase-locked. A more
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Fig. 16.  Comparison of the solutions of the averaged en-

velope equation and the full nonlinear Schrédinger equation
with loss and periodic phase-sensitive amplification, showing
the out-of-phase quadrature, (a), and the difference, (b), be-
tween the two solutions. The parameters are the same as in
Fig. 14.

careful and detailed analysis regarding this situation is
carried out in Chapter 6.

Upon comparing the anti-phase-locked quadrature B,
which is an order of magnitude smaller than that of the
phase-locked quadrature A, with that of the full NLS
simulations, results similar to those found previously for
the phase-locked quadrature are found to hold for B. In
particular, Fig. 16 shows a comparison of the anti-phase-
locked quadrature obtained from the averaged equation,
a suitably rescaled Eq. (60), with the result for the anti-
phase-locked quadrature obtained from the numerical so-
lution of the NLS equation with loss and PSAs, i.e., B
in Eq. (47). The two curves are plotted just after an
amplifier in Fig. 16a, where the parameters and total
propagation distance are the same as those for Fig. 14.
Since the two curves are indistinguishable when plotted
together, the difference between the two is plotted in
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Fig. 16b. Similar to the phase-locked quadrature, here a
small amount of linear dispersive radiation is also seen.

In Chapter 3, Fig. 8 depicted the qualitative behavior
of the phase-locked quadrature A. Tt is also illustrative to
directly examine the stabilizing effect of the amplifiers by
plotting the magnitude of the anti-phase-locked quadra-
ture between the amplifiers. This is shown in Fig. 17,
which provides clear evidence that after an amplifier the
anti-phase-locked quadrature grows due to forcing from
the dispersion and nonlinear self-phase modulation, but
that upon reaching the next amplifier it is sharply atten-
uated. (Note that in this figure the exponential decay
due to loss between the amplifiers has been factored out.)

In the preceding numerical simulations of Figs. 14—
17, the solutions which are plotted are not yet close to
a steady-state. Due to the suppression of the disper-
sion and self-phase modulation by the amplifiers, much
longer distances are necessary for a true steady-state to
be achieved. As an example, in Fig. 18 the value at the
center of the pulse just after an amplifier is plotted as
a function of distance (in dispersion lengths). Results
from both the averaged equation, Eq. (64), and the full
NLS simulations, Eq. (42), are plotted. The curves are
once again almost indistinguishable. Note that the solu-
tion is not even close to the steady-state until the pulse
has propagated approximately 50,000 km. This shows
the degree to which the phase-sensitive amplifiers are
able to eliminate the effects of dispersion and self-phase
modulation.
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Fig. 17. Midpoint value of the out-of-phase quadra-

ture plotted as a function of distance, showing the evolution
between the amplifiers (calculated using the full nonlinear
Schréodinger equation with loss and periodic phase-sensitive
amplification). The exponential decay due to loss between
the amplifiers has been factored out. The magnitude grows
after an amplifier, but upon reaching the next one it is sharply
attenuated. Here the amplifier spacing is 50 km, and the dis-
tance is in terms of dispersion lengths (z = 1 corresponds to
500 km).
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Fig. 18.  Midpoint value of the in-phase quadrature just
after an amplifier plotted as a function of distance (dispersion
lengths). Results from both the averaged equation (dashed
curve), Eq. (64), and the full NLS equation with loss and pe-
riodic phase-sensitive amplification (solid curve) are plotted.
The two are virtually indistinguishable. The parameters are
T'l=1.0, k =1, and Aa = 0.1. A total propagation distance
of 100,000 km or 2750 is shown. Note that an approximate
steady-state is not reached until after the pulse has propa-
gated roughly 50,000 km.

In considering a fiber-PSA line for use in a communi-
cations system, it is of interest to determine how far
one can push the parameter regime and still achieve
stable pulse propagation. Therefore, the case for 100
km amplifier spacing is investigated. The results for
the phase-locked and anti-phase-locked quadratures after
10,000 km are shown in Figs. 19a and 19b, respectively.
In both figures, Tl = 2.76, k = 1, and Aa = 0.05. Here
the dispersive radiation generated as a result of the peri-
odic forcing by the loss and PSAs is relatively more pro-
nounced, although it is still limited to a narrow range
of frequencies by the action of the PSAs. Recall that
Fig. 15 depicts the spectral evolution for these param-
eter values. As mentioned earlier, this radiation 1s ex-
pected to be largely eliminated when the amplifier spac-
ing is allowed to vary along the length of the fiber. Note
that these simulations were of the phase-locked quadra-
ture using the full NLS with PSAs as given by Eq. (47).
This is due to the fact that the averaged evolution is
not capable of capturing the dispersive radiation which
is exponentially small.

Finally, it is of interest to compare these numeri-
cal results with similar results obtained from the equa-
tions that are used to describe a communication sys-
tem employing solitons and lumped erbium-doped fiber
amplifiers'®. The physical parameters in the numerical
simulation of the erbium amplifier system include a dis-
persion length of 411 km and an amplifier spacing of 50
km. If the amplitude of the initial pulses in both cases
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Fig. 19. Comparison of the solutions of the averaged

envelope equation (dotted lines) and the full nonlinear
Schréodinger equation with loss and periodic phase-sensitive
for both the in-phase, (a),
The parameters are

amplification (solid lines),
and out-of-phase, (b), quadratures.
I'l = 2.76, corresponding to an amplifier spacing of 100 km,
k = 1, and Aa = 0.05. The solutions are plotted after a total
propagation distance of 10,000 km or 100 amplifiers.

are taken to be precisely those required for the corre-
sponding steady-state solutions (a one-soliton in the er-
bium amplifier case), then the amount of dispersive ra-
diation generated in each case is roughly of the same
magnitude. If the amplitudes of the pulses are initially
taken to be 10 percent larger than those required for the
corresponding steady-state solutions, however, then the
system employing erbium amplifiers generates a signifi-
cant amount of dispersive radiation. This is illustrated
in Figs. 20a and 20b. In the system employing PSAs,
Fig. 20b, the amplifiers attenuate most of the linear dis-
persive radiation that is shed by the pulse as it adjusts
its amplitude. This can be understood from the under-
lying stability results of each system in consideration.
Within the context of an erbium-doped line, which is a
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Fig. 20.  Qualitative comparison of pulse solutions show-
ing the amount of dispersive radiation shed by the soli-
ton-based communication systems employing erbium ampli-
fiers, (a), and PSAs, (b). In both cases the initial pulse am-
plitude was taken to be 10% higher than the optimum (for
a fixed width). The system employing PSAs, (b), generates
considerably less linear dispersive radiation with such an ini-
tial condition. For these simulations, the dispersion length
was taken to be 411 km, the amplifier spacing was 50 km,
and the gain of the amplifiers was set to exactly cancel the
fiber loss between the amplifiers.'®

phase-insensitive amplifier system, the perturbations
due to the loss and gain do not break the leading or-
der Hamiltonian structure. Therefore, the excess ‘en-
ergy’ which is carried in the pulse through the initial am-
plitude and width fluctuations acts to generate a back-
ground radiation field as it cannot dissipate this excess
‘energy’. However, in the previous section, the averaged
evolution with the PSAs i1s shown to exhibit a dissipa-
tive structure which simply attenuates exponentially any
initial amplitude and width fluctuations.

17. Summary

At the onset of this chapter, the aim was to determine
whether stable pulse solutions which were governed by
the averaged evolution equation (64) could be supported
in a fiber optic communications line. In general, one is
forced to resort to numerical simulations to study the pa-
rameter regime of interest. However, in the limit of small
amplifier spacing, perturbation and asymptotic methods
allow for the extraction of valuable information concern-
ing the pulse propagation and its stability. Remark-
ably enough, many of the underlying results found in
the asymptotic limit hold qualitatively in the regime of
physical interest. In what follows, the significant features
of the stability analysis results are summarized.

To begin, 1t i1s noted that in order for a soliton-like
pulse to propagate over long distances, a slight amount
of overamplification must be supplied. As was mentioned
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in both Chapter 2 and Section 15, this requirement for
overamplification arises due to the three wave interac-
tion in the PSAs which convert a small amount of signal
field into the pump field. This mechanism is also respon-
sible for breaking the underlying Hamiltonian structure
normally associated with the NLS.

Because the Hamiltonian structure is no longer ap-
plicable, the averaged evolution for the PSAs inherits
the dynamics associated with dissipative, nonlinear sys-
tems. This fact allows the pulse propagation and its
corresponding stability to exhibit some markedly differ-
ent behavior than that of its phase-insensitive counter-
part. In particular, the asymptotic regime investigated
in Section 15 implies that the steady-state solutions are
reached in an exponential manner, 1.e., the steady-state
solutions act as attractors for a wide range of parame-
ter values and initial conditions. Further, the transients
associated with the initial conditions are attenuated on
the slow ¢ length scale without the generation of a back-
ground radiation field. This also is in stark contrast
to the stability behavior of phase-insensitive amplifiers
where the stability is reached via the shedding of a back-
ground radiation field. In a sense, the PSAs are shown
to exhibit improved stability results provided the proper
overamplification is supplied.

In this chapter, it has been shown, both analytically
and numerically, that the averaged evolution is capable
of supporting soliton-like pulse propagation over large
distances for a wide range of input parameters. The goal
of the next chapter will be to improve on this by further
investigating the parameter space of the averaged evolu-
tion. Tn particular, the bifurcation structure of Eq. (64)
can be quantified and the full range of parameter space
can be explored. This allows one to further understand
the limitations and validity of the approximations in-
volved deriving the averaged evolution.

Part V
Bifurcation Analysis

18. Introduction

In the last chapter, the aim was to develop an analytical
and numerical framework from which to document the
existence and stability of propagating soliton-like pulse
solutions. This goal was achieved and the steady-state
solutions were shown to act as exponential attractors
for a wide range of parameters and initial conditions.
However, each numerical simulation was limited to the
exploration of a single steady-state for fixed values of
'l and Aa respectively. Further, it was required that



each initial condition be investigated individually to in-
sure that they indeed approached the appropriate final
steady-state. In order to provide any extensive overview
and detail concerning the full range of parameter space,
many simulations would be required which would lead
to considerable computational expense.

The aim of this chapter is develop an alternative
method which can explore parameter space in a rela-
tively simple manner and which will not require large
numerical simulations and computational expense. The
idea then is to try and develop some scheme which can
produce a more general understanding of the parameter
space and its stable and unstable steady-states. Once
the stable and unstable branch of solutions are known,
the bifurcation structure associated with Eq. (64) can be
easily understood.

In Section 19, use is once again made of well known
asymptotic and perturbation methods in order to inves-
tigate a parameter regime which is crucial to the un-
derstanding of the bifurcation structure of the averaged
evolution. Just as in Section 15 of the previous chapter,
the parameter regime for which this is applicable is not of
physical interest. However, the results obtained are in-
dicative of a bifurcation structure valid for a wide range
of parameters. This section will be followed by an anal-
ysis of the steady-states of Eq. (64) using the bifurcation
software package AUTOQO. Here, the stable and unstable
branch of solutions can be found by simply tracking the
steady-states for a wide range of parameter space which
incurs little computational expense.

As was mentioned in Chapter 3, the averaged evolu-
tion and its solution structure is at the heart of this dis-
sertation. Therefore, upon combining the results found
in Sections 19 and 20, the qualitative and quantitative
features of the solution branches of Eq. (64) can be doc-
umented and well understood in terms of the bifurcation
structure. This then gives a clearer picture of the sta-
bility of long-distance pulse propagation and the poten-
tial advantages of a fiber-PSA communications line for
a wide range of physically realizable parameter values.

19. Bifurcation from the Trivial Solution

The focus of the last chapter was to understand the sta-
bility of the steady-state hyperbolic secant solutions of
Eq. (64) for U ~ O(1). And in particular, asymptotics
were used in Section 15 in order to understand the limit
Il < 1 and Aa <« 1. In this section, the asymp-
totic regime of interest to be explored corresponds to
U <« O(1) for arbitrary Tl and A«. Therefore, the sta-
bility of the basic solution, which corresponds to U iden-
tically zero, is considered**. This can be simply done by
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Fig. 21.  Plot of the neutral stability curve (& = 0) in
the wavenumber k versus overamplification A« plane. Note
that the most unstable wavenumber, k = 0, corresponds to a
value of Aa = 1/4.

linearizing Eq. (64) about the basic state, i.e., letting

U=0+40, (103)
where 7 < O(1) and the higher order terms are ignored.
Tnserting Eq. (103) into Eq. (64), the linearized evolution
about the basic state is governed by

+G—Aa)ﬁ:0.

In order to understand the linearized evolution given
by Eq. (104), it is convenient to look for a Fourier-mode
solution of the form U = exp(aé + ik7). This then gives
the dispersion relation

10%0
2 9712

100
4 or4

au

e (104)

1., 1., 1
0'+4/<7 -|—2/<7 +<4 Aa)_O. (105)
Note that for ¢ < (>) 0, the solution is stable (unstable).
The value o = 0 corresponds to neutral stability and is
given by the following relation between the wave number
k and the critical overamplification parameter value Ac,

1,4 2

Aa. = 1 (k + 1) . (106)
The neutral stability curve given by Eq. (106) is depicted
in Fig. 21. As can be seen from this figure , the zero
wavenumber 1s the most unstable wavenumber. There-
fore, the remainder of the analysis in this section will
be carried out in the vicinity of (U, Aa) = (0,1/4) for
arbitrary I'l.

The preceding analysis identifies the appropriate
regime to be explored. Therefore, in order to determine
the dynamics and behavior of the solution near the min-
imum of the neutral stability curve, 1t 1s necessary to
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Fig. 22. Qualitative depiction of the scalings associated
with the neutral stability curve (o 0) in the k* versus
A« plane. Note the quadratic relation between the squared
wavenumber and overamplification.

expand about U = 0 and Aa = 1/4. Higher order terms
will now be important in determining the bifurcation
structure, and therefore they cannot be neglected. Prior
to expanding however, use is once again made of appro-
priately defined multiple-scales. As in previous chapters,
the slow evolution associated with the linearized oper-
ator can be correctly and conveniently captured using
these new slow scales. Note that because of the quadratic
relationship between the squared wavenumber and the
overamplification (see Fig. 22), the following slow spatial
and time variables can be introduced in order to deter-
mine the appropriate behavior near the unstable values

of the wavenumber and overamplification??, i.e., define
n=d% (107a)
T=94r, (107b)

where again § < 1. These scales will capture any slow
growth in the perturbation which will be measured in §.

Now expand about the zero wavenumber to determine
the behavior of the solution near the minimum of the
neutral stability curve, i.e., let

U = 048U m,n,7)+82U%E 7,0, 7) + - (108a)
Ao — %_(gﬁ..., (108b)

Collecting those terms which are of leading order, it is
found that

out 134U1 1
o6 4 ot 2 072

The steady-state solution can be simply given by a ‘con-
stant’ with respect to the fast variables, ie., U' =
V(7,n). This solution follows from the fact that the
expansion is about the zero wavenumber, i.e., exp ik =
expi(0+¢)r = V(7).

Solving at higher order and requiring the forcing terms
to be in the range of the linearized operator (e.g. solv-
ability must be satisfied) gives nothing new at O(e?).

2771
LI, (109)

LU =
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However, at O(e?) the slow evolution of the envelope
V(7,7n) can be found. The evolution is governed by
o _ 1o
an 2072

+ V32—V, (110)

with V' — 0 as 7 — Zo00**. Note the striking resem-

blance of the right hand side of Eq. (110) with the def-
inition of the L_ operator of the last chapter. In par-
ticular, if g = 1/2 then Eq. (110) reduces to analyzing
OV/On+L_V = 0. With this in mind and recalling that
L_(sech 7) = 0, a steady-state solution to Eq. (110) can
be easily found for values of u > 0. This steady-state is
given by

Vi = \/ﬂsech\/ﬂ%,

where V; denotes the steady-state solution. It now re-
mains to determine the stability of the above steady-
state. Therefore, linearize about Vs in the following man-
ner

(111)

V= Vi(r) + V(7 (112)
where V < V,. The higher order terms can be neglected
due to the fact the stability can be determined from the
first correction term V. In particular, upon making the
substitution V' = We?"? and substituting Eq. (112) into
Eq. (110), it is found that the stability of the leading or-
der hyperbolic secant solution reduces to understanding
the behavior of

LaW = oW, (113)
where [, = %% + 3(V*)? — u. From the previous

chapter, it is known that the operator ﬁ_|_ as defined con-
tains one positive eigenmode. This mode will give rise
to exponential growth and instability. Therefore, it can
be understood that the hyperbolic secant, steady-state
branch of solutions which emanates from the bifurcation
point (U, &) = (0, %) is unstable and gives rise to a sub-
critical bifurcation from the basic solution U = 0. This
is depicted in Fig. 23.

The foregoing analysis has implied the existence of a
subcritical bifurcation from U = 0 for Ao = 1/4 and T
arbitrary. Note that the analysis is limited to an asymp-
totic regime which is O(d) away from the bifurcation
point. It is of interest however, to determine the global
nature of the bifurcation structure associated with the
averaged evolution. In the next section, through use of
the bifurcation software package AUTO, the full bifur-
cation diagram associated with Eq. (64) will be explored
for a wide range of parameters which are outside the
asymptotic regimes explored thus far. It will be shown
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Fig. 23. Characteristic behavior of the subcritical bi-
furcation emanating from (U, Aa) = (0,1/4). Note that S
(solid line) corresponds to the stable branch of solutions and

U (dashed line) to the unstable branch.

that the solution branch associated with the subcritical
bifurcation from U = 0 will eventually reach a limit point
and fold back onto the stable steady-state branch of so-
lutions of Eq. (64) which were found in the last chapter.

20. Bifurcation Structure via AUTO

In this section, the bifurcation software package AUTO*?
is used to determine the steady-state solutions and bi-
furcation diagram associated with Eq. (64). Tn partic-
ular, our aim is to explore the full range of parame-
ters for which Eq. (64) gives rise to stable pulse solu-
tions. AUTO allows for the investigation of the param-
eter regime which 1s beyond the range of the asymptotic
and perturbation analysis of the previous section and
Section 15 of the last chapter.

AUTO is a software package which allows for the nu-
merical continuation of steady-state solution branches
in parameter space. In particular, AUTO is capable
of performing numerical analysis of systems of nonlin-
ear differential or algebraic equations. The concern here
will be with systems of differential equations. And of
primary concern will be the detection of both bifurca-
tion points and limit points. In what follows, Eq. (64)
with 9U/0¢ = 0 is considered as a system of four cou-
pled ordinary differential equations with some appropri-
ate boundary conditions.

Implementing AUTO does not follow directly from
Eq. (64) because an exact solution from which to start
the calculations does not exist. However, an associated
problem may be considered which exhibits an exact so-
lution. Namely, the iterated NLS equation is consid-
ered. The iterated NLS is obtained by simply taking
the derivative of Eq. (39) (with v = 0) with respect to
7 and making use of the fact that mixed partials can

be interchanged. Looking strictly at steady-state solu-
tions (8/07 — 0 ), the iterated-NLS structure can be
expressed as follows

v
or

2 2y
) +12v28 =0.
or?

(114)

Therefore, a homotopy from the iterated NLS equation
is used in view of the exact hyperbolic secant solution
it exhibits, i.e V' = sech 7. Once this is implemented
and the correct boundary conditions are imposed, AUTO
can be used to explore the full parameter regimes of I'l
and A«a. Note that the terms of Eq. (114) are identical
to those which are found for the averaged evolution of
Eq. (64) with the exception of the coefficients.

Since the aim is to make use of a homotopy from
the iterated-NLS, the steady-state fourth-order ODE of
Eq. 114 can be combined with that of the averaged evo-
lution of Eq. (64). This gives the following combined
steady-state equation

92 ?
(a_ - 1) V—8V34+12V54+12V (
=

82 g 5 . U
(W‘l) U+ (1-0) |-8U" + 12U —|—12U(a7_)
2 3 3 5

+12U° = ] 0 [—4AalU — 4U® 4+ 4U

—|—126U( ) +4 6+1)U282 ]:o, (115)

or?
where for # = 0 Eq. (115) reduces to the iterated NLS
and for = 1 Eq. (115) reduces to the averaged evolution
of Eq. (64). Since the interest is in using a homotopy
from the iterated NLS to get a solution for the averaged
equation, § will be treated as parameter which is initially
zero and is continued so that # becomes unity. This
then will give an initial starting solution for exploring
the parameter space of the averaged evolution.

Before proceeding to find appropriate boundary con-
ditions, it will be helpful to express Eq. (115) as a set
of coupled first-order, nonlinear differential equations.
Therefore, Eq. (115) can be expressed in the following
form

Ul = TU, (116a)
Uh = TUs (116h)
Uy = TU, (116¢)
Uy = T[2Us -1

+ (1—0){8U} — 1207 — 12U4U3 — 12U Us}

+ 0 {4AaU; + AU} — 4U} + 128U, U5

+ 4B+ 1H)UUs}], (116d)



where U; = 9U=DU/970=1) and the prime denotes dif-
ferentiation with respect to 7. In the above, the averaged
evolution and the iterated NLS have been considered on
some finite interval 7 € [—T,T]. The appearance of T
in Eqs. (116) reflects the fact that the interval [=T,T]
has been scaled on to the interval 7 € [—1,1]. Therefore,
7 = 1 now represents the edge of the computational do-
main.

At this point, the appropriate boundary conditions as-
sociated with the system of ODEs 1s considered. Two of
the four boundary conditions imposed are due to the
even symmetry of the solution about the origin, i.e.,
oU/dr = 0 and 33U/t = 0 at 7 = 0. The remain-
ing two boundary conditions considered are derived from
the decaying modes associated with the linear part of the
fourth-order evolution. In particular, when far from the
localized pulse, the nonlinear terms can be neglected and
the steady-state evolution reduces to the linear equation
given by

9*U

o'r_,oU
or?

or? -2

+ (1 —4Aa)U = 0. (117)

Letting U/ = e 7 gives rise to a fourth-order characteris-
tic equation whose eigenvalues are given by

A=2/14+7y ,£/1—7,

where ¥ = V4A«. Note that the eigenvalues imply the
existence of two growth and two decay eigenmodes for
Aa < 1/4. For Aa > 1/4, Eq. (118) implies the exis-
tence of one decay, one growth, and a pair of complex
conjugate modes. In what follows, 1t will be assumed
that Aa < 1/4 and appropriate boundary conditions
will be derived for this case.

Far from the pulse, the growth modes, —/1 + v and
—+/1 — v, are unphysical. This then leaves the two de-
cay modes, —/1 + v and —/1 — v, from which a second
order ODE can be constructed from the characteristic
equation

M4 (VTHy+/T=9)A+/1-92=0.

The associated ODE, which governs the two decay modes
of the fourth-order evolution, is now easily shown to be-
have according to

o?U oU
w-i-(\/l-i-’y-l- 1—7)8—T+\/1—72U:0.

(120)

(118)

(119)

Eq. (120) along with its derivative

RPU 9*U
ﬁ+(\/1+7+\/1—7)w+\/1_72U7—:0

(121)

35

are the two appropriate boundary conditions to be im-
posed at the end point of the computational domain.
Written in terms of the appropriate system of ODEs, all
four boundary conditions can be expressed succinctly as
follows

Us(1) + [VT+7+VT=7] (1)

+V/1=72Ui(1) =0 (122a)
(1) + [T+ + VT=7] Ua(1)
+ V1 =72Us(1) = 0 (122b)
Us(0) =0 (122c)
U4(0) = 0. (122d)

Here U;(1) represents the amplitude at the edge of the
computational domain while U;(0) is the value at the
center of the computational domain.

Equations (116) with its boundary conditions given by
Egs. (122) can now be implemented directly into AUTO.
Starting with an initial hyperbolic secant profile and
6 = 0, the length of the computational domain, 7" in
Egs. (116), is increased. After reaching a large value
for the size of the computational domain, the homotopy
parameter @ is increased from zero to unity. The over-
amplification A« and parameter I'l can then be adjusted
independently in search of bifurcation points and limit
points. In what follows, the results of this search are
given.

In Fig. 24, the maximum pulse amplitude of the
steady-state solutions versus I'l is explored for two dif-
ferent values of the overamplification parameter Aa. In

0.50 T T
20 40 60

Il

Fig. 24.  Depiction of the maximum amplitude U as a
function of the parameter I'l for the values of Ao = 0.1 and
Aa =0.2.
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Fig. 25. Comparison of steady-states computed via
AUTO versus full numerical simulations of the averaged evo-
lution. Three pulse profiles are depicted corresponding to
the AUTO solution and the averaged evolution for values of
€=20and £ =50. In (a) 7 € [0,12]. (b) contains the inter-
val 7 € [2,6] which further depicts the difference in the three
solutions. Note that as ¢ gets large, the averaged solution

approaches the steady-state solution generated via AUTO.

particular, the values of Aav = 0.1 and Aa = 0.2 are
considered. Note that the steady-states persist as I'l ap-
proaches large numbers, i.e., infinity. Although the am-
plitude of U in Eq. (64) remains O(1) as Tl approaches
such large values, the physical pulse envelope R grows
without bound as T'l approaches infinity. This can be
understood from the amplitude rescaling

1 — =2y ~1/2
R=|—7r+— U
() v
where the phase rotation k has been taken to be unity
in Eq. (63). Figure 24 reflects a remarkable range in

parameter space which is capable of supporting stable,
propagating pulse solutions. Note however that the aver-
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aged evolution equation ceases to be valid for such large
values of T'l.

The steady-state solutions computed via AUTO can
be compared to the numerical simulations of Eq. (64).
Figs. 25a and 25b, show a comparison for the values of
'l = 1 and Aa = 0.2. Various propagation times indi-
cate the exponential approach of solutions of Eq. (64) to
the steady-state branch of solution computed via AUTO.
In particular, Fig. 25a shows half the pulse profile com-
puted using AUTO along with the averaged pulse en-
velope computed from Eq. (64) for the propagation dis-
tances of ¢ = 20 and & = 50. Figure 25b depicts the
comparison for the values of 7 € [2,6]. Note that as
¢ gets large, the averaged evolution from Eq. (64) ap-
proaches the AUTO solution. AUTO provides a direct
method for finding the final steady-state without having
to propagate the solution of the averaged evolution for
large times. Similar numerical results hold for various
values of the parameters I'l and overamplification Aa.

Returning now to the aim of this section, which is the
investigation of the bifurcation diagram associated with
Eq. (64), the stable and unstable solution branches are
computed for various values of I'l and A«. It is conve-
nient to begin by fixing the values of I'l and exploring

Fig. 26.  Bifurcation diagrams associated with the aver-
aged envelope equation. The solid lines correspond to sta-
ble solutions while the dashed line corresponds to the unsta-
ble. In each case, the U = 0 solution is stable (unstable) for
Aa < (>)1/4. (a),(b),(c) and (d) depict the subcritical bi-
furcation from Aa = 1/4 and the location of the limit point
for the values of Aa = .02,1, 2,100 respectively. Note that
as T'l is increased from near zero to infinity, the limit point
moves from Aa ~ 0 to Aa ~ 0.088.
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Fig. 27. Solution curves in the amplitude versus T'

plane. The solution curves correspond to differing values of
the overamplification parameter Aa. Note the isola which
exists for values of Ao < 0.088. As the overamplification be-
comes larger however, the solution branches separate into an
upper and lower branch corresponding to stable and unstable
branch solutions of the pulse propagation.

the maximum amplitude as a function of the overamplifi-
cation Aa. From this perspective, Figs. 26a-d depict the
subcritical bifurcation from Aa = 1/4 for various values
of T'l. This is in agreement with the analysis of the previ-
ous section. Note that after the unstable branch reaches
the limit point, the solution branch folds back and be-
comes the branch of solutions which correspond to the
stable pulses of physical interest. As the value of T'l in-
creases, the limit point moves away from values of A«
near zero. The bifurcation diagram associated with T'l
as it approaches infinity is essentially given by Fig. 26d.

Next, the value of A« is fixed and an investigation of
the maximum amplitude as a function of the parameter
I'l is carried out. Fig. 27 depicts both the stable and
unstable branches as I'l is increased towards large values
(i.e., infinity). For values of the overamplification above
a critical value, the stable and unstable solution branches
associated with a fixed value of 'l remain disconnected
for all values of I'l. However, once the overamplification
drops below a certain value, Aa < .088, the stable and
unstable branches are joined and limit points exists in
the amplitude versus I'l plane. This can be thought of
as an isola in the parameter space where the size of the
isola 1s dependent on the value of the overamplification
Aa, i.e., as values of Aa get smaller (larger), so does the
isola. This behavior is represented in Fig. 27 for various
values of the overamplification Aa.

In conclusion, this section demonstrates that AUTO
provides an efficient and effective way in which to explore
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the parameter regime of Eq. (64). Stable pulse solutions
are shown to exist and be in good agreement with numer-
ical simulations of the full averaged equation. Further,
AUTO avoids long computational runs associated with
finding steady-state solutions of the averaged evolution
of Eq. (64). Instead, AUTO simply gives the steady-
state solution for a wide range of parameter values and
significantly reduces computational expense.

21. Summary

In this chapter, the bifurcation structure of the averaged
evolution is explored. In particular, emphasis 1s placed
on obtaining information regarding the stable and un-
stable steady-state pulse solutions and their dependence
on the parameters I'l and Aa. In contrast with the pre-
vious chapter, an alternative method for exploring the
full range of parameter space is presented which does
not depend on the initial conditions or full numerical
simulations of Eq. (64).

In Section 19, asymptotic methods can be applied the
averaged evolution in the vicinity of the basic solution
U = 0 in order to describe the subcritical bifurcation
which occurs at Aa = 1/4. Although this analysis is
only valid in a small regime, it holds for arbitrary values
of T'l. Therefore, 1t describes a ‘global” behavior which
aids in the understanding of the full bifurcation structure
of Eq. (64).

Section 20 contains the bulk of this chapter’s re-
sults. It 1s this section which presents the results of
the use of the software continuation package AUTO.
AUTO provides a method for which to track steady-
state branches of solutions regardless of their stability.
Moreover, AUTO is capable of detecting both bifurca-
tion and limit points for a given set of couple, nonlinear
ODEs. For the purposes of this chapter, steady-states
of Eq. (64) were considered which allowed the averaged
evolution to be described by the set of four, nonlinear,
first-order ODEs of Egs. (116). The use of AUTO pro-
vides a computationally inexpensive and rapid method
for determining the dependence of the steady-states on
the parameters I'l and A«

The results of this entire chapter can be succinctly
summarized in Fig. 28. Figure 28 combines the explo-
rations of parameter space of Sections 19 and 20 to show
the complete qualitative bifurcation diagram in the space
of the maximum amplitude, I'l and A«a. Note that al-
though negative values of T'l are not permitted physi-
cally, they are convenient here in understanding the be-
havior of the steady-state solutions of Eq. (64). This
gives the full bifurcation structure in the space of the
relevant parameters of the problem.
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Fig. 28.  Qualitative structure of the bifurcation diagram
associated with the averaged evolution. This is essentially
a combination of the previous two figures which depict the
amplitude versus. Aa and amplitude versus. I'l planes re-
spectively.

Part VI

Variable Amplifier
Spacing

22. Introduction

It is the purpose of this chapter to further investigate
the assumption made concerning the periodic amplifier
spacing which was essential in the averaging analysis of
the previous chapters. The aim will be to understand a
system which is more realistic in its dependence upon the
amplifier spacing and to further understand the mecha-
nism which gives rise to the sideband frequency gener-
ation and its accompanying background radiation field.
In a sense, this chapter’s primary concern is to inves-
tigate the spectral evolution and frequency dependence
of a fiber-PSA communications line as it relates to the
amplifier spacing.

Chapters 3-5 represent the analysis of a nonlinear op-
tical communications system with periodically-spaced
PSAs. In what has been considered, only the leading or-
der, phase-matched behavior of the PSAs has been inves-
tigated. This led to the derivation of a fourth-order, non-
linear evolution equation which governs the soliton-like
pulse propagation over a length scale much longer than
that of the soliton period. The assumptions of perfect
phase-matching and periodic amplifier spacing allowed
for significant simplification of the governing model for
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the pulse propagation and allowed for a straight for-
ward averaging of the phase-locked quadrature. These
assumptions however, ignored both the bandwidth re-
strictions of the amplifier and the frequency components
which arise due to the periodic forcing of the loss and
gain. In particular, the assumption of perfect phase-
matching, Ak = 0, allowed the phase-sensitive ampli-
fication to be frequency independent. Therefore, the
PSAs were of an infinite bandwidth and amplified all
frequencies in an identical manner. In Section 7, this as-
sumption was shown to be an excellent approximation to
the physically realizable system and any bandwidth re-
strictions due to the amplifiers can be ignored. However,
as was pointed out in Section 16, numerical simulations
of the full NLS with PSAs indicate the generation of a
background radiation field (see Figs. 19 and 15). This
field arises due to the sideband frequencies generated via
the periodic forcing of the loss and gain.

In Sections 24 and 25, the effect of variable ampli-
fier spacing upon the averaged soliton-like pulse prop-
agation 1s considered. Recall, that the assumption of
periodic amplifier spacing allowed for the multiple-scale
averaging of Chapter 3 to yield the effective evolution of
Eq. (64). When the amplifier spacing is no longer peri-
odic, any averaging procedure can be quickly rendered
intractable and of little use. In certain cases however, an
averaged evolution can still be derived. Specifically, Sec-
tion 24 considers the averaged pulse evolution when the
PSAs are alternately separated by two distinct amplifier
spacings.

One advantage lies within the assumption of non-
periodic amplifier spacings, namely the reduction of the
dispersive radiation generated through the gain-loss forc-
ings to the governing NLS. This fact is made clear upon
recalling that the frequency of the dispersive radiation
is strongly dependent upon the amplifier spacing. In
other words, for a given periodic amplifier spacing, the
pulse propagation will contain certain frequency ‘win-
dows’ which experience unity gain from the PSAs. When
the spacings are allowed to vary, these windows are no
longer able to persist and the radiation which is gener-
ated from the periodic forcings are slowly attenuated.
More on this will be given in Section 23. In particu-
lar, the dependence of the sideband frequencies upon
the amplifier spacing can be analytically understood far
from the localized pulse.

The analysis presented in the following sections will
be largely concerned with understanding how the vary-
ing amplifier spacings effects the stability of propagat-
ing soliton-like pulses, i.e, the robustness of the localized
pulse evolution is investigated. As always, the aim is
to more fully understand the qualitative and quantita-
tive consequences of physical effects which are of higher
order upon the leading order analysis of Chapters 3-5.



In particular, the focus will be centered on the use of
variably spaced amplifiers as a possible mechanism for
attenuating the dispersive radiation.

23. Sideband Frequency Generation

It was found in Chapter 4 that full numerical simulations
of the NLS with periodically spaced PSAs generated a
small background radiation field. This behavior was de-
picted most clearly in Figs 19 and 15. Further, the am-
plitude of the dispersive radiation was found to be depen-
dent upon the amplifier spacing, i.e., the larger (smaller)
the amplifier spacing, the larger (smaller) the corre-
sponding radiation. For the case in which the ampli-
fier spacing was 36 km, the background radiation was of
0O(1075) and could be essentially neglected (see Fig. 14).
However, as the amplifier spacing was increased to 100
km, the radiation was visibly noticeable (see Fig. 19) and
of O(1073). Tt was briefly mentioned in Section 16 that
this radiation field was strongly dependent upon the pe-
riodic nature of the amplifiers. The aim of this section
is to further understand the radiation field generated by
the PSAs and to more clearly understand its dependence
on the amplifier spacing.

To further understand this dependence of the radia-
tion on the periodic amplifier spacing, an analysis will
be carried out which is far from the localized soliton-like
pulse. Therefore, consider the pulse evolution given by
Eq. (42) which governs the NLS with periodically spaced
PSAs. Far from the localized soliton-like pulse, the ra-
diation is small and the nonlinearity becomes negligible.
Tgnoring the nonlinear term in Eq. (42) then gives the
following equation governing the evolution of the disper-
sive radiation

0Q 10%°Q

i+ = e

o0z = 2 9°T
where the definition of ¥ = T'/e¢ has been used and the
jump condition of Eq. (44) applies at each amplifier. Un-
like the averaging which was carried out in Chapter 3,
Eq. (123) is linear and can be examined directly using
Fourier transform methods. In particular, transforming
Eq. (123) gives

+ivQ =0, (123)

Q = Quel 17 (124)

where Qo is the transform of the initial pulse profile.
Moreover, the jump condition of Eq. (44), which is fre-
quency independent, can also be transformed to give

Q4 =coshaQ_ + ¢ sinh aQ* | (125)

where ¢, is the pump phase at the nth amplifier. By
defining Q, = e~***/2Q, and making use of Eqs. (124)
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and (125), it can be easily found that the following rela-
tion now holds

Qn:

coshae™ Q,_1 +sinhae™ Q% _ | e,

(126)

where v = (7, /Z5)(1 + w?)/2, it has been assumed that
the phase rotation is constant, i.e, §¢, = d¢ = Z;/Zy,
and use has been made of the relationship v7; /Zy = Tl.
As was found in Chapter 3, the quadrature separation
given by Eq. (45) greatly simplifies the analysis by de-
composing the propagating pulse into phase-locked and
anti-phase-locked components. This same quadrature
decomposition can be used in Eq. (126) by introducing

the quadrature variables as follows
An

(@n+ Q) (127a)

N — N —

B, (127h)
where once again A, and B, represent the phase-locked
and anti-phase-locked quadratures respectively. Intro-
ducing Eqgs. (127) into Eq. (126) reduces the linear prop-
agation problem into a set of coupled difference equa-

tions given by
An -1
Bn -1 .

(i) ="(
(128)

The eigenvalues of this matrix can be readily computed
to determine the frequency dependence of the linear dis-
persion in the fiber-PSA line upon the amplifier spacing.
In particular, it is found that

e“cosv —ie“sinv
—te~%sinv e “cosv

—T \cosvcosh o & \/cos2 veosh?a — 1] .

(129)

A —=e

Upon recalling the fact that v = (7;/70)(1 4+ w?)/2, the
eigenvalue of the phase-locked quadrature, which corre-
spond to Ay, can be plotted to determine the gain as a
function of the modified frequency v. Fig. 29 plots the
real and imaginary parts of Ay versus the modified fre-
quency. Specifically, note the frequency windows which
experience a unity gain, or rather, a slight gain above
unity due to the overamplification, which is Aaw = 0.1 in
this case. These windows of transparency are responsi-
ble for the generation of the sideband frequencies which
cause the linear dispersive radiation.

Although the preceding analysis if valid only far from
the soliton-like pulses, the qualitative behavior remains
the same when considering the full nonlinear evolution.
In fact, Fig. 29 should be somewhat reminiscent of the
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the propagating pulse to experience unity gain. Note that for
these windows, the fiber-PSA line becomes effectively ‘trans-
parent’.

spectral evolution of the full NLS with PSAs given in
Fig. 15. In Fig. 15, the first and second sideband fre-
quencies can be clearly seen while the third is barely vis-
ible. These first, second and third sidebands of Fig. 15
correspond to the first, second and third frequency win-
dows of Fig. 29 respectively.

One can imagine that if the amplifier spacing varied
along the fiber-PSA communications link, the windows
of transparency would be altered at each consecutive am-
plifier. Therefore, the frequencies which experienced a
unity gain at one amplifier, would now be shifted out of
the range of transparency and would experience a gain
of less than unity. This would lead to the attenuation of
the radiation field generated from the sideband frequen-
cies. This suggests the possibility of using the variable
amplifier spacing as a method of attenuating the back-
ground radiation field. More on this will be discussed in
the upcoming sections.

24. Two Distinct Amplifier Spacings

The aim of this section and the next is to investigate the
effects of a variable amplifier spacing upon the stabil-
ity of long distance pulse propagation and its associated
dispersive radiation field. Typically, this task is ren-
dered intractable and one must resort to numerical sim-
ulations. However, as a special case, the long-distance
pulse propagation of a soliton-like pulse is considered
in which the amplifier spacing alternates between two
distinct lengths. Therefore, the underlying pulse propa-
gation will remain periodic, but the period will now be
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measured over two amplifiers. This causes the windows
of transparencies to alternate between two differing sets
of frequencies which in turn should reduce the amount
radiation generated.

Once again, the use of multiple-scale techniques can
be exploited in order to average over the two distinct am-
plifier spacings. The analysis follows in a similar manner
to that carried out in Chapter 3. In particular, use can
be made of the results obtained in Chapter 3 in order
to simplify what follows. Therefore, the following rescal-
ings of Eq. (42), which are motivated by Eq (63), can be
made

Q — H1/2a51/2Q (130a)

T — k12T, (130D)
where once again k = d¢/dZ and ag represents the av-
erage energy of the pulse over the two amplifier period.
In the previous analysis of Chapter 3, the rescalings of
Eqgs. (130) were carried out in Egs. (63) at the end of
the averaging analysis. Here, these rescalings will be
performed beforehand in order to simplify the remain-
ing analysis. Note that for this case, it will be assumed
that the phase-rotation rate x and the overamplification
will be the same for both amplifier spacings. The as-
sumption concerning the overamplification can easily be
relaxed to account for differing amounts of overamplifi-
cation at each amplifier. Further, it will be assumed that
the evolution over the two amplifier spacings occurs such
that each exhibits a common average. More will be said
on this shortly.

The governing evolution equation (42) is then trans-
formed through Eq. (130) to the following rescaled ver-
sion

ELTQ
€
Q+4M@f(§)Qﬂ,<BU

where h(¢) and f(¢) are defined by Eq. (43) and the def-
inition of € 1s as before with the amplifier spacing now
being the average of the two distinct lengths. Defining
the multiple scales as before to be ( = Z/e and £ = €7,
the multiple-scale averaging can now be easily carried
out by once again introducing the quadrature decompo-
sition given by

Q=[A(C.ET) +ie BC, & T)] 2 (132)
Note that the 7 dependence appears solely in the phase ¢
and the anti-phase-locked quadrature has been assumed
to be of O(¢). These assumptions make use of the
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results found in Chapter 3 in order to simplify the aver-
aging procedure.
Upon expanding the quadratures in powers of €2, i.e.,

A= A"y2A% 4 (133a)

B

— BO_|_...’

(133b)

and collecting terms of equal order of magnitude, the
following three recursively related equations are found
which govern the behavior of the pulse evolution

T h(Q) Q) 4°=0 (1342)
O+ (1= Q) +/(0) BO=rL A" (134b)
HA2 ,  0AY & 0

a¢ T I hO) () A==+ - — w1 B° (134c)

Here L_ = (1/28?/9T? + (A°)?/ay — 1/2) and the a/l;
of Eq. (134¢) accounts for the overamplification which is
of O(e?) at the first (i=1) and second (i=2) amplifier.
Apart the from the modification in the overamplifica-
tion terms, the analysis thus far is identical to that of
Chapter 3. Differences will arise, however, due to the
averaging which occurs over a cycle of two amplifiers.

As mentioned earlier, the aim is to average over the
amplifiers in such a way as to preserve a common average
ag. This can be readily done by considering the system
depicted in Fig. 30. The condition of a common average
implies the following relation

Ty

Iy

-Ti;

sinh Tl = ¢2(c1=Th) £ -
T,

€

sinhT'ly = aq,

(135)
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where the factor exp(2(ay —T!;)) arises as a consequence
of the analysis which is carried out over the commensu-
rate averages. In this case, the loss and gain are now
balanced after two amplifiers. Moreover, the overampli-
fication experienced at each amplifier is identical, i.e.,
o] = g = a.

Equations (134a-c) can be solved in progressive or-
der to determine the effective evolution. Therefore, con-
sider first the leading order problem given by Eq. (134a).
Between amplifiers, the solution simply is exponentially
attenuated just as in the previous analysis of Chap-
ter 3. However, the appropriate jump conditions must
now be imposed. Recall that the quadrature decom-
position gives convenient jump conditions for both the
phase-locked and anti-phase-locked quadratures. There-
fore, the following hold

amplifier 1: AEIJ_ = AYem (136a)

amplifier 2: A} = A%e™  (136b)
and

amplifier 1: B} = BYe*t  (137a)

amplifier 2: B} = BYe 2. (137b)

Upon using Eqgs. (136a-b) with the leading order solu-
tion, it is found that A° = R(¢,T)exp(=I¢) up to the
first amplifier and A° = R(¢,T) exp([ay — Tl;] —T¢) be-
tween the first and second amplifiers. As was mentioned
earlier in regards to the common average assumption,
the factor of exp(2(ay — T'ly)) in the leading order solu-
tion between the first and second amplifier is crucial in
the multiple scale averaging which is to be carried out.
In addition, 1t 1s found that

oy + s :F(h +12)—|—O(€2), (138)
where again, it has been assumed that there exists an
O(€?) correction to the exact balance of loss and gain in
order to account for over or under-amplification. Recall
that a minimum amount of overamplification was neces-
sary to support stable pulse propagation due to the ‘loss’
incurred from the anti-phase-locked quadrature.

Many of the details considered thus far are similar to
those of Chapter 3. To avoid needless repetition, only
the highlights and results of the averaging will be con-
sidered in the remainder of this section. Certainly, the
analysis will be more complicated as the averaging must
be carried out over the two amplifiers. However, the
analysis is simply as follows: the leading order behav-
ior is investigated followed by the correction term in the
anti-phase-locked quadrature and finishing with the ap-
propriate solvability condition for Eq. (134c).



Proceeding then to the next order, Eq. (134b) gives
the behavior of the anti-phase-locked quadrature. As
in Chapter 3, upon applying the proper jump conditions
for the anti-phase-locked quadrature, Egs. (137), one can
readily solve for BY over the two amplifier cycle. This is
necessary in order to determine the appropriate solvabil-
ity condition associated with the forcing in Eq. (134c).
In particular, upon using the leading order behavior of
the anti-phase-locked quadrature in Eq. (134c), it can
be found after a bit of work and liberal use of Eq. (138)
that the slow evolution of the envelope U(&,T) evolves
according to

U 1 9” g
= - - _1 _ A _ 3 5
8£+4<372 )U alU-U>+U
FUA , 02U
+30cU (3_7') +(1+0)U W_O’ (139)
where
4asinh(ag + asg)/k?
Ao= (14
@ (13 +12) cosh(ay + as) + 21415 cosh(ay — az)\ 0a)
_ [l% COthFll —ll/F—Fl%COthFlz—lz/F]
7= (13 + 12) cosh(ay + as) + 2115 cosh(ay + a3)
x sinh(aq + ag) + 1 (140b)

and the long length scale ¢ has been rescaled as follows
K2 [(lf +12) cosh (a1 + ) + 21415 cosh(ay — az)]
2(11 + 12) sinh(a1 + Ozz)

£= ¢.

(141)

Equation (139) once again describes the average evolu-
tion of the soliton-like pulse on the familiar long length
scale €. This result is similar to the evolution of Eq. (64)
derived for a single amplifier spacing with the exception
of the coefficients of the nonlinear derivative terms, the
overamplification parameter and the rescaling of . In
particular, the coefficients of the cubic and quintic terms
again simultaneously scale out. This fact can clearly
be understood from the assumption of a common aver-
age for the two-amplifier spacing case which was carried
out in the above analysis (see Fig. 30). Recall that the
leading order solution is A° = Rexp(—T¢) up to the
first amplifier and A° = Rexp(a; — T'l; — T¢) between
the first and second amplifier. These solutions force the
leading order solution of the anti-phase-locked quadra-
ture which in turn force the higher order correction to
the phase-locked quadrature. In the previous averaging
of Chapter 3, this gave rise to the fourth-order struc-
ture. This result also holds here. However, the factor
of exp(ery — Tly) is now crucial in the solvability condi-
tions between the first and second amplifiers. Specifi-
cally, solvability of the higher order terms with this fac-
tor permits the simultaneous scaling of the cubic and
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Fig. 31.  Depiction of the phase-locked quadrature dy-
namics for the two amplifier case. Note the periodic structure
associated with the two amplifier spacing case.

quintic coefficients. This analysis strongly suggests the
possibility of averaging over N distinct amplifier spac-
ings in order to derive the same type of equation as that
given in Eq. (139).

In the limit when Tl; = Tly, Eq. (139) reduces to
Eq. (64). Qualitatively, the behavior will be similar to
that discussed in Chapter 4. In particular, note that
when the parameters I'ly, I'ls and Aa are much less than
unity, the leading order behavior of Eq. (139) reduces
to Eq. (66) for which stable hyperbolic secant pulse so-
lutions were shown to exist in Section 15. Further, in
performing a bifurcation analysis from the trivial solu-
tion, Eq. (139) gives rise to a subcritical bifurcation from
(U, Ae) = (0,1/4). This is similar to the analysis car-
ried out in Section 19 for the single, periodic amplifier
spacing.

Just as in the previous chapters, the dynamics and
stability of propagating soliton-like pulse solutions for
arbitrary parameter values are left to be investigated
through numerical simulations. These numerical simula-
tions include the full computations of the NLS with the
two distinct PSA spacings, numerical simulations of the
averaged equation, and computations of the bifurcation
curves via AUTO. The results of these computations will
be presented in what follows.

The parameter regime considered first corresponds to
amplifier spacings of 80 km and 100 km respectively.
These spacings are chosen primarily to depict the quali-
tative and quantitative effects upon the generated side-
band frequencies responsible for the background radia-
tion field. Certainly a wide range of amplifier spacings
may be considered, but for the present, the focus will



be upon these characteristic lengths. In all the results
that follow, the overamplification will remain fixed at
Aa = 0.1. With these parameters in mind, the mid-
point values of the phase-locked quadrature A is plotted
in Fig. 31. Note the periodic structure of this quadrature
over the two distinct amplifier lengths.

Figure 32 represents the pulse propagation over 9,000
km in the Fourier domain for the full NLS with PSAs.
Note the pulse amplitude is plotted after a two amplifier
cycle in order to show more clearly the stability proper-
ties of a propagating pulse. Further, this avoids depict-
ing the large amplitude changes which occur from one
amplifier to the next due to the variable spacing of the
amplifiers and the preservation of commensurate aver-
ages. Although Fig. 32 shows the stable evolution of a
propagating pulse over a fairly short distance, longer dis-
tances may be considered and can be shown to behave in
a similar fashion. In fact, the pulse evolution is quite ro-
bust to the changes in the amplifier spacing. In Fig. 33,
the averaged evolution of the two amplifier spacing case
is considered and shown to decay exponentially onto the
stable steady-state. This is just as before for the single,
periodic spacing case. Further, it agrees quite well with
the numerical results of the full NLS with PSAs.

Part of the aim of this section was to understand how
the multiple amplifier spacing would change the dynam-
ics of the pulse propagation and its associated dispersive
radiation field. With this in mind, the spectrum of the
two amplifier spacing case 1s compared with that of the
single amplifier spacing case of previous chapters. Fig-
ure 34a represents the spectral composition after 18,000
km of a single amplifier spacing of 90 km. This is com-
pared with Fig. 34b in which the alternating amplifier

AL I TUDE

3
e

5

Fig. 32.  Pulse evolution in the Fourier domain over 9,000
km for the case when two distinct amplifier spacings are con-
sidered, namely 80 km and 100 km. The alternating amplifier
spacings help reduce the sideband generation, i.e., compare
this with the spectral evolution given by Fig. 4.6 in Chap-
ter 4.
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Fig. 33.  Numerical simulations of the averaged equa-
tion for two distinct amplifier spacings. As with the previous
results of Chapter 4, note that the pulse asymptotically ap-
proaches the final steady-state as it propagates in £. In (a)
and (b) the initial conditions used were U(0,7) = 0.9sech
and U(0, ) = 1.4sech 7 respectively. Further, in both cases
Aa = 0.1, and the two amplifier lengths considered were 80
km and 100 km.

spacings of 80 km and 100 km are considered over 18,000
km. Note that the sideband frequencies are less pro-
nounced for the two amplifier case. This can be fur-
ther demonstrated by comparing the dispersive radia-
tion fields associated with each case. Fig 35 depicts the
attenuation of the dispersive radiation field by nearly
an order of magnitude when the two amplifiers are used
in place of a single periodic amplifier. Once again, this
phenomena can be understood in terms of the frequency
windows which are transparent to the sideband frequen-
cies. In particular, upon recalling the analysis carried
out in Section 23, the effective eigenvalues can again be
found for the two amplifier case. In this case however,
the shift in the windows from one amplifier to the next
will cause the sideband frequencies to experience a gain
of less than unity. Therefore, the dispersive radiation 1s
slowly attenuated.

As was mentioned earlier, AUTO can once again be
used on Eq. (139) to detect and track steady-state
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Fig. 34.  Spectral composition of a pulse after 18,000 km

for a single amplifier spacing of 90 km (a) and the two am-
plifier spacing case with 80 km and 100 km (b). Note that
the sharp sideband frequencies in (a) are reduced through the
alternating spacings of (b).

branch solutions of the averaged equation. In particular,
Figs 36a and 36b depict two characteristic bifurcation
curves for fixed values of the parameters T'ly and T'ls.
Note the resemblance of these curves to those previously
explored in Chapter 5. In fact, the qualitative structure
of parameter space for the averaged two amplifier evolu-
tion is essentially identical to that of the single amplifier
evolution as expected. Therefore, it can be understood
that the averaged evolution will give rise to a wide range
of parameters for which the two amplifier spacing case
supports stable, soliton-like pulse propagation, i.e., the
parameter space for which stable solutions exist can once
again be represented qualitatively by Fig. 28.

As a final note, the case for which the amplifier spac-
ings correspond to 70 km and 110 km is considered.
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Fig. 35.  Comparison of the dispersive radiation field gen-
erated over 18,000 km using a single amplifier spacing of 90
km (large oscillations) versus the two amplifier spacing case
for 80 km and 100 km (smaller oscillations). Note that the
two amplifier case attenuates the radiation by nearly an order
of magnitude.
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Fig. 36.
equation with two distinct amplifier spacings. In particu-
lar, (a) represents the bifurcation diagram when the amplifier
spacings of 80 km and 100 km are used, i.e T'l; ~ 2.21 and
T, ~ 2.76 respectively. In (b), the amplifier spacings of 36
km and 72 km (corresponding to T'ly = 1 and T'l; = 2) are
considered. Note that these bifurcation diagrams are similar
to those found in Chapter 5 and suggest the existence of a
wide range of parameters which support stable pulse propa-
gation.
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Fig. 37.  Comparison of the dispersive radiation field gen-
erated over 18,000 km using the two amplifier spacings of 70
- 110 km (smaller oscillations) and 80 - 100 km (larger os-
cillations) respectively. In this case the 70 - 110 km spacing
is significantly smaller than the 80 - 100 km case which was
nearly an order of magnitude smaller than its single amplifier
counterpart.

Many of the qualitative features discussed in the preced-
ing paragraphs hold for this case. However, since the
amplifier spacings are not close, it is expected that the
dispersive radiation would be attenuated even more due
to the large separation of the windows of transparen-
cies. Figure 37 depicts the background radiation field
for the case of the two amplifier spacings of 80 km and
100 km and the the two amplifier spacings, 70 km and
110 km. Note that the 70-110 km case produces a much
smaller radiation field than that of the single amplifier
case. Further, the radiation field is also smaller than
that produced with amplifier spacings of 80 km and 100
km which has the same average amplifier spacing. The
next section will consider the case for which there are no
distinct amplifier spacings, but rather, some distribution
of the amplifier spacings about some mean.

25. Random Amplifier Spacing

In the last section, the averaging over the two distinct
amplifier lengths led to the derivation of the averaged
Eq. (139) which was similar to that obtained in the case
of a single amplifier spacing. This was then shown to
support stable pulse propagation much as before. In this
section, randomly spaced amplifiers are considered. This
essentially corresponds to the case in which the period of
the amplifier spacings is infinite. The results of the last
section suggest that stable pulse solutions might exist.
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However, the work done in obtaining the averaged evo-
lution of the last section also suggests that the standard
averaging approach becomes analytically intractable and
one must resort to numerical computations.

Unlike the previous section, which assumed the aver-
aging took place in such a way as to preserve a com-
mon average, this case assumes the average energy over
a gain-loss segment to change from one amplifier to the
next as 1t propagates. Therefore, the case for which the
loss is balanced to O(e?) at each consecutive amplifier
is considered. It will be assumed in the following nu-
merical computations that the overamplification is of a
fixed value, i.e., Aa = 0.1. Future work will consider al-
lowing the overamplification also to vary randomly from
amplifier to amplifier. The aim will be to investigate
the robustness of the pulse propagation when randomly
spaced amplifiers are used and to further understand the
generation of the sideband frequencies. In what follows,
a few examples will be carried out which are indicative of
the qualitative and quantitative features of the random
spacings.

To begin, Fig. 38 depicts the behavior of the maxi-
mum amplitude of the phase-locked quadrature. Note
the random pattern of loss and gain. In this calculation,
it has been assumed that the amplifiers are uniformly
distributed between 70 km and 90 km. As was noted
previously, one can further analyze the background radi-
ation field generated from the random amplifier spacings.
In particular, the spectral evolution of three distinct am-
plification methods are compared in Fig. 39; the single
amplifier spacing of 80 km, a two amplifier spacing of 70
km and 90 km, and the uniformly distributed amplifier
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Fig. 38.  Behavior of the phase-locked quadrature ampli-
tude which propagates through a chain of randomly spaced
phase-sensitive amplifiers
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Fig. 39. Comparison of the spectral components after
200 amplifiers of three distinct amplification schemes which
utilize PSAs. In (a), periodically-spaced PSAs are considered
with an amplifier spacing of 80 km. An alternating spacing
of 70 km and 90 km is considered in (b) while uniformly
distributed amplifiers between 70 and 90 km are considered
in (c).

spacing between 70 km and 90 km. Each of these cases
has a mean amplifier spacing of 80 km. The correspond-
ing radiation fields are depicted in Fig. 40. Note that
both the two amplifier spacing case and the random am-
plifier spacing case reduce the radiation by a factor of
ten from the single periodic spacing case. This suggest
that randomly spaced amplifiers can be used to further
attenuate linear dispersive radiation.

One might imagine that if the uniform distribution of
the amplifiers was over a larger interval, the background
radiation field might be further attenuated. Figs. 41
depict the spectral components of the pulse evolution
for the uniform distribution of the amplifiers about 80
km. In particular the range of amplifier spacings are
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Fig. 40.  Dispersive radiation field generated from the
sideband frequencies of the three amplification schemes con-
sidered in the previous figure. The two smaller dispersive
fields correspond to the random and two amplifier spacings.
The important thing to note is that the two amplifier spac-
ing and the random spacing greatly reduce the amount of
background radiation generated.

between 60-100 km, 70-90 km and 75-85 km. Note that
as expected, the sideband spectral components of the 60-
100 km case 1s much smaller than that of the 70-90 km or
75-85 km cases. The corresponding dispersive radiation
fields are depicted in Figs. 42. This further suggests that
the wider the uniform distribution, the less background
radiation field will be allowed to propagate through the
fiber-PSA system.

Although this section is solely numerical in nature, it
may be possible to make use of stochastic and perturba-
tion methods to derive some kind of averaged evolution.
This approach will be considered in the near future and
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Fig. 41. Comparison of the the primary sideband fre-
quency for randomly spaced amplifiers for differing values of
the distribution. In particular, the uniform distributions for
amplifiers between 60-100 km, 70-90 km and 75-85 km are
considered.
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Fig. 42.  Investigation of the background radiation fields
generated from the sideband frequencies of the previous fig-
ure. In (a), a comparison is made between the 75-85 km
distribution (larger oscillations) and the 70-90 km distribu-
tion (smaller oscillations). This is followed in (b) by a com-
parison of the dispersive fields for the 70-90 km distribution
(larger oscillations) and the 60-100 km distribution (smaller
oscillations). Note that the dispersive radiation fields are
approximately of O(107*), 0(107°) and O(107°) for the uni-
form distributions between 75-85 km, 70-90 km and 60-100
km respectively.

should provide further insight into the structure and sta-
bility of the pulse propagation. Regardless, the use of
the PSAs in conjunction with the optical fibers seems to
suggest remarkable stability properties of the averaged
evolution.

26. Summary

The purpose of this chapter was to come to some kind
of understanding of the effects of the periodic amplifier
spacing upon the generated background radiation field.
Further, the more physically realistic model of variable
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amplifier spacing needed to be considered along with its
ability to support stable pulse propagation. These two
phenomena were shown to be closely related. In fact,
the generated background radiation field was a product
of the gain-loss forcing and depended strongly upon the
amplifier spacing. Section 23 explicitly found the rela-
tion between the sideband frequencies and the amplifier
spacing and demonstrated that certain frequency win-
dows existed for which the radiation experiences unity
gain. Therefore, the periodic spacing of the amplifiers
produced sideband frequencies which experienced unity
gain along a fiber-PSA chain. Upon considering variably
spaced amplifiers, it was found that the window of trans-
parencies were shifted from amplifier to amplifier causing
the attenuation of the background radiation field.

In particular, Section 24 was concerned with the ana-
lytic theory of a fiber-PSA system which had two alter-
nating and distinct amplifier spacings. Within this phys-
ical framework, it was still possible to average over the
loss and gain across the two amplifier period to obtain an
averaged evolution over an extended length scale. Nu-
merical simulations of this system showed that the side-
band frequency and its corresponding background radia-
tion field was attenuated by an order of magnitude over
its single, periodic amplifier spacing counterpart. This
was the first evidence which suggested the possibility of
using the variable amplifier spacing for reducing the dis-
persive field. Further, the analysis of Section 24 strongly
suggests that one can average over N amplifiers in or-
der to derive the same type of equation as Eq. (64) and
Eq. (139) with the only differences arising in the coef-
ficients of the nonlinear terms and the rescaling of the
long length scale ¢ and overamplification Aa.

In Section 25, the idea of variable amplifier spacing
was carried one step further. Specifically, the amplifier
spacing was allowed to vary uniformly over a range of
lengths. This random spacing of the amplifiers signifi-
cantly reduced the background radiation field generated
from the gain-loss forcing. Moreover, the random spac-
ing of the amplifiers correspond to a physically realizable
system for which the spacing of the amplifiers will de-
pend on factors which are associated with the physical
environment of the fiber-PSA line.
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