AMATH 584 Autumn Quarter 2020

Homework 4 DUE: Monday, November 16, 2020

I. Eigenvalues and multiplicity:

(a) Consider the matrix

Γ	2	0	0	1
	0	2	0	
	0	0	2	

Determine its eigenvalues and eigenvectors and the algebraic and geometric multiplicity of each.

(b) Consider the matrix

Γ	2	1	0]
	0	2	1
	0	0	2

Determine its eigenvalues and eigenvectors and the algebraic and geometric multiplicity of each.

II. Eigen Decomposition:

For each of the following statements, prove that it is true or give an example to show it is false. Here $\mathbf{A} \in \mathbb{C}^{m \times m}$ unless otherwise indicated.

(a) If λ is an eigenvalue of **A** and $\mu \in \mathbb{C}$, then $\lambda - \mu$ is an eigenvalue of $\mathbf{A} - \mu \mathbf{I}$

(b) If **A** is real and λ is an eigenvalue of **A**, then so is $-\lambda$.

(c) If **A** is real and λ is an eigenvalue of **A**, then so is $\overline{\lambda}$ (bar denotes complex conjugate).

(d) If λ is an eigenvalue of **A** and **A** is nonsingular, then λ^{-1} is an eigenvalue of \mathbf{A}^{-1} .

(e) If all the eigenvalues of \mathbf{A} are zero, then $\mathbf{A} = 0$.

(f) If **A** is Hermitian and λ is an eigenvalue of **A**, then $|\lambda|$ is a singular value of **A**.

(g) If **A** is diagonalizable and all its eigenvalues are equal, then **A** is diagonal.

III. Specialty Matrices

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ by tridiagonal and Hermitian, with all its sub- and super-diagonal entries nonzero. Prove that the eigenvalues of \mathbf{A} are distinct (Hint: Show that for any $\lambda \in \mathbb{C}$, $\mathbf{A} - \lambda \mathbf{I}$ has rank at least m - 1).