AMATH 584 Autumn Quarter 2020

Homework 4

DUE: Monday, November 16, 2020
I. Eigenvalues and multiplicity:
(a) Consider the matrix

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Determine its eigenvalues and eigenvectors and the algebraic and geometric multiplicity of each.
(b) Consider the matrix

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

Determine its eigenvalues and eigenvectors and the algebraic and geometric multiplicity of each.
II. Eigen Decomposition:

For each of the following statements, prove that it is true or give an example to show it is false. Here $\mathbf{A} \in \mathbb{C}^{m \times m}$ unless otherwise indicated.
(a) If λ is an eigenvalue of \mathbf{A} and $\mu \in \mathbb{C}$, then $\lambda-\mu$ is an eigenvalue of of $\mathbf{A}-\mu \mathbf{I}$
(b) If \mathbf{A} is real and λ is an eigenvalue of \mathbf{A}, then so is $-\lambda$.
(c) If \mathbf{A} is real and λ is an eigenvalue of \mathbf{A}, then so is $\bar{\lambda}$ (bar denotes complex conjugate).
(d) If λ is an eigenvalue of \mathbf{A} and \mathbf{A} is nonsingular, then λ^{-1} is an eigenvalue of \mathbf{A}^{-1}.
(e) If all the eigenvalues of \mathbf{A} are zero, then $\mathbf{A}=0$.
(f) If \mathbf{A} is Hermitian and λ is an eigenvalue of \mathbf{A}, then $|\lambda|$ is a singular value of \mathbf{A}.
(g) If \mathbf{A} is diagonalizable and all its eigenvaleus are equal, then \mathbf{A} is diagonal.

III. Specialty Matrices

Let $\mathbf{A} \in \mathbb{C}^{m \times m}$ by tridiagonal and Hermitian, with all its sub- and super-diagonal entries nonzero. Prove that the eigenvalues of \mathbf{A} are distinct (Hint: Show that for any $\lambda \in \mathbb{C}, \mathbf{A}-\lambda \mathbf{I}$ has rank at least $m-1$).

