Homework 3

DUE: Monday, November 2, 2020
I. QR Decomposition: Download two data sets (ORIGINAL IMAGE and CROPPED IMAGES)

Develop a numerical algorithm that implements the modified Gram-Schmidt orthogonalization procedure. Compare your algorithm to (i) the qrfactor.m code that we built in class (you can download it from the third lecture on QR on the website), and (ii) MATLAB's QR algorithm on a variety of matrices to see how well your algorithm works. Be sure to try it on a matrix that is ill-conditions, i.e. $\operatorname{cond}(\mathbf{A}) \gg 1$.
II. Consider the polynomial

$$
p(x)=(x-2)^{9}=x^{9}-18 x^{8}+144 x^{7}-672 x^{6}+2016 x^{5}-4032 x^{4}+5376 x^{3}-4608 x^{2}+2304 x-512
$$

(a) Plot the polynomial $p(x)$ for $x \in[1.920,2.080]$ for step-sizes of $\delta x=0.001$ using the right-hand side of the expression above
(b) Plot the polynomial again over the same interval using the left-hand side of the expression, i.e. $(x-9)^{9}$.
III. Consider the conditioning of a matrix.
(a) Construct a random matrix of size $m \times n$ where $m>n$, i.e. use $\mathbf{A}=\boldsymbol{r a n d n}(m, n)$. Study the condition number as a function of the size of the matrix (increase the m and n).
(b) For a fixed m and n, copy the first column of \mathbf{A} and append it as the $(n+1)$ th column of \mathbf{A}. What is the condition number and determinant of the matrix?
(c) Take the appended $(m+1)$ th column and add noise to it, i.e. $\mathbf{a}_{n+1}=\mathbf{a}_{n+1}+\epsilon \operatorname{rand}(m, 1)$ and see what happens to the condition number as a function of ϵ.

