AMATH 584 Autumn Quarter 2020

Homework 1

DUE: Friday, October 9, 2020

1. Show that if matrix \mathbf{A} is triangular and unitary, then it is diagonal
2. Consider that the matrices $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\mathbf{B} \in \mathbb{C}^{n \times n}$ are Hermitian (self-adjoint)

- Prove that all eigenvalues λ_{k} of \mathbf{A} are real
- Prove that if \mathbf{x}_{k} is the k th eigenvector, then eigenvectors with distinct eigenvalues are orthogonal
- Prove the sum of two Hermitian matrices is Hermitian
- Prove the inverse of an invertible Hermitian matrix is Hermitian as well
- Prove the product of two Hermitian matrices is Hermitian if and only if $\mathbf{A B}=\mathbf{B A}$.

3. Consider the matrix $\mathbf{U} \in \mathbb{C}^{n \times m}$ which is unitary

- Prove that the matrix is diagonalizable
- Prove that the inverse $\mathbf{U}^{-1}=\mathbf{U}^{*}$
- Prove it is isometric with respect to the ℓ_{2} norm, i.e. $\|\mathbf{U x}\|=\|\mathbf{x}\|$.
- Prove that all eigenvalues have modulus unity

