
Practical Scientific Computing∗

J. Nathan Kutz†

September 20, 2012

Abstract

This course is a survey of practical numerical solution techniques for

ordinary and partial differential equations. Emphasis will be on the imple-

mentation of numerical schemes to practical problems in the engineering

and physical sciences. Methods for partial differential equations will in-

clude finite difference, finite element and spectral techniques. Full use will

be made of MATLAB and its programming functionality.

∗These notes are intended as the primary source of information for Scientific Computing.
The notes are incomplete and may contain errors. c©J.N.Kutz, Autumn 2003 (Version 1.1)

†Department of Applied Mathematics, Box 352420, University of Washington, Seattle, WA
98195-2420.

1



Scientific Computing ( c©J. N. Kutz) 2

Contents



Scientific Computing ( c©J. N. Kutz) 3

For Pierre-Luigi
International Man of Mystery

Acknowledgments

The idea of this course began as a series of conversations with Dave Muraki. It
has since grown into this scientific computing course whose ambition is to pro-
vide a truly versatile and useful course for students in the engineering, biological
and physical sciences. I’ve also benefitted greatly from discussions with James
Rossmanith, and with implementation ideas with Peter Blossey and Sorin Mi-
tran. Leslie Butson, Sarah Hewitt and Jennifer O’Neil have been very helpful in
editing the current set of notes so that it is more readable, useful, and error-free.



Scientific Computing ( c©J. N. Kutz) 4

Prolegomenon

Scientific computing is ubiquitous in the physical, biological, and engineering
sciences. Today, proficiency with computational methods, or lack thereof, can
have a major impact on a researcher’s ability to effectively analyze a given
problem. Although a host of numerical analysis courses are traditionally offered
in the mathematical sciences, the typical audience is the professional mathe-
matician. Thus the emphasis is on establishing proven techniques and working
through rigorous stability arguments. No doubt, this vision of numerical analy-
sis is essential and provides the groundwork for this course on practical scientific
computing. This more traditional approach to the teaching of numerical meth-
ods generally requires more than a year in coursework to achieve a level of
proficiency necessary for solving practical problems.

The goal of this course is to embark on a new tradition: establishing comput-
ing proficiency as the first and foremost priority above rigorous analysis. Thus
the major computational methods established over the past few decades are
considered with emphasis on their use and implementation versus their rigorous
analytic framework. A terse timeframe is also necessary in order to effectively
augment the education of students from a wide variety of scientific departments.
The three major techniques for solving partial differential equations are all con-
sidered: finite differences, finite elements, and spectral methods.

MATLAB has establised itself as the leader in scientific computing software.
The built-in algorithms developed by MATLAB allow the computational focus
to shift from technical details to overall implementation and solution techniques.
Heavy and repeated use is made of MATLAB’s linear algebra packages, Fast
Fourier Transform routines, and finite element (partial differential equations)
package. These routines are the workhorses for most solution techniques and are
treated to a large extent as blackbox operations. Of course, cursory explanations
are given of the underlying principles in any of the routines utilized, but it is
largely left as reference material in order to focus on the application of the
routine.

The end goal is for the student to develop a sense of confidence about im-
plementing computational techniques. Specifically, at the end of the course, the
student should be able to solve almost any 1D, 2D, or 3D problem of the elliptic,
hyperbolic, or parabolic type. Or at the least, they should have a great deal of
knowledge about how to solve the problem and should have enough information
and references at their disposal to circumvent any implementation difficulties.



Scientific Computing ( c©J. N. Kutz) 5

1 Initial and Boundary Value Problems of Dif-

ferential Equations

Our ultimate goal is to solve very general nonlinear partial differential equa-
tions of elliptic, hyperbolic, parabolic, or mixed type. However, a variety of
basic techniques are required from the solutions of ordinary differential equa-
tions. By understanding the basic ideas for computationally solving initial and
boundary value problems for differential equations, we can solve more com-
plicated partial differential equations. The development of numerical solution
techniques for initial and boundary value problems originates from the simple
concept of the Taylor expansion. Thus the building blocks for scientific comput-
ing are rooted in concepts from freshman calculus. Implementation, however,
often requires ingenuity, insight, and clever application of the basic principles.
In some sense, our numerical solution techniques reverse our understanding of
calculus. Whereas calculus teaches us to take a limit in order to define a deriva-
tive or integral, in numerical computations we take the derivative or integral of
the governing equation and go backwards to define it as the difference.

1.1 Initial value problems: Euler, Runge-Kutta and Adams
methods

The solutions of general partial differential equations rely heavily on the tech-
niques developed for ordinary differential equations. Thus we begin by consid-
ering systems of differential equations of the form

dy

dt
= f(y, t) (1.1.1)

where y represents a vector and the initial conditions are given by

y(0) = y0 (1.1.2)

with t ∈ [0, T ]. Although very simple in appearance, this equation cannot be
solved analytically in general. Of course, there are certain cases for which the
problem can be solved analytically, but it will generally be important to rely
on numerical solutions for insight. For an overview of analytic techniques, see
Boyce and DiPrima [?].

The simplest algorithm for solving this system of differential equations is
known as the Euler method. The Euler method is derived by making use of the
definition of the derivative:

dy

dt
= lim

∆t→0

∆y

∆t
. (1.1.3)

Thus over a time span ∆t = tn+1−tn we can approximate the original differential
equation by

dy

dt
= f(y, t) ⇒ yn+1 − yn

∆t
≈ f(yn, tn) . (1.1.4)



Scientific Computing ( c©J. N. Kutz) 6

y(t)

y

y

t

Error

t tt

y

Exact Solution y(t)

t

y
0

1

2
3

0000 +∆ +2∆t +3∆tt

Euler Approximations

Figure 1: Graphical description of the iteration process used in the Euler
method. Note that each subsequent approximation is generated from the slope
of the previous point. This graphical illustration suggests that smaller steps ∆t
should be more accurate.

The approximation can easily be rearranged to give

yn+1 = yn +∆t · f(yn, tn) . (1.1.5)

Thus the Euler method gives an iterative scheme by which the future values
of the solution can be determined. Generally, the algorithm structure is of the
form

y(tn+1) = F (y(tn)) (1.1.6)

where F (y(tn)) = y(tn) +∆t · f(y(tn), tn) The graphical representation of this
iterative process is illustrated in Fig. 1 where the slope (derivative) of the func-
tion is responsible for generating each subsequent approximation to the solution
y(t). Note that the Euler method is exact as the step size decreases to zero:
∆t→ 0.

The Euler method can be generalized to the following iterative scheme:

yn+1 = yn +∆t · φ . (1.1.7)

where the function φ is chosen to reduce the error over a single time step ∆t and
yn = y(tn). The function φ is no longer constrained, as in the Euler scheme,
to make use of the derivative at the left end point of the computational step.



Scientific Computing ( c©J. N. Kutz) 7

Rather, the derivative at the mid-point of the time-step and at the right end of
the time-step may also be used to possibly improve accuracy. In particular, by
generalizing to include the slope at the left and right ends of the time-step ∆t,
we can generate an iteration scheme of the following form:

y(t+∆t) = y(t) + ∆t [Af(t,y(t)) +Bf(t+ P ·∆t,y(t) +Q∆t · f(t,y(t)))]
(1.1.8)

where A,B, P and Q are arbitrary constants. Upon Taylor expanding the last
term, we find

f(t+ P ·∆t,y(t) +Q∆t · f(t,y(t))) =
f(t,y(t)) + P∆t · ft(t,y(t)) +Q∆t · fy(t,y(t)) · f(t,y(t)) +O(∆t2) (1.1.9)

where ft and fy denote differentiation with respect to t and y respectively, use
has been made of (1.1.1), and O(∆t2) denotes all terms that are of size ∆t2 and
smaller. Plugging in this last result into the original iteration scheme (1.1.8)
results in the following:

y(t+∆t) = y(t) + ∆t(A+B)f(t,y(t))

+PB∆t2 · ft(t,y(t)) +BQ∆t2 · fy(t,y(t)) · f(t,y(t)) +O(∆t3) (1.1.10)

which is valid up to O(∆t2).
To proceed further, we simply note that the Taylor expansion for y(t+∆t)

gives:

y(t+∆t) = y(t) + ∆t · f(t,y(t)) + 1

2
∆t2 · ft(t,y(t))

+
1

2
∆t2 · fy(t,y(t))f(t,y(t)) +O(∆t3) . (1.1.11)

Comparing this Taylor expansion with (1.1.10) gives the following relations:

A+B = 1 (1.1.12a)

PB =
1

2
(1.1.12b)

BQ =
1

2
(1.1.12c)

which yields three equations for the four unknows A,B, P and Q. Thus one
degree of freedom is granted, and a wide variety of schemes can be implemented.
Two of the more commonly used schemes are known as Heun’s method and
Modified Euler-Cauchy (second order Runge-Kutta). These schemes assume
A = 1/2 and A = 0 respectively, and are given by:

y(t+∆t) = y(t) +
∆t

2
[f(t,y(t)) + f(t+∆t,y(t) + ∆t · f(t,y(t)))] (1.1.13a)

y(t+∆t) = y(t) + ∆t · f
(
t+

∆t

2
,y(t) +

∆t

2
· f(t,y(t))

)
. (1.1.13b)



Scientific Computing ( c©J. N. Kutz) 8

f(t)

f(t)

f(t       )

+∆

t

t/2

+∆t

f(t          )

t t+∆t/2 t+∆

Figure 2: Graphical description of the initial, intermediate, and final slopes used
in the 4th order Runge-Kutta iteration scheme over a time ∆t.

Generally speaking, these methods for iterating forward in time given a single
initial point are known as Runge-Kutta methods. By generalizing the assumption
(1.1.8), we can construct stepping schemes which have arbitrary accuracy. Of
course, the level of algebraic difficulty in deriving these higher accuracy schemes
also increases significantly from Heun’s method and Modified Euler-Cauchy.

4th-order Runge-Kutta

Perhaps the most popular general stepping scheme used in practice is known
as the 4th order Runge-Kutta method. The term “4th order” refers to the fact
that the Taylor series local truncation error is pushed to O(∆t5). The total
cumulative (global) error is then O(∆t4) and is responsible for the scheme name
of “4th order”. The scheme is as follows:

yn+1 = yn +
∆t

6
[f1 + 2f2 + 2f3 + f4] (1.1.14)

where

f1 = f(tn,yn) (1.1.15a)

f2 = f

(
tn +

∆t

2
,yn +

∆t

2
f1

)
(1.1.15b)

f3 = f

(
tn +

∆t

2
,yn +

∆t

2
f2

)
(1.1.15c)

f4 = f (tn +∆t,yn +∆t · f3) . (1.1.15d)

This scheme gives a local truncation error which is O(∆t5). The cumulative
(global) error in this case case is fourth order so that for t ∼ O(1) then the error



Scientific Computing ( c©J. N. Kutz) 9

is O(∆t4). The key to this method, as well as any of the other Runge-Kutta
schemes, is the use of intermediate time-steps to improve accuracy. For the
4th order scheme presented here, a graphical representation of this derivative
sampling at intermediate time-steps is shown in Fig. 2.

Adams method: multi-stepping techniques

The development of the Runge-Kutta schemes rely on the definition of the
derivative and Taylor expansions. Another approach to solving (1.1.1) is to start
with the fundamental theorem of calculus [?]. Thus the differential equation can
be integrated over a time-step ∆t to give

dy

dt
= f(y, t) ⇒ y(t +∆t)− y(t) =

∫ t+∆t

t

f(t, y)dt . (1.1.16)

And once again using our iteration notation we find

yn+1 = yn +

∫ tn+1

tn

f(t, y)dt . (1.1.17)

This iteration relation is simply a restatement of (1.1.7) with ∆t·φ =
∫ tn+1

tn
f(t, y)dt.

However, at this point, no approximations have been made and (1.1.17) is exact.
The numerical solution will be found by approximating f(t, y) ≈ p(t, y) where
p(t, y) is a polynomial. Thus the iteration scheme in this instance will be given
by

yn+1 ≈ yn +

∫ tn+1

tn

p(t, y)dt . (1.1.18)

It only remains to determine the form of the polynomial to be used in the
approximation.

The Adams-Bashforth suite of computational methods uses the current point
and a determined number of past points to evaluate the future solution. As
with the Runge-Kutta schemes, the order of accuracy is determined by the
choice of φ. In the Adams-Bashforth case, this relates directly to the choice
of the polynomial approximation p(t, y). A first-order scheme can easily be
constructed by allowing

p1(t) = constant = f(tn,yn) , (1.1.19)

where the present point and no past points are used to determine the value of
the polynomial. Inserting this first-order approximation into (1.1.18) results in
the previously found Euler scheme

yn+1 = yn +∆t · f(tn,yn) . (1.1.20)



Scientific Computing ( c©J. N. Kutz) 10

Alternatively, we could assume that the polynomial used both the current point
and the previous point so that a second-order scheme resulted. The linear
polynomial which passes through these two points is given by

p2(t) = fn−1 +
fn − fn−1

∆t
(t− tn−1) . (1.1.21)

When inserted into (1.1.18), this linear polynomial yields

yn+1 = yn +

∫ tn+1

tn

(
fn−1 +

fn − fn−1

∆t
(t− tn)

)
dt . (1.1.22)

Upon integration and evaluation at the upper and lower limits, we find the
following 2nd order Adams-Bashforth scheme

yn+1 = yn +
∆t

2
[3f(tn,yn)− f(tn−1,yn−1)] . (1.1.23)

In contrast to the Runge-Kutta method, this is a two-step algorithm which re-
quires two initial conditions. This technique can be easily generalized to include
more past points and thus higher accuracy. However, as accuracy is increased,
so are the number of initial conditions required to step forward one time-step
∆t. Aside from the first-order accurate scheme, any implementation of Adams-
Bashforth will require a boot strap to generate a second “initial condition” for
the solution iteration process.

The Adams-Bashforth scheme uses current and past points to approximate
the polymial p(t, y) in (1.1.18). If instead a future point, the present, and the
past is used, then the scheme is known as an Adams-Moulton method. As before,
a first-order scheme can easily be constructed by allowing

p1(t) = constant = f(tn+1,yn+1) , (1.1.24)

where the future point and no past and present points are used to determine the
value of the polynomial. Inserting this first-order approximation into (1.1.18)
results in the backward Euler scheme

yn+1 = yn +∆t · f(tn+1,yn+1) . (1.1.25)

Alternatively, we could assume that the polynomial used both the future point
and the current point so that a second-order scheme resulted. The linear poly-
nomial which passes through these two points is given by

p2(t) = fn +
fn+1 − fn

∆t
(t− tn) . (1.1.26)

Inserted into (1.1.18), this linear polynomial yields

yn+1 = yn +

∫ tn+1

tn

(
fn +

fn+1 − fn
∆t

(t− tn)

)
dt . (1.1.27)



Scientific Computing ( c©J. N. Kutz) 11

Upon integration and evaluation at the upper and lower limits, we find the
following 2nd order Adams-Moulton scheme

yn+1 = yn +
∆t

2
[f(tn+1,yn+1) + f(tn,yn)] . (1.1.28)

Once again this is a two-step algorithm. However, it is categorically differ-
ent than the Adams-Bashforth methods since it results in an implicit scheme,
i.e. the unknown value yn+1 is specified through a nonlinear equation (1.1.28).
The solution of this nonlinear system can be very difficult, thus making ex-
plicit schemes such as Runge-Kutta and Adams-Bashforth, which are simple
iterations, more easily handled. However, implicit schemes can have advantages
when considering stability issues related to time-stepping. This is explored fur-
ther in the notes.

One way to circumvent the difficulties of the implicit stepping method while
still making use of its power is to use a Predictor-Corrector method. This scheme
draws on the power of both the Adams-Bashforth and Adams-Moulton schemes.
In particular, the second order implicit scheme given by (1.1.28) requires the
value of f(tn+1,yn+1) in the right hand side. If we can predict (approximate)
this value, then we can use this predicted value to solve (1.1.28) explicitly. Thus
we begin with a predictor step to estimate yn+1 so that f(tn+1,yn+1) can be
evaluated. We then insert this value into the right hand side of (1.1.28) and
explicitly find the corrected value of yn+1. The second-order predictor-corrector
steps are then as follows:

predictor (Adams-Bashforth): yPn+1=yn +
∆t

2
[3fn − fn−1] (1.1.29a)

corrector (Adams-Moulton): yn+1=yn+
∆t

2
[f(tn+1,y

P
n+1)+f(tn,yn)]. (1.1.29b)

Thus the scheme utilizes both explicit and implicit time-stepping schemes with-
out having to solve a system of nonlinear equations.

Higher order differential equations

Thus far, we have considered systems of first order equations. Higher order dif-
ferential equations can be put into this form and the methods outlined here can
be applied. For example, consider the third-order, nonhomogeneous, differential
equation

d3u

dt3
+ u2

du

dt
+ cos t · u = g(t) . (1.1.30)

By defining

y1 = u (1.1.31a)

y2 =
du

dt
(1.1.31b)



Scientific Computing ( c©J. N. Kutz) 12

y3 =
d2u

dt2
, (1.1.31c)

we find that dy3/dt = d3u/dt3. Using the original equation along with the
definitions of yi we find that

dy1
dt

= y2 (1.1.32a)

dy2
dt

= y3 (1.1.32b)

dy3
dt

=
d3u

dt3
= −u2du

dt
− cos t · u+ g(t) = −y21y2 − cos t · y1 + g(t) (1.1.32c)

which results in the original differential equation (1.1.1) considered previously

dy

dt
=

d

dt




y1
y2
y3


 =




y2
y3

−y21y2 − cos t · y1 + g(t)


 = f(y, t) . (1.1.33)

At this point, all the time-stepping techniques developed thus far can be applied
to the problem. It is imperative to write any differential equation as a first-order
system before solving it numerically with the time-stepping schemes developed
here.

MATLAB commands

The time-stepping schemes considered here are all available in the MATLAB
suite of differential equation solvers. The following are a few of the most common
solvers:

• ode23: second-order Runge-Kutta routine

• ode45: fourth-order Runge-Kutta routine

• ode113: variable order predictor-corrector routine

• ode15s: variable order Gear method for stiff problems [?, ?]

1.2 Error analysis for time-stepping routines

Accuracy and stability are fundamental to numerical analysis and are the key fac-
tors in evaluating any numerical integration technique. Therefore, it is essential
to evaluate the accuracy and stability of the time-stepping schemes developed.
Rarely does it occur that both accuracy and stability work in concert. In fact,
they often are offsetting and work directly against each other. Thus a highly
accurate scheme may compromise stability, whereas a low accuracy scheme may
have excellent stability properties.



Scientific Computing ( c©J. N. Kutz) 13

We begin by exploring accuracy. In the context of time-stepping schemes,
the natural place to begin is with Taylor expansions. Thus we consider the
expansion

y(t+∆t) = y(t) + ∆t · dy(t)
dt

+
∆t2

2
· d

2y(c)

dt2
(1.2.1)

where c ∈ [t, t + ∆t]. Since we are considering dbfy/dt = f(t,y), the above
formula reduces to the Euler iteration scheme

yn+1 = yn +∆t · f(tn,yn) +O(∆t2) . (1.2.2)

It is clear from this that the truncation error is O(∆t2). Specifically, the trun-
cation error is given by ∆t2/2 · d2y(c)/dt2.

Of importance is how this truncation error contributes to the overall error
in the numerical solution. Two types of error are important to identify: local
and global error. Each is significant in its own right. However, in practice we
are only concerned with the global (cumulative) error. The global discretization
error is given by

Ek = y(tk)− yk (1.2.3)

where y(tk) is the exact solution and yk is the numerical solution. The local
discretization error is given by

ǫk+1 = y(tk+1)− (y(tk) + ∆t · φ) (1.2.4)

where y(tk+1) is the exact solution and y(tk)+∆t·φ is a one-step approximation
over the time interval t ∈ [tn, tn+1].

For the Euler method, we can calculate both the local and global error.
Given a time-step ∆t and a specified time interval t ∈ [a, b], we have after K
steps that ∆t ·K = b− a. Thus we find

local: ǫk=
∆t2

2

d2y(ck)

dt2
∼ O(∆t2) (1.2.5a)

global: Ek=
K∑

j=1

∆t2

2

d2y(cj)

dt2
≈ ∆t2

2

d2y(c)

dt2
·K

=
∆t2

2

d2y(c)

dt2
· b− a

∆t
=
b− a

2
∆t · d

2y(c)

dt2
∼ O(∆t) (1.2.5b)

which gives a local error for the Euler scheme which is O(∆t2) and a global
error which is O(∆t). Thus the cumulative error is large for the Euler scheme,
i.e. it is not very accurate.

A similar procedure can be carried out for all the schemes discussed thus
far, including the multi-step Adams schemes. Table 1 illustrates various schemes
and their associated local and global errors. The error analysis suggests that the
error will always decrease in some power of ∆t. Thus it is tempting to conclude
that higher accuracy is easily achieved by taking smaller time steps ∆t. This
would be true if not for round-off error in the computer.



Scientific Computing ( c©J. N. Kutz) 14

scheme local error ǫk global error Ek

Euler O(∆t2) O(∆t)
2nd order Runge-Kutta O(∆t3) O(∆t2)
4th order Runge-Kutta O(∆t5) O(∆t4)
2nd order Adams-Bashforth O(∆t3) O(∆t2)

Table 1: Local and global discretization errors associated with various time-
stepping schemes.

Round-off and step-size

An unavoidable consequence of working with numerical computations is round-
off error. When working with most computations, double precision numbers
are used. This allows for 16-digit accuracy in the representation of a given
number. This round-off has significant impact upon numerical computations
and the issue of time-stepping.

As an example of the impact of round-off, we consider the Euler approxima-
tion to the derivative

dy

dt
≈ yn+1 − yn

∆t
+ ǫ(yn,∆t) (1.2.6)

where ǫ(yn,∆t) measures the truncation error. Upon evaluating this expression
in the computer, round-off error occurs so that

yn+1 = Yn+1 + en+1 . (1.2.7)

Thus the combined error between the round-off and truncation gives the follow-
ing expression for the derivative:

dy

dt
=

Yn+1 −Yn

∆t
+ En(yn,∆t) (1.2.8)

where the total error, En, is the combination of round-off and truncation such
that

En = Eround + Etrunc =
en+1 − en

∆t
− ∆t2

2

d2y(c)

dt2
. (1.2.9)

We now determine the maximum size of the error. In particular, we can bound
the maximum value of round-off and the derivate to be

|en+1| ≤ er (1.2.10a)

| − en| ≤ er (1.2.10b)

M = max
c∈[tn,tn+1]

{∣∣∣∣
d2y(c)

dt2

∣∣∣∣
}
. (1.2.10c)



Scientific Computing ( c©J. N. Kutz) 15

This then gives the maximum error to be

|En| ≤
er + er
∆t

+
∆t2

2
M =

2er
∆t

+
∆t2M

2
. (1.2.11)

To minimize the error, we require that ∂|En|/∂(∆t) = 0. Calculating this
derivative gives

∂|En|
∂(∆t)

= − 2er
∆t2

+M∆t = 0 , (1.2.12)

so that

∆t =

(
2er
M

)1/3

. (1.2.13)

This gives the step-size resulting in a minimum error. Thus the smallest step-
size is not necessarily the most accurate. Rather, a balance between round-off
error and truncation error is achieved to obtain the optimal step-size.

Stability

The accuracy of any scheme is certainly important. However, it is meaningless
if the scheme is not stable numerically. The essense of a stable scheme: the
numerical solutions do not blow up to infinity. As an example, consider the
simple differential equation

dy

dt
= λy (1.2.14)

with
y(0) = y0 . (1.2.15)

The analytic solution is easily calculated to be y(t) = y0 exp(λt). However, if
we solve this problem numerically with a forward Euler method we find

yn+1 = yn +∆t · λyn = (1 + λ∆t)yn . (1.2.16)

After N steps, we find this iteration scheme yields

yN = (1 + λ∆t)Ny0 . (1.2.17)

Given that we have a certain amount of round off error, the numerical solution
would then be given by

yN = (1 + λ∆t)N (y0 + e) . (1.2.18)

The error then associated with this scheme is given by

E = (1 + λ∆t)Ne . (1.2.19)



Scientific Computing ( c©J. N. Kutz) 16

At this point, the following observations can be made. For λ > 0, the solution
yN → ∞ in Eq. (1.2.18) as N → ∞. So although the error also grows, it may
not be significant in comparison to the size of the numerical solution.

In contrast, Eq. (1.2.18) for λ < 0 is markedly different. For this case,
yN → 0 in Eq. (1.2.18) as N → ∞. The error, however, can dominate in
this case. In particular, we have the two following cases for the error given by
(1.2.19):

I: |1 + λ∆t| < 1 then E → 0 (1.2.20a)

II: |1 + λ∆t| > 1 then E → ∞ . (1.2.20b)

In case I, the scheme would be considered stable. However, case II holds and is
unstable provided ∆t > −2/λ.

A general theory of stability can be developed for any one-step time-stepping
scheme. Consider the one-step recursion relation for an M ×M system

yn+1 = Ayn . (1.2.21)

After N steps, the algorithm yields the solution

yN = ANy0 , (1.2.22)

where y0 is the initial vector. A well known result from linear algebra is that

AN = S−1ΛNS (1.2.23)

where S is the matrix whose columns are the eigenvectors of A, and

Λ =




λ1 0 · · · 0
0 λ2 0 · · ·
...

. . .
...

0 · · · 0 λM


 → ΛN =




λN1 0 · · · 0
0 λN2 0 · · ·
...

. . .
...

0 · · · 0 λNM


 (1.2.24)

is a diagnonal matrix whose entries are the eigenvalues of A. Thus upon calcu-
lating ΛN , we are only concerned with the eigenvalues. In particular, instability
occurs if ℜ{λi} > 1 for i = 1, 2, ...,M . This method can be easily generalized
to two-step schemes (Adams methods) by considering yn+1 = Ayn +Byn−1.

Lending further significance to this stability analysis is its connection with
practical implementation. We contrast the difference in stability between the
forward and backward Euler schemes. The forward Euler scheme has already
been considered in (1.2.16)-(1.2.19). The backward Euler displays significant
differences in stability. If we again consider (1.2.14) with (1.2.15), the backward
Euler method gives the iteration scheme

yn+1 = yn +∆t · λyn+1 , (1.2.25)



Scientific Computing ( c©J. N. Kutz) 17

Figure 3: Regions for stable stepping for the forward Euler and backward Euler
schemes.

which after N steps leads to

yN =

(
1

1− λ∆t

)N
y0 . (1.2.26)

The round-off error associated with this scheme is given by

E =

(
1

1− λ∆t

)N
e . (1.2.27)

By letting z = λ∆t be a complex number, we find the following criteria to yield
unstable behavior based upon (1.2.19) and (1.2.27)

forward Euler: |1 + z| > 1 (1.2.28a)

backward Euler:

∣∣∣∣
1

1− z

∣∣∣∣ > 1 . (1.2.28b)

Figure 3 shows the regions of stable and unstable behavior as a function of z.
It is observed that the forward Euler scheme has a very small range of stability
whereas the backward Euler scheme has a large range of stability. This large
stability region is part of what makes implicit methods so attractive. Thus
stability regions can be calculated. However, control of the accuracy is also
essential.

1.3 Boundary value problems: the shooting method

To this point, we have only considered the solutions of differential equations for
which the initial conditions are known. However, many physical applications
do not have specified initial conditions, but rather some given boundary (con-
straint) conditions. A simple example of such a problem is the second-order
boundary value problem

d2y

dt2
= f

(
t, y,

dy

dt

)
(1.3.1)



Scientific Computing ( c©J. N. Kutz) 18

y(t)

a
t

b

y(b)

y(a)

y’’=f(t,y,y’)

Figure 4: Graphical depiction of the structure of a typical solution to a boundary
value problem with constraints at t = a and t = b.

on t ∈ [a, b] with the general boundary conditions

α1y(a) + β1
dy(a)

dt
= γ1 (1.3.2a)

α2y(b) + β2
dy(b)

dt
= γ2 . (1.3.2b)

Thus the solution is defined over a specific interval and must satisfy the relations
(1.3.2) at the end points of the interval. Figure 4 gives a graphical representa-
tion of a generic boundary value problem solution. We discuss the algorithm
necessary to make use of the time-stepping schemes in order to solve such a
problem.

The Shooting Method

The boundary value problems constructed here require information at the present
time (t = a) and a future time (t = b). However, the time-stepping schemes de-
veloped previously only require information about the starting time t = a. Some
effort is then needed to reconcile the time-stepping schemes with the boundary
value problems presented here.

We begin by reconsidering the generic boundary value problem

d2y

dt2
= f

(
t, y,

dy

dt

)
(1.3.3)

on t ∈ [a, b] with the boundary conditions

y(a) = α (1.3.4a)

y(b) = β . (1.3.4b)



Scientific Computing ( c©J. N. Kutz) 19

b

y(b)

y(a)

t

y’’=f(t,y,y’)

y(t)

target

α

β

a

<β

>β

y’’=f(t,y,y’)

y(b)

y(b) =β

A=A

A=A

1

2

Figure 5: Solutions to the boundary value problem with y(a) = α and y′(a) = A.
Here, two values of A are used to illustrate the solution behavior and its lack
of matching the correct boundary value y(b) = β. However, the two solutions
suggest that a bisection scheme could be used to find the correct solution and
value of A.

The stepping schemes considered thus far for second order differential equations
involve a choice of the initial conditions y(a) and y′(a). We can still approach
the boundary value problem from this framework by choosing the “initial” con-
ditions

y(a) = α (1.3.5a)

dy(a)

dt
= A , (1.3.5b)

where the constant A is chosen so that as we advance the solution to t = b we
find y(b) = β. The shooting method gives an iterative procedure with which we
can determine this constant A. Figure 5 illustrates the solution of the boundary
value problem given two distinct values of A. In this case, the value of A = A1

gives a value for the initial slope which is too low to satisfy the boundary
conditions (1.3.4), whereas the value of A = A2 is too large to satisfy (1.3.4).

Computational Algorithm

The above example demonstrates that adjusting the value of A in (1.3.5b) can
lead to a solution which satisfies (1.3.4b). We can solve this using a self-



Scientific Computing ( c©J. N. Kutz) 20

2

A <A <A1 3 2

b

y(a)

t

y(t)

A=A

α
3

β

a

y(b) =β

A=A 1

y’’=f(t,y,y’)

target

A=A 3

5

4
A=A

A=A

A <A <A1 4 3

A <A <A4 5

Figure 6: Graphical illustration of the shooting process which uses a bisection
scheme to converge to the appropriate value of A for which y(b) = β.

consistent algorithm to search for the appropriate value of A which satisfies
the original problem. The basic algorithm is as follows:

1. Solve the differential equation using a time-stepping scheme with the ini-
tial conditions y(a) = α and y′(a) = A.

2. Evaluate the solution y(b) at t = b and compare this value with the target
value of y(b) = β.

3. Adjust the value of A (either bigger or smaller) until a desired level of
tolerance and accuracy is achieved. A bisection method for determining
values of A, for instance, may be appropriate.

4. Once the specified accuracy has been achieved, the numerical solution
is complete and is accurate to the level of the tolerance chosen and the
discretization scheme used in the time-stepping.

We illustrate graphically a bisection process in Fig. 6 and show the con-
vergence of the method to the numerical solution which satisfies the original
boundary conditions y(a) = α and y(b) = β. This process can occur quickly so
that convergence is achieved in a relatively low amount of iterations provided
the differential equation is well behaved.



Scientific Computing ( c©J. N. Kutz) 21

−3 −2 −1 0 1 2 3
x

0

0.2

0.4

0.6

0.8

1
n(

x)
/n

0

Figure 7: Plot of the spatial function n(x).

Eigenvalues and Eigenfunctions: The Infinite Domain

Boundary value problems often arise as eigenvalue systems for which the eigen-
value and eigenfunction must both be determined. As an example of such a
problem, we consider the second order differential equation on the infinite line

d2ψn
dx2

+ [n(x) − βn]ψn = 0 (1.3.6)

with the boundary conditions ψn(x) → 0 as x → ±∞. For this example, we
consider the spatial function n(x) which is given by

n(x) = n0

{
1− |x|2 0 ≤ |x| ≤ 1
0 |x| > 1

(1.3.7)

with n0 being an arbitrary constant. Figure 7 shows the spatial dependence of
n(x). The parameter βn in this problem is the eigenvalue. For each eigenvalue,
we can calculate a normalized eigenfunction ψn. The standard normalization
requires

∫∞

−∞
|ψn|2dx = 1.

Although the boundary conditions are imposed as x→ ±∞, computationally
we require a finite domain. We thus define our computational domain to be
x ∈ [−L,L] where L ≫ 1. Since n(x) = 0 for |x| > 1, the governing equation
reduces to

d2ψn
dx2

− βnψn = 0 |x| > 1 (1.3.8)

which has the general solution

ψn = c1 exp(
√
βnx) + c2 exp(−

√
βnx) (1.3.9)



Scientific Computing ( c©J. N. Kutz) 22

−2 −1 0 1 2
x

−1

0

1

2

ψ
(x

)

−2 −1 0 1 2
0

0.5

1

1.5
ψ

(x
)

−2 −1 0 1 2
x

−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

β1=86.79 β2=67.14

β3=47.51 β4=28.06

Figure 8: Plot of the first four eigenfunctions along with their eigenvalues βn.
For this example, L = 2 and n0 = 100. These eigenmode structures are typical
of those found in quantum mechanics and electromagnetic waveguides.

for βn ≥ 0. Note that we can only consider values of βn ≥ 0 since for βn < 0,
the general solution becomes ψn = c1 cos(

√
|βn|x) + c2 sin(−

√
|βn|x) which

does not decay to zero as x→ ±∞. In order to ensure that the decay boundary
conditions are satisfied, we must eliminate one of the two linearly independent
solutions of the general solution. In particular, we must have

x→ ∞ : ψn = c2 exp(−
√
βnx) (1.3.10a)

x→ −∞ : ψn = c1 exp(
√
βnx) . (1.3.10b)

Thus the requirement that the solution decays at infinity eliminates one of the
two linearly independent solutions. Alternatively, we could think of this situa-
tion as being a case where only one linearly independent solution is allowed as
x→ ±∞. But a single linearly independent solution corresponds to a first order
differential equation. Therefore, the decay solutions (1.3.10) can equivalently



Scientific Computing ( c©J. N. Kutz) 23

be thought of as solutions to the following first order equations:

x→ ∞ :
dψn
dx

+
√
βnψn = 0 (1.3.11a)

x→ −∞ :
dψn
dx

−
√
βnψn = 0 . (1.3.11b)

From a computational viewpoint then, the effective boundary conditions to be
considered on the computational domain x ∈ [−L,L] are the following

x = L :
dψn(L)

dx
= −

√
βnψn(L) (1.3.12a)

x = −L :
dψn(−L)

dx
=
√
βnψn(−L) . (1.3.12b)

In order to solve the problem, we write the governing differential equation
as a system of equations. Thus we let x1 = ψn and x2 = dψn/dx which gives

x′1 = ψ′
n = x2 (1.3.13a)

x′2 = ψ′′
n = [βn − n(x)]ψn = [βn − n(x)] x1 . (1.3.13b)

In matrix form, we can write the governing system as

x′ =

(
0 1

βn − n(x) 0

)
x (1.3.14)

where x = (x1 x2)
T = (ψn dψn/dx)

T . The boundary conditions (1.3.12) are

x = L : x2 = −
√
βnx1 (1.3.15a)

x = −L : x2 =
√
βnx1 . (1.3.15b)

The formulation of the boundary value problem is thus complete. It remains to
develop an algorithm to find the eigenvalues βn and corresponding eigenfunc-
tions ψn. Figure 8 illustrates the first four eigenfunctions and their associate
eigenvalues for n0 = 100 and L = 2.

1.4 Implementation of shooting and convergence studies

The implementation of the shooting scheme relies on the effective use of a time-
stepping algorithm along with a root finding method for choosing the appro-
priate initial conditions which solve the boundary value problem. The specific
system to be considered is similar to that developed in the last lecture. We
consider

x′ =

(
0 1

βn − n(x) 0

)
x (1.4.1)



Scientific Computing ( c©J. N. Kutz) 24

where x = (x1 x2)
T = (ψn dψn/dx)

T . The boundary conditions are simplified
in this case to be

x = 1 : ψn(1) = x1(1) = 0 (1.4.2a)

x = −1 : ψn(−1) = x1(−1) = 0 . (1.4.2b)

At this stage, we will also assume that n(x) = n0 for simplicity.
With the problem thus defined, we turn our attention to the key aspects in

the computational implementation of the boundary value problem solver. These
are

• FOR loops

• IF statements

• time-stepping algorithms: ode23, ode45, ode113, ode15s

• step-size control

• code development and flow

Every code will be controlled by a set of FOR loops and IF statements. It
is imperative to have proper placement of these control statements in order for
the code to operate successfully.

Convergence

In addition to developing a successful code, it is reasonable to ask whether your
numerical solution is actually correct. Thus far, the premise has been that
discretization should provide an accurate approximation to the true solution
provided the time-step ∆t is small enough. Although in general this philosophy
is correct, every numerical algorithm should be carefully checked to determine
if it indeed converges to the true solution. The time-stepping schemes consid-
ered previously already hint at how the solutions should converge: fourth-order
Runge-Kutta converges like ∆t4, second-order Runge-Kutta converges like ∆t2,
and second-order predictor-corrector schemes converge like ∆t2. Thus the algo-
rithm for checking convergence is as follows:

1. Solve the differential equation using a time-step ∆t∗ which is very small.
This solution will be considered the exact solution. Recall that we would
in general like to take ∆t as large as possible for efficiency purposes.

2. Using a much larger time-step ∆t, solve the differential equation and com-
pare the numerical solution with that generated from ∆t∗. Cut this time-
step in half and compare once again. In fact, continue cutting the time-
step in half: ∆t,∆t/2,∆t/4,∆t/8, · · · in order to compare the difference
in the exact solution to this hierarchy of solutions.



Scientific Computing ( c©J. N. Kutz) 25

3. The difference between any run ∆t∗ and ∆t is considered the error. Al-
though there are many definitions of error, a practial error measurement

is the root mean-square error E =
[
(1/N)

∑N
i=1 |y∆t∗ − y∆t|2

]1/2
. Once

calculated, it is possible to verify the convergence law of ∆t2, for instance,
with a second-order Runge-Kutta.

Flow Control

In order to begin coding, it is always prudent to construct the basic structure
of the algorithm. In particular, it is good to determine the number of FOR
loops and IF statements which may be required for the computations. What
is especially important is determining the hierarchy structure for the loops. To
solve the boundary value problem proposed here, we require two FOR loops
and one IF statement block. The outermost FOR loop of the code should
determine the number of eigenvalues and eigenmodes to be searched for. Within
this FOR loop exists a second FOR loop which iterates the shooting method
so that the solution converges to the correct boundary value solution. This
second FOR loop has a logical IF statement which needs to check whether
the solution has indeed converged to the boundary value solution, or whether
adjustment of the value of βn is necessary and the iteration procedure needs
to be continued. Figure 9 illustrates the backbone of the numerical code for
solving the boundary value problem. It includes the two FOR loops and logical
IF statement block as the core of its algorithmic structure. For a nonlinear
problem, a third FOR loop would be required for A in order to achieve the
normalization of the eigenfunctions to unity.

The various pieces of the code are constructed here using the MATLAB pro-
gramming language. We begin with the initialization of the parameters.

Initialization

clear all; % clear all previously defined variables

close all; % clear all previously defined figures

tol=10^(-4); % define a tolerance level to be achieved

% by the shooting algorithm

col=[’r’,’b’,’g’,’c’,’m’,’k’]; % eigenfunction colors

n0=100; % define the parameter n0

A=1; % define the initial slope at x=-1

x0=[0 A]; % initial conditions: x1(-1)=0, x1’(-1)=A

xp=[-1 1]; % define the span of the computational domain

Upon completion of the initialization process for the parameters which are not
involved in the main loop of the code, we move into the main FOR loop which



Scientific Computing ( c©J. N. Kutz) 26

n

βn

βn

βn

β

normalize and

initialize
parameters

solve ODEs

IF statement:
root solve for

IF converged:

plot and save data

IF not converged:

new value of

loopmode loop

choose choose A

choose new mode

Figure 9: Basic algorithm structure for solving the boundary value problem.
Two FOR loops are required to step through the values of βn and A along with
a single IF statement block to check for convergence of the solution

searches out a specified number of eigenmodes. Embedded in this FOR loop
is a second FOR loop which attemps different values of βn until the correct
eigenvalue is found. An IF statement is used to check the convergence of values
of βn to the appropriate value.

Main Program

beta_start=n0; % beginning value of beta

for modes=1:5 % begin mode loop

beta=beta_start; % initial value of eigenvalue beta

dbeta=n0/100; % default step size in beta

for j=1:1000 % begin convergence loop for beta

[t,y]=ode45(’shoot2’,xp,x0,[],n0,beta); % solve ODEs

if abs(y(end,1)-0) < tol % check for convergence

beta % write out eigenvalue



Scientific Computing ( c©J. N. Kutz) 27

break % get out of convergence loop

end

if (-1)^(modes+1)*y(end,1)>0 % this IF statement block

beta=beta-dbeta; % checks to see if beta

else % needs to be higher or lower

beta=beta+dbeta/2; % and uses bisection to

dbeta=dbeta/2; % converge to the solution

end %

end % end convergence loop

beta_start=beta-0.1; % after finding eigenvalue, pick

% new starting value for next mode

norm=trapz(t,y(:,1).*y(:,1)) % calculate the normalization

plot(t,y(:,1)/sqrt(norm),col(modes)); hold on % plot modes

end % end mode loop

The code uses ode45, which is a fourth-order Runge-Kutta method, to solve
the differential equation and advance the solution. The function shoot2.m is
called in this routine. For the differential equation considered here, the function
shoot2.m would be the following:

shoot2.m

function rhs=shoot2(xspan,x,dummy,n0,beta)

rhs=[ x(2)

(beta-n0)*x(1) ];

This code will find the first five eigenvalues and plot their corresponding
normalized eigenfunctions. The bisection method implemented to adjust the
values of βn to find the boundary value solution is based upon observations of the
structure of the even and odd eigenmodes. In general, it is always a good idea to
first explore the behavior of the solutions of the boundary value problem before
writing the shooting routine. This will give important insights into the behavior
of the solutions and will allow for a proper construction of an accurate and
efficient bisection method. Figure 10 illustrates several characteristic features
of this boundary value problem. In Fig. 10(a) and 10(b), the behavior of the
solution near the first even and first odd solution is exhibited. From Fig. 10(a)
it is seen that for the even modes increasing values of β bring the solution
from ψn(1) > 0 to ψn(1) < 0. In contrast, odd modes go from ψn(1) < 0 to
ψn(1) > 0 as β is increased. This observation forms the basis for the bisection
method developed in the code. Figure 10(c) illustrates the first four normalized
eigenmodes along with their corresponding eigenvalues.



Scientific Computing ( c©J. N. Kutz) 28

−1 −0.5 0 0.5 1

x

−2

−1

0

1

2

ψ(x)

(c)

β4=60.53
β3=77.80
β2=90.13
β1=97.53

−1 −0.5 0 0.5 1

x

−0.5

0

0.5

1

ψ(x)

(a)

β=98
β=95

−1 −0.5 0 0.5 1

x

−1

−0.5

0

0.5

1
(b)

β=95
β=85

Figure 10: In (a) and (b) the behavior of the solution near the first even and
first odd solution is depicted. Note that for the even modes increasing values of
β bring the solution from ψn(1) > 0 to ψn(1) < 0. In contrast, odd modes go
from ψn(1) < 0 to ψn(1) > 0 as β is increased. In (c) the first four normalized
eigenmodes along with their corresponding eigenvalues are illustrated for n0 =
100.

1.5 Boundary value problems: direct solve and relaxation

The shooting method is not the only method for solving boundary value prob-
lems. The direct method of solution relies on Taylor expanding the differential
equation itself. For linear problems, this results in a matrix problem of the
form Ax = b. For nonlinear problems, a nonlinear system of equations must be
solved using a relaxation scheme, i.e. a Newton or Secant method. The proto-
typical example of such a problem is the second-order boundary value problem

d2y

dt2
= f

(
t, y,

dy

dt

)
(1.5.1)



Scientific Computing ( c©J. N. Kutz) 29

O(∆t2) center-difference schemes

f ′(t) = [f(t+∆t)− f(t−∆t)]/2∆t
f ′′(t) = [f(t+∆t)− 2f(t) + f(t−∆t)]/∆t2

f ′′′(t) = [f(t+ 2∆t)− 2f(t+∆t) + 2f(t−∆t)− f(t− 2∆t)]/2∆t3

f ′′′′(t) = [f(t+ 2∆t)− 4f(t+∆t) + 6f(t)− 4f(t−∆t) + f(t− 2∆t)]/∆t4

Table 2: Second-order accurate center-difference formulas.

on t ∈ [a, b] with the general boundary conditions

α1y(a) + β1
dy(a)

dt
= γ1 (1.5.2a)

α2y(b) + β2
dy(b)

dt
= γ2 . (1.5.2b)

Thus the solution is defined over a specific interval and must satisfy the relations
(1.5.2) at the end points of the interval.

Before considering the general case, we simplify the method by considering
the linear boundary value problem

d2y

dt2
= p(t)

dy

dt
+ q(t)y + r(t) (1.5.3)

on t ∈ [a, b] with the simplified boundary conditions

y(a) = α (1.5.4a)

y(b) = β . (1.5.4b)

Taylor expanding the differential equation and boundary conditions will gener-
ate the linear system of equations which solve the boundary value problem.

To see how the Taylor expansions are useful, consider the following two
Taylor series:

f(t+∆t) = f(t) + ∆t
df(t)

dt
+

∆t2

2!

d2f(t)

dt2
+

∆t3

3!

d3f(c1)

dt3
(1.5.5a)

f(t−∆t) = f(t)−∆t
df(t)

dt
+

∆t2

2!

d2f(t)

dt2
− ∆t3

3!

d3f(c2)

dt3
(1.5.5b)

where ci ∈ [a, b]. Subtracting these two expressions gives

f(t+∆t)− f(t−∆t) = 2∆t
df(t)

dt
+

∆t3

3!

(
d3f(c1)

dt3
+
d3f(c2)

dt3

)
. (1.5.6)



Scientific Computing ( c©J. N. Kutz) 30

O(∆t4) center-difference schemes

f ′(t) = [−f(t+ 2∆t) + 8f(t+∆t)− 8f(t−∆t) + f(t− 2∆t)]/12∆t
f ′′(t) = [−f(t+ 2∆t) + 16f(t+∆t)− 30f(t)

+16f(t−∆t)− f(t− 2∆t)]/12∆t2

f ′′′(t) = [−f(t+ 3∆t) + 8f(t+ 2∆t)− 13f(t+∆t)
+13f(t−∆t)− 8f(t− 2∆t) + f(t− 3∆t)]/8∆t3

f ′′′′(t) = [−f(t+ 3∆t) + 12f(t+ 2∆t)− 39f(t+∆t) + 56f(t)
−39f(t−∆t) + 12f(t− 2∆t)− f(t− 3∆t)]/6∆t4

Table 3: Fourth-order accurate center-difference formulas.

By using the mean-value theorem of calculus, we find f ′′′(c) = (f ′′′(c1) +
f ′′′(c2))/2. Upon dividing the above expression by 2∆t and rearranging, we
find the following expression for the first derivative:

df(t)

dt
=
f(t+∆t)− f(t−∆t)

2∆t
− ∆t2

6

d3f(c)

dt3
(1.5.7)

where the last term is the truncation error associated with the approximation of
the first derivative using this particular Taylor series generated expression. Note
that the truncation error in this case is O(∆t2). We could improve on this by
continuing our Taylor expansion and truncating it at higher orders in ∆t. This
would lead to higher accuracy schemes. Further, we could also approximate
the second, third, fourth, and higher derivatives using this technique. It is also
possible to generate backward and forward difference schemes by using points
only behind or in front of the current point respectively. Tables 2-4 summarize
the second-order and fourth-order central difference schemes along with the
forward- and backward-difference formulas which are accurate to second-order.

To solve the simplified linear boundary value problem above which is accu-
rate to second order, we use table 2 for the second and first derivatives. The
boundary value problem then becomes

y(t+∆t)−2y(t)+y(t−∆t)

∆t2
= p(t)

y(t+∆t)−y(t−∆t)

2∆t
+q(t)y(t)+r(t) (1.5.8)

with the boundary conditions y(a) = α and y(b) = β. We can rearrange this
expression to read
[
1− ∆t

2
p(t)

]
y(t+∆t)−

[
2 + ∆t2q(t)

]
y(t) +

[
1 +

∆t

2

]
y(t−∆t) = ∆t2r(t) .

(1.5.9)



Scientific Computing ( c©J. N. Kutz) 31

O(∆t2) forward- and backward-difference schemes

f ′(t) = [−3f(t) + 4f(t+∆t)− f(t+ 2∆t)]/2∆t
f ′(t) = [3f(t)− 4f(t−∆t) + f(t− 2∆t)]/2∆t
f ′′(t) = [2f(t)− 5f(t+∆t) + 4f(t+ 2∆t)− f(t+ 3∆t)]/∆t3

f ′′(t) = [2f(t)− 5f(t−∆t) + 4f(t− 2∆t)− f(t− 3∆t)]/∆t3

Table 4: Second-order accurate forward- and backward-difference formulas.

We discretize the computational domain and denote t0 = a to be the left bound-
ary point and tN = b to be the right boundary point. This gives the boundary
conditions

y(t0) = y(a) = α (1.5.10a)

y(tN ) = y(b) = β . (1.5.10b)

The remaining N − 1 points can be recast as a matrix problem Ax = b where

A=




2+∆t2q(t1) −1+ ∆t
2

p(t1) 0 · · · 0

−1− ∆t
2

p(t2) 2+∆t2q(t2) −1+ ∆t
2

p(t2) 0 · · ·

.

.

.

0

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
0

.

.

.

.
.
.

.
.
.

−1+ ∆t
2

p(tN−2)

0 · · · 0 −1− ∆t
2

p(tN−1) 2+∆t2q(tN−1)




(1.5.11)
and

x=




y(t1)
y(t2)
...

y(tN−2)
y(tN−1)




b=




−∆t2r(t1) + (1 + ∆tp(t1)/2)y(t0)
−∆t2r(t2)
...
−∆t2r(tN−2)
−∆t2r(tN−1) + (1−∆tp(tN−1)/2)y(tN)



.

(1.5.12)
Thus the solution can be found by a direct solve of the linear system of equations.



Scientific Computing ( c©J. N. Kutz) 32

Nonlinear Systems

A similar solution procedure can be carried out for nonlinear systems. However,
difficulties arise from solving the resulting set of nonlinear algebraic equations.
We can once again consider the general differential equation and expand with
second-order accurate schemes:

y′′=f(t, y, y′) → y(t+∆t)−2y(t)+y(t−∆t)

∆t2
=f

(
t, y(t),

y(t+∆t)−y(t−∆t)

2∆t

)
.

(1.5.13)
We discretize the computational domain and denote t0 = a to be the left bound-
ary point and tN = b to be the right boundary point. Considering again the
simplified boundary conditions y(t0) = y(a) = α and y(tN ) = y(b) = β gives
the following nonlinear system for the remaining N − 1 points.

2y1 − y2 − α+∆t2f(t1, y1, (y2 − α)/2∆t) = 0

−y1 + 2y2 − y3 +∆t2f(t2, y2, (y3 − y1)/2∆t) = 0

...

−yN−3+2yN−2−yN−1+∆t2f(tN−2, yN−2, (yN−1−yN−3)/2∆t) = 0

−yN−2 + 2yN−1 − β +∆t2f(tN−1, yN−1, (β − yN−2)/2∆t) = 0.

This (N − 1) × (N − 1) nonlinear system of equations can be very difficult to
solve and imposes a severe constraint on the usefulness of the scheme. However,
there may be no other way of solving the problem and a solution to these system
of equations must be computed. Further complicating the issue is the fact that
for nonlinear systems such as these, there are no guarantees about the existence
or uniqueness of solutions. The best approach is to use a relaxation scheme
which is based upon Newton or Secant method iterations.

Solving Nonlinear Systems: Newton-Raphson Iteration

The only built-in MATLAB command which solves nonlinear system of equa-
tions is FSOLVE. However, this command is now packaged within the opti-
mization toolbox. Most users of MATLAB do not have access to this toolbox
and alternatives must be sought. We therefore develop the basic ideas of the
Newton-Raphson Iteration method, commonly known as a Newton’s method.
We begin by considering a single nonlinear equation

f(xr) = 0 (1.5.15)

where xr is the root to the equation and the value being sought. We would like to
develop a scheme which systematically determines the value of xr. The Newton-
Raphson method is an iterative scheme which relies on an initial guess, x0, for
the value of the root. From this guess, subsequent guesses are determined until



Scientific Computing ( c©J. N. Kutz) 33

n

xn

xn+1

xn+1

xn xn+1 xn

x1x

(a)

f(    )

f(       )  

slope=rise/run=(0-f(    ) )/( -    ) 

x3 x0 x4 x2

(b)

Figure 11: Construction and implementation of the Newton-Raphson iteration
formula. In (a), the slope is the determining factor in deriving the Newton-
Raphson formula. In (b), a graphical representation of the iteration scheme is
given.

the scheme either converges to the root xr or the scheme diverges and another
initial guess is used. The sequence of guesses (x0, x1, x2, ...) is generated from
the slope of the function f(x). The graphical procedure is illustrated in Fig. 11.
In essence, everything relies on the slope formula as illustrated in Fig. 11(a):

slope =
df(xn)

dx
=

rise

run
=

0− f(xn)

xn+1 − xn
. (1.5.16)

Rearranging this gives the Newton-Raphson iterative relation

xn+1 = xn − f(xn)

f ′(xn)
. (1.5.17)

A graphical example of how the iteration procedure works is given in Fig. 11(b)
where a sequence of iterations is demonstrated. Note that the scheme fails if
f ′(xn) = 0 since then the slope line never intersects y = 0. Further, for certain
guesses the iterations may diverge. Provided the initial guess is sufficiently close,
the scheme usually will converge. Conditions for convergence can be found in
Burden and Faires [?].

The Newton method can be generalized for system of nonlinear equations.
The details will not be discussed here, but the Newton iteration scheme is similar
to that developed for the single function case. Given a system:

F(xn) =




f1(x1, x2, x3, ..., xN )
f2(x1, x2, x3, ..., xN )

...
fN(x1, x2, x3, ..., xN )


 = 0 , (1.5.18)



Scientific Computing ( c©J. N. Kutz) 34

the iteration scheme is
xn+1 = xn +∆xn (1.5.19)

where
J(xn)∆xn = −F(xn) (1.5.20)

and J(xn) is the Jacobian matrix

J(xn) =




f1x1
f1x2

· · · f1xN

f2x1
f2x2

· · · f2xN

...
...

...
fNx1

fNx2
· · · fNxN


 (1.5.21)

This algorithm relies on initially guessing values for x1, x2, ..., xN . As before,
there is no guarantee that the algorithm will converge. Thus a good initial guess
is critical to its success. Further, the determinant of the Jacobian cannot equal
zero, detJ(xn) 6= 0, in order for the algorithm to work.

2 Finite Difference Methods

Finite difference methods are based exclusively on Taylor expansions. They are
one of the most powerful methods available since they are relatively easy to
implement, can handle fairly complicated boundary conditions, and allow for
explicit calculations of the computational error. The result of discretizing any
given problem is the need to solve a large linear system of equations or perhaps
manipulate large, sparse matrices. All this will be dealt with in the following
sections.

2.1 Finite difference discretization

To discuss the solution of a given problem with the finite difference method,
we consider a specific example from atmospheric sciences. The quasi-two-
dimensional motion of the atmosphere can be modeled by the advection-diffusion
behavior for the vorticity ω(x, y, t) which is coupled to the streamfunction
ψ(x, y, t):

∂ω

∂t
+ [ψ, ω] = ν∇2ω (2.1.1a)

∇2ψ = ω (2.1.1b)

where

[ψ, ω] =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
(2.1.2)



Scientific Computing ( c©J. N. Kutz) 35

and ∇2 = ∂2x+∂
2
y is the two dimensional Laplacian. Note that this equation has

both an advection component (hyperbolic) from [ψ, ω] and a diffusion compo-
nent (parabolic) from ν∇2ω. We will assume that we are given the initial value
of the vorticity

ω(x, y, t = 0) = ω0(x, y) . (2.1.3)

Additionally, we will proceed to solve this problem with periodic boundary
conditions. This gives the following set of boundary conditions

ω(−L, y, t) = ω(L, y, t) (2.1.4a)

ω(x,−L, t) = ω(x, L, t) (2.1.4b)

ψ(−L, y, t) = ψ(L, y, t) (2.1.4c)

ψ(x,−L, t) = ψ(x, L, t) (2.1.4d)

where we are solving on the computational domain x ∈ [−L,L] and y ∈ [−L,L].

Basic Algorithm Structure

Before discretizing the governing partial differential equation, it is important to
clarify what the basic solution procedure will be. Two physical quantities need
to be solved as functions of time:

ψ(x, y, t) streamfunction (2.1.5a)

ω(x, y, t) vorticity . (2.1.5b)

We are given the initial vorticity ω0(x, y) and periodic boundary conditions.
The solution procedure is as follows:

1. Elliptic Solve: Solve the elliptic problem ∇2ψ = ω0 to find the stream-
function at time zero ψ(x, y, t = 0) = ψ0.

2. Time-Stepping: Given initial ω0 and ψ0, solve the advection-diffusion
problem by time-stepping with a given method. The Euler method is
illustrated below

ω(x, y, t+∆t) = ω(x, y, t) + ∆t
(
ν∇2ω(x, y, t)− [ψ(x, y, t), ω(x, y, t)]

)

This advances the solution ∆t into the future.

3. Loop: With the updated value of ω(x, y,∆t), we can repeat the process
by again solving for ψ(x, y,∆t) and updating the vorticity once again.

This gives the basic algorithmic structure which must be implemented in order
to generate the solution for the vorticity and streamfunction as functions of
time. It only remains to discretize the problem and solve.



Scientific Computing ( c©J. N. Kutz) 36

Step 1: Elliptic Solve

We begin by discretizing the elliptic solve problem for the streamfunction ψ(x, y, t).
The governing equation in this case is

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= ω (2.1.6)

Using the central difference formulas of Sec. 1.5 reduces the governing equation
to a set of linearly coupled equations. In particular, we find for a second-order
accurate central difference scheme that the elliptic equation reduces to:

ψ(x+∆x, y, t)− 2ψ(x, y, t) + ψ(x−∆x, y, t)

∆x2
(2.1.7)

+
ψ(x, y +∆y, t)− 2ψ(x, y, t) + ψ(x, y −∆y, t)

∆y2
= ω(x, y, t)

Thus the solution at each point depends upon itself and four neighboring points.
This creates a five point stencil for solving this equation. Figure 12 illustrates
the stencil which arises from discretization. For convenience we denote

ψmn = ψ(xm, yn) . (2.1.8)

By letting ∆x2 = ∆y2 = δ2, the discretized equations reduce to

−4ψmn + ψ(m−1)n + ψ(m+1)n + ψm(n−1) + ψm(n+1) = δ2ωmn (2.1.9)

with periodic boundary conditions imposing the following constraints

ψ1n = ψ(N+1)n (2.1.10a)

ψm1 = ψm(N+1) (2.1.10b)

where N + 1 is the total number of discretization points in the computational
domain in both the x and y directions.

As a simple example, consider the four point system for which N = 4. For
this case, we have the following sets of equations

−4ψ11 + ψ41 + ψ21 + ψ14 + ψ12 = δ2ω11

−4ψ12 + ψ42 + ψ22 + ψ11 + ψ13 = δ2ω12

...

−4ψ21 + ψ11 + ψ31 + ψ24 + ψ22 = δ2ω21

...

which results in the sparse matrix (banded matrix) system

Aψ = δ2ω (2.1.12)



Scientific Computing ( c©J. N. Kutz) 37

(m+1)nψ

m(n-1)

m=3m=1 m=M m=M+1m=M-1m=2

n=1

n=2

n=3

n=N-1

n=N

n=N+1

x

y

∆

∆

x

y

ψmn

ψ(m-1)n

ψm(n+1)

ψ

Figure 12: Discretization stencil for solving for the streamfunction with second-
order accurate central difference schemes. Note that ψmn = ψ(xm, yn).

where

A=




−4 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 −4 1 0 0 1 0 0 0 0 0 0 0 1 0 0
0 1 −4 1 0 0 1 0 0 0 0 0 0 0 1 0
1 0 1 −4 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 −4 1 0 1 1 0 0 0 0 0 0 0
0 1 0 0 1 −4 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 −4 1 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 −4 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 −4 1 0 1 1 0 0 0
0 0 0 0 0 1 0 0 1 −4 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 −4 1 0 0 1 0
0 0 0 0 0 0 0 1 1 0 1 −4 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 −4 1 0 1
0 1 0 0 0 0 0 0 0 1 0 0 1 −4 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 −4 1
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 −4




(2.1.13)
and

ψ=(ψ11 ψ12 ψ13 ψ14 ψ21 ψ22 ψ23 ψ24 ψ31 ψ32 ψ33 ψ34 ψ41 ψ42 ψ43 ψ44)
T (2.1.14a)



Scientific Computing ( c©J. N. Kutz) 38

ω=δ2(ω11 ω12 ω13 ω14 ω21 ω22 ω23 ω24 ω31 ω32 ω33 ω34 ω41 ω42 ω43 ω44)
T .(2.1.14b)

Any matrix solver can then be used to generate the values of the two-dimensional
streamfunction which are contained completely in the vector ψ.

Step 2: Time-Stepping

After generating the matrix A and the value of the streamfunction ψ(x, y, t),
we use this updated value along with the current value of the vorticity to take a
time step ∆t into the future. The appropriate equation is the advection-diffusion
evolution equation:

∂ω

∂t
+ [ψ, ω] = ν∇2ω . (2.1.15)

Using the definition of the bracketed term and the Laplacian, this equation is

∂ω

∂t
=
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
+ ν

(
∂2ω

∂x2
+
∂2ω

∂y2

)
. (2.1.16)

Second order central-differencing discretization then yields

∂ω

∂t
=

(
ψ(x, y+∆y, t)−ψ(x, y−∆y, t)

2∆y

)(
ω(x+∆x, y, t)−ω(x−∆x, y, t)

2∆x

)

−
(
ψ(x+∆x, y, t)−ψ(x−∆x, y, t)

2∆x

)(
ω(x, y+∆y, t)−ω(x, y−∆y, t)

2∆y

)

+ν

{
ω(x+∆x, y, t)−2ω(x, y, t)+ω(x−∆x, y, t)

∆x2

+
ω(x, y+∆y, t)−2ω(x, y, t)+ω(x, y−∆y, t)

∆y2

}
. (2.1.17)

This is simply a large system of differential equations which can be stepped
forward in time with any convenient time-stepping algorithm such as 4th order
Runge-Kutta. In particular, given that there are N + 1 points and periodic
boundary conditions, this reduces the system of differential equations to an
N×N coupled system. Once we have updated the value of the vorticity, we must
again update the value of streamfunction to once again update the vorticity.
This loop continues until the solution at the desired future time is achieved.
Figure 13 illustrates how the five-point, two-dimensional stencil advances the
solution.

The behavior of the vorticity is illustrated in Fig. 14 where the solution is
advanced for eight time units. The initial condition used in this simulation is

ω0 = ω(x, y, t = 0) = exp

(
−2x2 − y2

20

)
. (2.1.18)

This stretched Gaussian is seen to rotate while advecting and diffusing vorticity.
Multiple vortex solutions can also be considered along with oppositely signed
vortices.



Scientific Computing ( c©J. N. Kutz) 39

mn

ωmn

ωmn

ω

∆

t=0

t=   t

t=2   t

∆

Figure 13: Discretization stencil resulting from center-differencing of the
advection-diffusion equations. Note that for explicit stepping schemes the fu-
ture solution only depends upon the present. Thus we are not required to solve
a large linear system of equations.

2.2 Direct solution methods for Ax=b

A central concern in almost any computational strategy is a fast and efficient
computational method for achieving a solution of a large system of equations
Ax = b. In trying to render a computation tractable, it is crucial to minimize
the operations it takes in solving such a system. There are a variety of direct
methods for solving Ax = b: Gaussian elimination, LU decomposition, and
inverting the matrix A. In addition to these direct methods, iterative schemes
can also provide efficient solution techniques. Some basic iterative schemes will
be discussed in what follows.

The standard beginning to discussions of solution techniques for Ax = b
involves Gaussian elimination. We will consider a very simple example of a
3×3 system in order to understand the operation count and numerical procedure



Scientific Computing ( c©J. N. Kutz) 40

t=1t=0 t=2

t=3 t=4 t=5

t=6 t=7 t=8

Figure 14: Time evolution of the vorticity ω(x, y, t) over eight time units with
ν = 0.001 and a spatial domain x ∈ [−10, 10] and y ∈ [−10, 10]. The initial
condition was a stretched Gaussian of the form ω(x, y, 0) = exp(−2x2 − y2/20).

involved in this technique. Thus consider Ax = b with

A =




1 1 1
1 2 4
1 3 9


 b =




1
−1
1


 . (2.2.1)

The Gaussian elimination procedure begins with the construction of the aug-
mented matrix

[A|b] =




1 1 1 1
1 2 4 −1
1 3 9 1






Scientific Computing ( c©J. N. Kutz) 41

=




1 1 1 1
0 1 3 −2
0 2 8 0




=




1 1 1 1
0 1 3 −2
0 1 4 0




=




1 1 1 1
0 1 3 −2
0 0 1 2


 (2.2.2)

where we have underlined and bolded the pivot of the augmented matrix. Back
substituting then gives the solution

x3 = 2 → x3 = 2 (2.2.3a)

x2 + 3x3 = −2 → x2 = −8 (2.2.3b)

x1 + x2 + x3 = 1 → x1 = 7 . (2.2.3c)

This procedure can be carried out for any matrix A which is nonsingular, i.e.
detA 6= 0. In this algorithm, we simply need to avoid these singular matrices
and occasionally shift the rows around to avoid a zero pivot. Provided we do
this, it will always yield an answer.

The fact that this algorithm works is secondary to the concern of the time
required in generating a solution in scientific computing. The operation count
for the Gaussian elimination can easily be estimated from the algorithmic pro-
cedure for an N ×N matrix:

1. Movement down the N pivots

2. For each pivot, perform N additions/subtractions across a given row.

3. For each pivot, perform the addition/subtraction down the N rows.

In total, this results in a scheme whose operation count is O(N3). The back
substitution algorithm can similarly be calculated to give an O(N2) scheme.

LU Decomposition

Each Gaussian elimination operation costs O(N3) operations. This can be com-
putationally prohibitive for large matrices when repeated solutions of Ax = b
must be found. When working with the same matrix A however, the operation
count can easily be brought down to O(N2) using LU factorization which splits
the matrix A into a lower triangular matrix L, and an upper triangular matrix



Scientific Computing ( c©J. N. Kutz) 42

U. For a 3× 3 matrix, the LU factorization scheme splits A as follows:

A=LU →



a11 a12 a13
a21 a22 a23
a31 a32 a33


=




1 0 0
m21 1 0
m31 m32 1





u11 u12 u13
0 u22 u23
0 0 u33


 .

(2.2.4)
Thus the L matrix is lower triangular and the U matrix is upper triangular.
This then gives

Ax = b → LUx = b (2.2.5)

where by letting y = Ux we find the coupled system

Ly = b and Ux = y (2.2.6)

where the system Ly = b

y1 = b1 (2.2.7a)

m21y1 + y2 = b2 (2.2.7b)

m31y1 +m32y2 + y3 = b3 (2.2.7c)

can be solved by O(N2) forward substitution and the system Ux = y

u11x1 + u12x2 + x3 = y1 (2.2.8a)

u22x2 + u23x3 = y2 (2.2.8b)

u33x3 = y3 (2.2.8c)

can be solved by O(N2) back substitution. Thus once the factorization is ac-
complished, the LU results in an O(N2) scheme for arriving at the solution.
The factorization itself is O(N3), but you only have to do this once. Note, you
should always use LU decomposition if possible. Otherwise, you are doing far
more work than necessary in achieving a solution.

As an example of the application of the LU factorization algorithm, we
consider the 3× 3 matrix

A=




4 3 −1
−2 −4 5
1 2 6


 . (2.2.9)

The factorization starts from the matrix multiplication of the matrix A and the
identity matrix I

A = IA =




1 0 0
0 1 0
0 0 1






4 3 −1
−2 −4 5
1 2 6


 . (2.2.10)

The factorization begins with the pivot element. To use Gaussian elimination,
we would multiply the pivot by −1/2 to eliminate the first column element in



Scientific Computing ( c©J. N. Kutz) 43

the second row. Similarly, we would multiply the pivot by 1/4 to eliminate the
first column element in the third row. These multiplicative factors are now part
of the first matrix above:

A =




1 0 0
−1/2 1 0
1/4 0 1






4 3 −1
0 −2.5 4.5
0 1.25 6.25


 . (2.2.11)

To eliminate on the third row, we use the next pivot. This requires that we
multiply by −1/2 in order to eliminate the second column, third row. Thus we
find

A =




1 0 0
−1/2 1 0
1/4 −1/2 1






4 3 −1
0 −2.5 4.5
0 0 8.5


 . (2.2.12)

Thus we find that

L =




1 0 0
−1/2 1 0
1/4 −1/2 1


 and U =




4 3 −1
0 −2.5 4.5
0 0 8.5


 . (2.2.13)

It is easy to verify by direct substitution that indeed A = LU. Just like
Gaussian elimination, the cost of factorization is O(N3). However, once L and
U are known, finding the solution is an O(N2) operation.

The Permutation Matrix

As will often happen with Gaussian elimination, following the above algorithm
will at times result in a zero pivot. This is easily handled in Gaussian elim-
ination by shifting rows in order to find a non-zero pivot. However, in LU
decomposition, we must keep track of this row shift since it will effect the right
hand side vector b. We can keep track of row shifts with a row permutation
matrix P. Thus if we need to permute two rows, we find

Ax = b → PAx = Pb → PLUx = Pb (2.2.14)

thus PA = LU. To shift rows one and two, for instance, we would have

P =




0 1 0 · · ·
1 0 0 · · ·
0 0 1 · · ·
...


 . (2.2.15)

If permutation is necessary, MATLAB can supply the permutation matrix as-
sociated with the LU decomposition.



Scientific Computing ( c©J. N. Kutz) 44

MATLAB: A \ b
Given the alternatives for solving the linear system Ax = b, it is important to
know how the MATLAB command structure for A \ b works. The following is
an outline of the algorithm performed.

1. It first checks to see if A is triangular, or some permutation thereof. If it
is, then all that is needed is a simple O(N2) substitution routine.

2. It then checks if A is symmetric, i.e. Hermitian or Self-Adjoint. If so, a
Cholesky factorization is attempted. If A is positive definite, the Cholesky
algorithm is always succesful and takes half the run time of LU factoriza-
tion.

3. It then checks if A is Hessenberg. If so, it can be written as an upper
triangular matrix and solved by a substitution routine.

4. If all the above methods fail, then LU factorization is used and the forward
and backward substitution routines generate a solution.

5. If A is not square, a QR (Householder) routine is used to solve the system.

6. If A is not square and sparse, a least squares solution using QR factoriza-
tion is performed.

Note that solving by b = A−1x is the slowest of all methods, taking 2.5 times
longer or more than A \ b. It is not recommended. However, just like LU
factorization, once the inverse is known it need not be calculated again. Care
must also be taken when the detA ≈ 0, i.e. the matrix is ill-conditioned.

MATLAB commands

The commands for executing the linear system solve are as follows

• A \ b: Solve the system in the order above.

• [L,U ] = lu(A): Generate the L and U matrices.

• [L,U, P ] = lu(A): Generate the L and U factorization matrices along with
the permutation matrix P .

2.3 Iterative solution methods for Ax=b

In addition to the standard techniques of Gaussian elimination or LU decom-
position for solving Ax = b, a wide range of iterative techniques are available.
These iterative techniques can often go under the name of Krylov space meth-
ods [?]. The idea is to start with an initial guess for the solution and develop
an iterative procedure that will converge to the solution. The simplest example



Scientific Computing ( c©J. N. Kutz) 45

of this method is known as a Jacobi iteration scheme. The implementation of
this scheme is best illustrated with an example. We consider the linear system

4x− y + z = 7 (2.3.1a)

4x− 8y + z = −21 (2.3.1b)

−2x+ y + 5z = 15 . (2.3.1c)

We can rewrite each equation as follows

x =
7 + y − z

4
(2.3.2a)

y =
21 + 4x+ z

8
(2.3.2b)

z =
15 + 2x− y

5
. (2.3.2c)

To solve the system iteratively, we can define the following Jacobi iteration
scheme based on the above

xk+1 =
7 + yk − zk

4
(2.3.3a)

yk+1 =
21 + 4xk + zk

8
(2.3.3b)

zk+1 =
15 + 2xk − yk

5
. (2.3.3c)

An algorithm is then easily implemented computationally. In particular, we
would follow the structure:

1. Guess initial values: (x0, y0, z0).

2. Iterate the Jacobi scheme: xk+1 = Axk.

3. Check for convergence: ‖ xk+1 − xk ‖<tolerance.

Note that the choice of an initial guess is often critical in determining the con-
vergence to the solution. Thus the more that is known about what the solution
is supposed to look like, the higher the chance of successful implementation of
the iterative scheme. Table 5 shows the convergence of this scheme for this
simple example.

Given the success of this example, it is easy to conjecture that such a scheme
will always be effective. However, we can reconsider the original system by
interchanging the first and last set of equations. This gives the system

−2x+ y + 5z = 15 (2.3.4a)

4x− 8y + z = −21 (2.3.4b)

4x− y + z = 7 . (2.3.4c)



Scientific Computing ( c©J. N. Kutz) 46

k xk yk zk
0 1.0 2.0 2.0
1 1.75 3.375 3.0
2 1.84375 3.875 3.025
...

...
...

...
15 1.99999993 3.99999985 2.9999993
...

...
...

...
19 2.0 4.0 3.0

Table 5: Convergence of Jacobi iteration scheme to the solution value of
(x, y, z) = (2, 4, 3) from the initial guess (x0, y0, z0) = (1, 2, 2).

k xk yk zk
0 1.0 2.0 2.0
1 -1.5 3.375 5.0
2 6.6875 2.5 16.375
3 34.6875 8.015625 -17.25
...

...
...

...
±∞ ±∞ ±∞

Table 6: Divergence of Jacobi iteration scheme from the initial guess
(x0, y0, z0) = (1, 2, 2).

To solve the system iteratively, we can define the following Jacobi iteration
scheme based on this rearranged set of equations

xk+1 =
yk + 5zk − 15

2
(2.3.5a)

yk+1 =
21 + 4xk + zk

8
(2.3.5b)

zk+1 = yk − 4xk + 7 . (2.3.5c)

Of course, the solution should be exactly as before. However, Table 6 shows
that applying the iteration scheme leads to a set of values which grow to infinity.
Thus the iteration scheme quickly fails.

Strictly Diagonal Dominant

The difference in the two Jacobi schemes above involves the iteration procedure
being strictly diagonal dominant. We begin with the definition of strict diagonal



Scientific Computing ( c©J. N. Kutz) 47

dominance. A matrix A is strictly diagonal dominant if for each row, the sum
of the absolute values of the off-diagonal terms is less than the absolute value
of the diagonal term:

|akk| >
N∑

j=1,j 6=k

|akj | . (2.3.6)

Strict diagonal dominance has the following consequence; given a stricly diag-
onal dominant matrix A, then Ax = b has a unique solution x = p. Jacobi
iteration produces a sequence pk that will converge to p for any p0. For the
two examples considered here, this property is crucial. For the first example
(2.3.1), we have

A =




4 −1 1
4 −8 1

−2 1 5


→

row 1: |4| > | − 1|+ |1| = 2
row 2: | − 8| > |4|+ |1| = 5
row 3: |5| > |2|+ |1| = 3

, (2.3.7)

which shows the system to be strictly diagonal dominant and guaranteed to
converge. In contrast, the second system (2.3.4) is not stricly diagonal dominant
as can be seen from

A =




−2 1 5
4 −8 1
4 −1 1


→

row 1: | − 2| < |1|+ |5| = 6
row 2: | − 8| > |4|+ |1| = 5
row 3: |1| < |4|+ | − 1| = 5

. (2.3.8)

Thus this scheme is not guaranteed to converge. Indeed, it diverges to infinity.

Modification and Enhancements: Gauss-Seidel

It is sometimes possible to enhance the convergence of a scheme by applying
modifications to the basic Jacobi scheme. For instance, the Jacobi scheme given
by (2.3.3) can be enhanced by the following modifications

xk+1 =
7 + yk − zk

4
(2.3.9a)

yk+1 =
21 + 4xk+1 + zk

8
(2.3.9b)

zk+1 =
15 + 2xk+1 − yk+1

5
. (2.3.9c)

Here use is made of the supposedly improved value xk+1 in the second equation
and xk+1 and yk+1 in the third equation. This is known as the Gauss-Seidel
scheme. Table ?? shows that the Gauss-Seidel procedure converges to the solu-
tion in half the number of iterations used by the Jacobi scheme.

Unlike the Jacobi scheme, the Gauss-Seidel method is not guaranteed to con-
verge even in the case of strict diagonal dominance. Further, the Gauss-Seidel
modification is only one of a large number of possible changes to the iteration



Scientific Computing ( c©J. N. Kutz) 48

k xk yk zk
0 1.0 2.0 2.0
1 1.75 3.75 2.95
2 1.95 3.96875 2.98625
...

...
...

...
10 2.0 4.0 3.0

Table 7: Convergence of Gauss-Seidel iteration scheme to the solution value of
(x, y, z) = (2, 4, 3) from the initial guess (x0, y0, z0) = (1, 2, 2).

scheme which can be implemented in an effort to enhance convergence. It is
also possible to use several previous iterations to achieve convergence. Krylov
space methods [?] are often high end iterative techniques especially developed
for rapid convergence. Included in these iteration schemes are conjugant gradi-
ent methods and generalized minimum residual methods which we will discuss
and implement [?].

Application to Advection-Diffusion

When discretizing many systems of interest, such as the advection-diffusion
problem, we are left with a system of equations that is naturally geared toward
iterative methods. Discretization of the stream function previously yielded the
system

−4ψmn + ψ(m+1)n + ψ(m−1)n + ψm(n+1) + ψm(n−1) = δ2ωmn . (2.3.10)

The matrix A in this case is represented by the left hand side of the equation.
Letting ψmn be the diagonal term, the iteration procedure yields

ψk+1
mn =

ψk(m+1)n + ψk(m−1)n + ψkm(n+1) + ψkm(n−1) − δ2ωmn

4
. (2.3.11)

Note that the diagonal term had a coefficient of |−4| = 4 and the sum of the off
diagonal elements is |1|+ |1|+ |1|+ |1|= 4. Thus the system is at the borderline
of being diagonally dominant. So although convergence is not guaranteed, it is
highly likely that we could get the Jacobi scheme to converge.

Finally, we consider the operation count associated with the iteration meth-
ods. This will allow us to compare this solution technique with Gaussian elim-
ination and LU decomposition. The following basic algorithmic steps are in-
volved:

1. Update each ψmn which costs N operations times the number of non-zero
diagonals D.



Scientific Computing ( c©J. N. Kutz) 49

2. For each ψmn, perform the appropriate addition and subtractions. In this
case there are 5 operations.

3. Iterate until the desired convergence which costs K operations.

Thus the total number of operations is O(N ·D·5·K). If the number of iterations
K can be kept small, then iteration provides a viable alternative to the direct
solution techniques.

2.4 Fast-Poisson Solvers: the Fourier Transform

Other techniques exist for solving many computational problems which are not
based upon the standard Taylor series discretization. For instance, we have
considered solving the streamfunction equation

∇2ψ = ω (2.4.1)

by discretizing in both the x and y directions and solving the associated linear
problem Ax = b. At best, we can use a factorization scheme to solve this
problem in O(N2) operations. Although iteration schemes have the possibility
of outperforming this, it is not guaranteed.

Another alternative is to use the Fast-Fourier Transform (FFT). The FFT is
an integral transform defined over the entire line x ∈ [−∞,∞]. Given computa-
tional practicalities, however, we transform over a finite domain x ∈ [−L,L] and
assume periodic boundary conditions due to the oscillatory behavior of the ker-
nel of the Fourier transform. The Fourier transform and its inverse are defined
as

F (k) =
1√
2π

∫ ∞

−∞

eikxf(x)dx (2.4.2a)

f(x) =
1√
2π

∫ ∞

−∞

e−ikxF (k)dk . (2.4.2b)

There are other equivalent definitions. However, this definition will serve to
illustrate the power and functionality of the Fourier transform method. We
again note that formally, the transform is over the entire real line x ∈ [−∞,∞]
whereas our computational domain is only over a finite domain x ∈ [−L,L].
Further, the Kernel of the transform, exp(±ikx), describes oscillatory behavior.
Thus the Fourier transform is essentially an eigenfunction expansion over all
continuous wavenumbers k. And once we are on a finite domain x ∈ [−L,L],
the continuous eigenfunction expansion becomes a discrete sum of eigenfunctions
and associated wavenumbers (eigenvalues).

Derivative Relations

The critical property in the usage of Fourier transforms concerns derivative
relations. To see how these properties are generated, we begin by considering



Scientific Computing ( c©J. N. Kutz) 50

the Fourier transform of f ′(x). We denote the Fourier transform of f(x) as

f̂(x). Thus we find

f̂ ′(x) =
1√
2π

∫ ∞

−∞

eikxf ′(x)dx = f(x)eikx|∞−∞ − ik√
2π

∫ ∞

−∞

eikxf(x)dx . (2.4.3)

Assuming that f(x) → 0 as x→ ±∞ results in

f̂ ′(x) = − ik√
2π

∫ ∞

−∞

eikxf(x)dx = −ikf̂(x) . (2.4.4)

Thus the basic relation f̂ ′ = −ikf̂ is established. It is easy to generalize this
argument to an arbitrary number of derivatives. The final result is the following
relation between Fourier transforms of the derivative and the Fourier transform
itself

f̂ (n) = (−ik)nf̂ . (2.4.5)

This property is what makes Fourier transforms so useful and practical.
As an example of the Fourier transform, consider the following differential

equation
y′′ − ω2y = −f(x) x ∈ [−∞,∞] . (2.4.6)

We can solve this by applying the Fourier transform to both sides. This gives
the following reduction

ŷ′′ − ω2ŷ = −f̂
−k2ŷ − ω2ŷ = −f̂
(k2 + ω2)ŷ = f̂

ŷ =
f̂

k2 + ω2
. (2.4.7)

To find the solution y(x), we invert the last expression above to yield

y(x) =
1√
2π

∫ ∞

−∞

e−ikx
f̂

k2 + ω2
dk . (2.4.8)

This gives the solution in terms of an integral which can be evaluated analyti-
cally or numerically.

The Fast Fourier Transform

The Fast Fourier transform routine was developed specifically to perform the
forward and backward Fourier transforms. In the mid 1960s, Cooley and Tukey
developed what is now commonly known as the FFT algorithm [?]. Their al-
gorithm was named one of the top ten algorithms of the 20th century for one



Scientific Computing ( c©J. N. Kutz) 51

reason: the operation count for solving a system dropped to O(N logN). For
N large, this operation count grows almost linearly like N . Thus it represents a
great leap forward from Gaussian elimination and LU decomposition. The key
features of the FFT routine are as follows:

1. It has a low operation count: O(N logN).

2. It finds the transform on an interval x ∈ [−L,L]. Since the integration
Kernel exp(ikx) is oscillatory, it implies that the solutions on this finite
interval have periodic boundary conditions.

3. The key to lowering the operation count to O(N logN) is in discretizing
the range x ∈ [−L,L] into 2n points, i.e. the number of points should be
2, 4, 8, 16, 32, 64, 128, 256, · · ·.

4. The FFT has excellent accuracy properties, typically well beyond that of
standard discretization schemes.

We will consider the underlying FFT algorithm in detail at a later time. For
more information at the present, see [?] for a broader overview.

The Streamfunction

The FFT algorithm provides a fast and efficient method for solving the stream-
function equation

∇2ψ = ω (2.4.9)

given the vorticity ω. In two dimensions, this equation is equivalent to

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω . (2.4.10)

Denoting the Fourier transform in x as f̂(x) and the Fourier transform in y as

g̃(y), we transform the equation. We begin by transforming in x:

∂̂2ψ

∂x2
+
∂̂2ψ

∂y2
= ω̂ → −k2xψ̂ +

∂2ψ̂

∂y2
= ω̂ , (2.4.11)

where kx are the wavenumbers in the x direction. Transforming now in the y
direction gives

−k2x
˜̂
ψ +

∂̃2ψ̂

∂y2
= ˜̂ω → −k2x

˜̂
ψ +−k2y

˜̂
ψ = ˜̂ω . (2.4.12)

This can be rearranged to obtain the final result

˜̂
ψ = −

˜̂ω
k2x + k2y

. (2.4.13)



Scientific Computing ( c©J. N. Kutz) 52

The remaining step is to inverse transform in x and y to get back to the solution
ψ(x, y).

There is one mathematical difficulty which must be addressed. The stream-
function equation with periodic boundary conditions does not have a unique
solution. Thus if ψ0(x, y, t) is a solution, so is ψ0(x, y, t) + c where c is an
arbitrary constant. When solving this problem with FFTs, the FFT will arbi-
trarily add a constant to the solution. Fundamentally, we are only interested
in derivatives of the streamfunction. Therefore, this constant is inconsequen-
tial. When solving with direct methods for Ax = b, the nonuniqueness gives a
singular matrix A. Thus solving with Gaussian elimination, LU decomposition
or iterative methods is problematic. But since the arbitray constant does not
matter, we can simply pin the streamfunction to some prescribed value on our
computational domain. This will fix the constant c and give a unique solution
to Ax = b. For instance, we could impose the following constraint condition
ψ(−L,−L, t) = 0. Such a condition pins the value of ψ(x, y, t) at the left hand
corner of the computational domain and fixes c.

MATLAB commands

The commands for executing the Fast Fourier Transform and its inverse are as
follows

• fft(x): Forward Fourier transform a vector x.

• ifft(x): Inverse Fourier transform a vector x.

2.5 Comparison of solution techniques for Ax=b: rules of
thumb

The practical implementation of the mathematical tools available in MATLAB
is crucial. This lecture will focus on the use of some of the more sophisticated
routines in MATLAB which are cornerstones to scientific computing. Included
in this section will be a discussion of the Fast Fourier Transform routines (fft, ifft,
fftshift, ifftshift, fft2, ifft2), sparse matrix construction (spdiag, spy), and high
end iterative techniques for solving Ax = b (bicgstab, gmres). These routines
should be studied carefully since they are the building blocks of any serious
scientific computing code.

Fast Fourier Transform: FFT, IFFT, FFTSHIFT, IFFTSHIFT2

The Fast Fourier Transform will be the first subject discussed. Its implemen-
tation is straightforward. Given a function which has been discretized with 2n

points and represented by a vector x, the FFT is found with the command
fft(x). Aside from transforming the function, the algorithm associated with the
FFT does three major things: it shifts the data so that x ∈ [0, L] → [−L, 0]



Scientific Computing ( c©J. N. Kutz) 53

and x ∈ [−L, 0] → [0, L], additionally it multiplies every other mode by −1, and
it assumes you are working on a 2π periodic domain. These properties are a
consequence of the FFT algorithm discussed in detail at a later time.

To see the practical implications of the FFT, we consider the transform of
a Gaussian function. The transform can be calculated analytically so that we
have the exact relations:

f(x) = exp(−αx2) → f̂(k) =
1√
2α

exp

(
− k2

4α

)
. (2.5.1)

A simple MATLAB code to verify this with α = 1 is as follows

clear all; close all; % clear all variables and figures

L=20; % define the computational domain [-L/2,L/2]

n=128; % define the number of Fourier modes 2^n

x2=linspace(-L/2,L/2,n+1); % define the domain discretization

x=x2(1:n); % consider only the first n points: periodicity

u=exp(-x.*x); % function to take a derivative of

ut=fft(u); % FFT the function

utshift=fftshift(ut); % shift FFT

figure(1), plot(x,u) % plot initial gaussian

figure(2), plot(abs(ut)) % plot unshifted transform

figure(3), plot(abs(utshift)) % plot shifted transform

The second figure generated by this script shows how the pulse is shifted. By
using the command fftshift, we can shift the transformed function back to its
mathematically correct positions as shown in the third figure generated. How-
ever, before inverting the transformation, it is crucial that the transform is
shifted back to the form of the second figure. The command ifftshift does this.
In general, unless you need to plot the spectrum, it is better not to deal with
the fftshift and ifftshift commands. A graphical representation of the fft pro-
cedure and its shifting properties is illustrated in Fig. ?? where a Gaussian is
transformed and shifted by the fft routine.

To take a derivative, we need to calculate the k values associated with the
transformation. The following example does this. Recall that the FFT assumes
a 2π periodic domain which gets shifted. Thus the calculation of the k values
needs to shift and rescale to the 2π domain. The following example differentiates
the function f(x) = sech(x) three times. The first derivative is compared with
the analytic value of f ′(x) = −sech(x) tanh(x).

clear all; close all; % clear all variables and figures



Scientific Computing ( c©J. N. Kutz) 54

L=20; % define the computational domain [-L/2,L/2]

n=128; % define the number of Fourier modes 2^n

x2=linspace(-L/2,L/2,n+1); % define the domain discretization

x=x2(1:n); % consider only the first n points: periodicity

u=sech(x); % function to take a derivative of

ut=fft(u); % FFT the function

k=(2*pi/L)*[0:(n/2-1) (-n/2):-1]; % k rescaled to 2pi domain

ut1=i*k.*ut; % first derivative

ut2=-k.*k.*ut; % second derivative

ut3=-i*k.*k.*k.*ut; % third derivative

u1=ifft(ut1); u2=ifft(ut2); u3=ifft(ut3); % inverse transform

u1exact=-sech(x).*tanh(x); % analytic first derivative

figure(1)

plot(x,u,’r’,x,u1,’g’,x,u1exact,’go’,x,u2,’b’,x,u3,’c’) % plot

The routine accounts for the periodic boundaries, the correct k values, and
differentiation. Note that no shifting was necessary since we constructed the k
values in the shifted space.

For transforming in higher dimensions, a couple of choices in MATLAB are
possible. For 2D transformations, it is recommended to use the commands
fft2 and ifft2. These will transform a matrix A, which represents data in the
x and y direction respectively, along the rows and then columns. For higher
dimensions, the fft command can be modified to fft(x,[],N) where N is the
number of dimensions.

Sparse Matrices: SPDIAG, SPY

Under discretization, most physical problems yield sparse matrices, i.e. matri-
ces which are largely composed of zeros. For instance, the matrices (1.5.11) and
(2.1.13) are sparse matrices generated under the discretization of a boundary
value problem and Poisson equation respectively. The spdiag command allows
for the construction of sparse matrices in a relatively simple fashion. The sparse
matrix is then saved using a minimal amount of memory and all matrix oper-
ations are conducted as usual. The spy command allows you to look at the
nonzero components of the matrix structure. As an example, we construct the
matrix given by (2.1.13) for the case of N = 5 in both the x and y directions.

clear all; close all; % clear all variables and figures

m=5; % N value in x and y directions



Scientific Computing ( c©J. N. Kutz) 55

n=m*m; % total size of matrix

e0=zeros(n,1); % vector of zeros

e1=ones(n,1); % vector of ones

e2=e1; % copy the one vector

e4=e0; % copy the zero vector

for j=1:m

e2(m*j)=0; % overwrite every m^th value with zero

e4(m*j)=1; % overwirte every m^th value with one

end

e3(2:n,1)=e2(1:n-1,1); e3(1,1)=e2(n,1); % shift to correct

e5(2:n,1)=e4(1:n-1,1); e5(1,1)=e4(n,1); % positions

% place diagonal elements

matA=spdiags([e1 e1 e5 e2 -4*e1 e3 e4 e1 e1], ...

[-(n-m) -m -m+1 -1 0 1 m-1 m (n-m)],n,n);

spy(matA) % view the matrix structure

The appropriate construction of the sparse matrix is critical to solving any
problem. It is essential to carefully check the matrix for accuracy before using
it in an application. As can be seen from this example, it takes a bit of work
to get the matrix correct. However, once constructed properly, it can be used
with confidence in all other matrix applications and operations.

Iterative Methods: BICGSTAB, GMRES

Iterative techniques need also to be considered. There are a wide variety of
built-in iterative techniques in MATLAB. Two of the more promising methods
are discussed here: the bi-conjugate stabilized gradient method (bicgstab) and
the generalized minimum residual method (gmres). Both are easily implemented
in MATLAB.

Recall that these iteration methods are for solving the linear systemAx = b.
The basic call to the generalized minimum residual method is

>>x=gmres(A,b);

Likewise, the bi-conjugate stabilized gradient method is called by

>>x=bicgstab(A,b);

It is rare that you would use these commands without options. The iteration
scheme stops upon convergence, failure to converge, or when the maximum num-
ber of iterations has been achieved. By default, the initial guess for the iteration



Scientific Computing ( c©J. N. Kutz) 56

procedure is the zero vector. The default number of maximum iterations is 10,
which is rarely enough iterations for the purposes of scientific computing.

Thus it is important to understand the different options available with these
iteration techniques. The most general user specified command line for either
gmres or bicgstab is as follows

>>[x,flag,relres,iter]=bicgstab(A,b,tol,maxit,M1,M2,x0);

>>[x,flag,relres,iter]=gmres(A,b,restart,tol,maxit,M1,M2,x0);

We already know that the matrix A and vector b come from the original prob-
lem. The remaining parameters are as follows:

tol = specified tolerance for convergence

maxit = maximum number of iterations

M1, M2 = pre-conditioning matrices

x0 = initial guess vector

restart = restart of iterations (gmres only)

In addition to these input parameters, gmres or bicgstab will give the relative
residual relres and the number of iterations performed iter. The flag variable
gives information on whether the scheme converged in the maximum allowable
iterations or not.

2.6 Overcoming computational difficulties

In developing algorithms for any given problem, you should always try to maxi-
mize the use of information available to you about the specific problem. Specif-
ically, a well developed numerical code will make extensive use of analytic in-
formation concerning the problem. Judicious use of properties of the specific
problem can lead to significant reduction in the amount of computational time
and effort needed to perform a given calculation.

Here, various practical issues which may arise in the computational imple-
mentation of a given method are considered. Analysis provides a strong founda-
tion for understanding the issues which can be problematic on a computational
level. Thus the focus here will be on details which need to be addressed before
straightforward computing is performed.

Streamfunction Equations: Nonuniqueness

We return to the consideration of the streamfunction equation

∇2ψ = ω (2.6.1)



Scientific Computing ( c©J. N. Kutz) 57

with the periodic boundary conditions

ψ(−L, y, t) = ψ(L, y, t) (2.6.2a)

ψ(x,−L, t) = ψ(x, L, t) . (2.6.2b)

The mathematical problem which arises in solving this Poisson equation has
been considered previously. Namely, the solution can only be determined to an
arbitrary constant. Thus if ψ0 is a solution to the streamfunction equation, so
is

ψ = ψ0 + c , (2.6.3)

where c is an arbitrary constant. This gives an infinite number of solutions to
the problem. Thus upon discretizing the equation in x and y and formulating
the matrix formulation of the problem Ax = b, we find that the matrix A,
which is given by (2.1.13), is singular, i.e. detA = 0.

Obviously, the fact that the matrix A is singular will create computational
problems. However, does this nonuniqueness jeopardize the validity of the physi-
cal model? Recall that the streamfunction is a fictitious quantity which captures
the fluid velocity through the quantities ∂ψ/∂x and ∂ψ/∂y. In particular, we
have the x and y velocity components

u = −∂ψ
∂y (x-component of velocity) (2.6.4a)

v = ∂ψ
∂x (y-component of velocity) . (2.6.4b)

Thus the arbitrary constant c drops out when calculating physically meaningful
quantities. Further, when considering the advection-diffusion equation

∂ω

∂t
+ [ψ, ω] = ν∇2ω (2.6.5)

where

[ψ, ω] =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
, (2.6.6)

only the derivative of the streamfunction is important, which again removes the
constant c from the problem formulation.

We can thus conclude that the nonuniqueness from the constant c does not
generate any problems for the physical model considered. However, we still
have the mathematical problem of dealing with a singular matrix. It should be
noted that this problem also occurs when all the boundary conditions are of the
Neuman type, i.e. ∂ψ/∂n = 0 where n denotes the outward normal direction.

To overcome this problem numerically, we simply observe that we can arbi-
trarily add a constant to the solution. Or alternatively, we can pin down the
value of the streamfunction at a single location in the computational domain.
This constraint fixes the arbitrary constant problem and removes the singularity
from the matrix A. Thus to fix the problem, we can simply pick an arbitrary



Scientific Computing ( c©J. N. Kutz) 58

point in our computational domain ψmn and fix its value. Essentially, this will
alter a single component of the sparse matrix (2.1.13). And in fact, this is the
simplest thing to do. For instance, given the construction of the matrix (2.1.13),
we could simply add the following line of MATLAB code:

A(1,1)=0;

Then the detA 6= 0 and the matrix can be used in any of the linear solution
methods. Note that the choice of the matrix component and its value are
completely arbitrary. However, in this example, if you choose to alter this matrix
component, to overcome the matrix singularity you must have A(1, 1) 6= −4.

Fast Fourier Transforms: Divide by Zero

In addition to solving the streamfunction equation by standard discretization
and Ax = b, we could use the Fourier transform method. In particular, Fourier
transforming in both x and y reduces the streamfunction equation

∇2ψ = ω (2.6.7)

to the equation (??)

˜̂
ψ = −

˜̂ω
k2x + k2y

. (2.6.8)

Here we have denoted the Fourier transform in x as f̂(x) and the Fourier trans-

form in y as g̃(y). The final step is to inverse transform in x and y to get back
to the solution ψ(x, y). It is recommended that the routines fft2 and ifft2 be
used to perform the transformations. However, fft and ifft may also be used in
loops or with the dimension option set to two.

An observation concerning (??) is that there will be a divide by zero when
kx = ky = 0 at the zero mode. Two options are commonly used to overcome
this problem. The first is to modify (??) so that

˜̂
ψ = −

˜̂ω
k2x + k2y + eps

(2.6.9)

where eps is the command for generating a machine precision number which is
on the order of O(10−15). It essentially adds a round-off to the denominator
which removes the divide by zero problem. A second option, which is more
highly recommended, is to redefine the kx and ky vectors associated with the
wavenumbers in the x and y directions. Specifically, after defining the kx and
ky, we could simply add the command line

kx(1)=10^(-6);

ky(1)=10^(-6);



Scientific Computing ( c©J. N. Kutz) 59

The values of kx(1) = ky(1) = 0 by default. This would make the values small
but finite so that the divide by zero problem is effectively removed with only a
small amount of error added to the problem.

Sparse Derivative Matrices: Advection Terms

The sparse matrix (2.1.13) represents the discretization of the Laplacian which
is accurate to second order. However, when calculating the advection terms
given by

[ψ, ω] =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
, (2.6.10)

only the first derivative is required in both x and y. Associated with each of
these derivative terms is a sparse matrix which must be calculated in order to
evaluate the advection term.

The calculation of the x derivative will be considered here. The y derivative
can be calculated in a similar fashion. Obviously, it is crucial that the sparse
matrices representing these operations be correct. Consider then the second
order discretization of

∂ω

∂x
=
ω(x+∆x, y)− ω(x−∆x, y)

2∆x
. (2.6.11)

Using the notation developed previously, we define ω(xm, yn) = ωmn. Thus the
discretization yields

∂ωmn
∂x

=
ω(m+1)n − ω(m−1)n

2∆x
, (2.6.12)

with periodic boundary conditions. The first few terms of this linear system are
as follows:

∂ω11

∂x
=
ω21 − ωn1

2∆x
∂ω12

∂x
=
ω22 − ωn2

2∆x
...

∂ω21

∂x
=
ω31 − ω11

2∆x
... .

From these individual terms, the linear system ∂ω/∂x = (1/2∆x)Bω can be
constructed. The critical component is the sparse matrix B. Note that we have



Scientific Computing ( c©J. N. Kutz) 60

used the usual definition of the vector ω.

ω =




ω11

ω12

...
ω1n

ω21

ω22

...
ωn(n−1)

ωnn




. (2.6.14)

It can be verified then that the sparse matrix B is given by the matrix

B=




0 I 0 · · · 0 −I
−I 0 I 0 · · · 0

0
. . .

. . .
. . .

...
...
0

... · · · 0 −I 0 I
I 0 · · · 0 −I 0




, (2.6.15)

where 0 is an n×n zero matrix and I is an n×n identity matrix. Recall that the
matrix B is an n2×n2 matrix. The sparse matrix associated with this operation
can be constructed with the spdiag command. Following the same analysis, the
y derivative matrix can also be constructed. If we call this matrix C, then the
advection operator can simply be written as

[ψ, ω] =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
= (Bψ)(Cω)− (Cψ)(Bω) . (2.6.16)

This forms part of the right hand side of the system of differential equations
which is then solved using a standard time-stepping algorithm.

3 Time and Space Stepping Schemes: Method
of Lines

With the Fourier transform and discretization in hand, we can turn towards the
solution of partial differential equations whose solutions need to be advanced
forward in time. Thus, in addition to spatial discretization, we will need to
discretize in time in a self-consistent way so as to advance the solution to a
desired future time. Issues of stability and accuracy are, of course, at the heart
of a discussion on time and space stepping schemes.



Scientific Computing ( c©J. N. Kutz) 61

3.1 Basic time-stepping schemes

Basic time-stepping schemes involve discretization in both space and time. Is-
sues of numerical stability as the solution is propagated in time and accuracy
from the space-time discretization are of greatest concern for any implementa-
tion. To begin this study, we will consider very simple and well known examples
from partial differential equations. The first equation we consider is the heat
(diffusion) equation

∂u

∂t
= κ

∂2u

∂x2
(3.1.1)

with the periodic boundary conditions u(−L) = u(L). We discretize the spatial
derivative with a second-order scheme (see Table 2) so that

∂u

∂t
=

κ

∆x2
[u(x+∆x)− 2u(x) + u(x−∆x)] . (3.1.2)

This approximation reduces the partial differential equation to a system of or-
dinary differential equations. We have already considered a variety of time-
stepping schemes for differential equations and we can apply them directly to
this resulting system.

The ODE System

To define the system of ODEs, we discretize and define the values of the vector
u in the following way.

u(−L) = u1

u(−L+∆x) = u2
...

u(L− 2∆x) = un−1

u(L−∆x) = un

u(L) = un+1 .

Recall from periodicity that u1 = un+1. Thus our system of differential equa-
tions solves for the vector

u =




u1
u2
...
un


 . (3.1.3)

The governing equation (??) is then reformulated as the differential equations
system

du

dt
=

κ

∆x2
Au , (3.1.4)



Scientific Computing ( c©J. N. Kutz) 62

where A is given by the sparse matrix

A=




−2 1 0 · · · 0 1
1 −2 1 0 · · · 0

0
. . .

. . .
. . .

...
...
0

... · · · 0 1 −2 1
1 0 · · · 0 1 −2




, (3.1.5)

and the values of one on the upper right and lower left of the matrix result from
the periodic boundary conditions.

MATLAB implementation

The system of differential equations can now be easily solved with a standard
time-stepping algorithm such as ode23 or ode45. The basic algorithm would be
as follows

1. Build the sparse matrix A.

e1=ones(n,1); % build a vector of ones

A=spdiags([e1 -2*e1 e1],[-1 0 1],n,n); % diagonals

A(1,n)=1; A(n,1)=1; % periodic boundaries

2. Generate the desired initial condition vector u = u0.

3. Call an ODE solver from the MATLAB suite. The matrix A, the diffusion
constant κ and spatial step ∆x need to be passed into this routine.

[t,y]=ode45(’rhs’,tspan,u0,[],k,dx,A);

The function rhs.m should be of the following form

function rhs=rhs(tspan,u,dummy,k,dx,A)

rhs=(k/dx^2)*A*u;

4. Plot the results as a function of time and space.

The algorithm is thus fairly routine and requires very little effort in programming
since we can make use of the standard time-stepping algorithms already available
in MATLAB.



Scientific Computing ( c©J. N. Kutz) 63

2D MATLAB implementation

In the case of two dimensions, the calculation becomes slightly more difficult
since the 2D data is represented by a matrix and the ODE solvers require a
vector input for the initial data. For this case, the governing equation is

∂u

∂t
= κ

(
∂2u

∂x2
+
∂2u

∂y2

)
(3.1.6)

Discretizing in x and y gives a right hand side which takes on the form of (2.1.7).
Provided ∆x = ∆y = δ are the same, the system can be reduced to the linear
system

du

dt
=

κ

δ2
Au , (3.1.7)

where we have arranged the vector u in a similar fashion to (2.1.14) so that

u =




u11
u12
...
u1n
u21
u22
...

un(n−1)

unn




, (3.1.8)

where we have defined ujk = u(xj , yk). The matrix A is a nine diagonal ma-
trix given by (2.1.13). The sparse implementation of this matrix is also given
previously.

Again, the system of differential equations can now be easily solved with a
standard time-stepping algorithm such as ode23 or ode45. The basic algorithm
follows the same course as the 1D case, but extra care is taken in arranging the
2D data into a vector.

1. Build the sparse matrix A (2.1.13).

2. Generate the desired initial condition matrix U = U0 and reshape it to a
vector u = u0. This example considers the case of a simple Gaussian as
the initial condition. The reshape and meshgrid commands are important
for computational implementation.

Lx=20; % spatial domain of x

Ly=20; % spatial domain of y

nx=100; % number of discretization points in x



Scientific Computing ( c©J. N. Kutz) 64

ny=100; % number of discretization points in y

N=nx*ny; % elements in reshaped initial condition

x2=linspace(-Lx/2,Lx/2,nx+1); % account for periodicity

x=x2(1:nx); % x-vector

y2=linspace(-Ly/2,Ly/2,ny+1); % account for periodicity

y=y2(1:ny); % y-vector

[X,Y]=meshgrid(x,y); % set up for 2D initial conditions

U=exp(-X.^2-Y.^2); % generate a Gaussian matrix

u=reshape(U,N,1); % reshape into a vector

3. Call an ODE solver from the MATLAB suite. The matrix A, the diffusion
constant κ and spatial step ∆x = ∆y = dx need to be passed into this
routine.

[t,y]=ode45(’rhs’,tspan,u0,[],k,dx,A);

The function rhs.m should be of the following form

function rhs=rhs(tspan,u,dummy,k,dx,A)

rhs=(k/dx^2)*A*u;

4. Plot the results as a function of time and space.

The algorithm is again fairly routine and requires very little effort in program-
ming since we can make use of the standard time-stepping algorithms.

Method of Lines

Fundamentally, these methods use the data at a single slice of time to generate
a solution ∆t in the future. This is then used to generate a solution 2∆t into
the future. The process continues until the desired future time is achieved.
This process of solving a partial differential equation is known as the method of
lines. Each line is the value of the solution at a given time slice. The lines are
used to update the solution to a new timeline and progressively generate future
solutions. Figure ?? depicts the process involved in the method of lines for the
1D case. The 2D case was illustrated previously in Fig. 13.



Scientific Computing ( c©J. N. Kutz) 65

3.2 Time-stepping schemes: explicit and implicit methods

Now that several technical and computational details have been addressed, we
continue to develop methods for time-stepping the solution into the future.
Some of the more common schemes will be considered along with a graphical
representation of the scheme. Every scheme eventually leads to an iteration
procedure which the computer can use to advance the solution in time.

We will begin by considering the most simple partial differential equations.
Often, it is difficult to do much analysis with complicated equations. Therefore,
considering simple equations is not merely an exercise, but rather they are
typically the only equations we can make analytical progress with.

As an example, we consider the one-way wave equation

∂u

∂t
= c

∂u

∂x
. (3.2.1)

The simplest discretization of this equation is to first central difference in the x
direction. This yields

∂un
∂t

=
c

2∆x
(un+1 − un−1) , (3.2.2)

where un = u(xn, t). We can then step forward with an Euler time-stepping

method. Denoting u
(m)
n = u(xn, tm), and applying the method of lines iteration

scheme gives

u(m+1)
n = u(m)

n +
c∆t

2∆x

(
u
(m)
n+1 − u

(m)
n−1

)
. (3.2.3)

This simple scheme has the four-point stencil shown in Fig. ??. To illustrate
more clearly the iteration procedure, we rewrite the discretized equation in the
form

u(m+1)
n = u(m)

n +
λ

2

(
u
(m)
n+1 − u

(m)
n−1

)
(3.2.4)

where

λ =
c∆t

∆x
(3.2.5)

is known as the CFL (Courant, Friedrichs, and Lewy) condition [?]. The itera-
tion procedure assumes that the solution does not change significantly from one

time-step to the next, i.e. u
(m)
n ≈ u

(m+1)
n . The accuracy and stability of this

scheme is controlled almost exclusively by the CFL number λ. This parameter
relates the spatial and time discretization schemes in (??). Note that decreasing
∆x without decreasing ∆t leads to an increase in λ which can result in instabil-
ities. Smaller values of ∆t suggest smaller values of λ and improved numerical
stability properties. In practice, you want to take ∆x and ∆t as large as possible
for computational speed and efficiency without generating instabilities.

There are practical considerations to keep in mind relating to the CFL num-
ber. First, given a spatial discretization step-size ∆x, you should choose the



Scientific Computing ( c©J. N. Kutz) 66

time discretization so that the CFL number is kept in check. Often a given
scheme will only work for CFL conditions below a certain value, thus the im-
portance of choosing a small enough time-step. Second, if indeed you choose to
work with very small ∆t, then although stability properties are improved with
a lower CFL number, the code will also slow down accordingly. Thus achieving
good stability results is often counter-productive to fast numerical solutions.

Central Differencing in Time

We can discretize the time-step in a similar fashion to the spatial discretiza-
tion. Instead of the Euler time-stepping scheme used above, we could central
difference in time using Table 2. Thus after spatial discretization we have

∂un
∂t

=
c

2∆x
(un+1 − un−1) , (3.2.6)

as before. And using a central difference scheme in time now yields

u
(m+1)
n − u

(m−1)
n

2∆t
=

c

2∆x

(
u
(m)
n+1 − u

(m)
n−1

)
. (3.2.7)

This last expression can be rearranged to give

u(m+1)
n = u(m−1)

n + λ
(
u
(m)
n+1 − u

(m)
n−1

)
. (3.2.8)

This iterative scheme is called leap-frog (2,2) since it is O(∆t2) accurate in time
and O(∆x2) accurate in space. It uses a four point stencil as shown in Fig. ??.
Note that the solution utilizes two time slices to leap-frog to the next time slice.
Thus the scheme is not self-starting since only one time slice (initial condition)
is given.

Improved Accuracy

We can improve the accuracy of any of the above schemes by using higher order
central differencing methods. The fourth-order accurate scheme from Table 3
gives

∂u

∂x
=

−u(x+ 2∆x) + 8u(x+∆x) − 8u(x−∆x) + u(x− 2∆x)

12∆x
. (3.2.9)

Combining this fourth-order spatial scheme with second-order central differenc-
ing in time gives the iterative scheme

u(m+1)
n = u(m−1)

n + λ

[
4

3

(
u
(m)
n+1 − u

(m)
n−1

)
− 1

6

(
u
(m)
n+2 − u

(m)
n−2

)]
. (3.2.10)

This scheme, which is based upon a six point stencil, is called leap frog (2,4). It
is typical that for (2,4) schemes, the maximum CFL number for stable compu-
tations is reduced from the basic (2,2) scheme.



Scientific Computing ( c©J. N. Kutz) 67

Lax-Wendroff

Another alternative to discretizing in time and space involves a clever use of the
Taylor expansion

u(x, t+∆t) = u(x, t) + ∆t
∂u(x, t)

∂t
+

∆t2

2!

∂2u(x, t)

∂t2
+O(∆t3) . (3.2.11)

But we note from the governing one-way wave equation

∂u

∂t
= c

∂u

∂x
≈ c

2∆x
(un+1 − un−1) . (3.2.12a)

Taking the derivative of the equation results in the relation

∂2u

∂t2
= c

∂2u

∂x2
≈ c

∆x2
(un+1 − 2un + un−1) . (3.2.13a)

These two expressions for ∂u/∂t and ∂2u/∂t2 can be substituted into the Taylor
series expression to yield the iterative scheme

u(m+1)
n = u(m)

n +
λ

2

(
u
(m)
n+1 − u

(m)
n−1

)
+
λ2

2

(
u
(m)
n+1 − 2u(m)

n + u
(m)
n−1

)
. (3.2.14)

This iterative scheme is similar to the Euler method. However, it introduces an
important stabilizing diffusion term which is proportional to λ2. This is known
as the Lax-Wendroff scheme. Although useful for this example, it is difficult to
implement in practice for variable coefficient problems. It illustrates, however,
the variety and creativity in developing iteration schemes for advancing the
solution in time and space.

Backward Euler: Implicit Scheme

The backward Euler method uses the future time for discretizing the spatial
domain. Thus upon discretizing in space and time we arrive at the iteration
scheme

u(m+1)
n = u(m)

n +
λ

2

(
u
(m+1)
n+1 − u

(m+1)
n−1

)
. (3.2.15)

This gives the tridiagonal system

u(m)
n = −λ

2
u
(m+1)
n+1 + u(m+1)

n +
λ

2
u
(m+1)
n−1 , (3.2.16)

which can be written in matrix form as

Au(m+1) = u(m) (3.2.17)



Scientific Computing ( c©J. N. Kutz) 68

Scheme Stability

Forward Euler unstable for all λ
Backward Euler stable for all λ
Leap Frog (2,2) stable for λ ≤ 1
Leap Frog (2,4) stable for λ ≤ 0.707

Table 8: Stability of time-stepping schemes as a function of the CFL number.

where

A =
1

2




2 −λ · · · 0
λ 2 −λ · · ·
...

. . .
...

0 · · · λ 2


 . (3.2.18)

Thus before stepping forward in time, we must solve a matrix problem. This
can severely affect the computational time of a given scheme. The only thing
which may make this method viable is if the CFL condition is such that much
larger time-steps are allowed, thus overcoming the limitations imposed by the
matrix solve.

MacCormack Scheme

In the MacCormack Scheme, the variable coefficient problem of the Lax-Wendroff
scheme and the matrix solve associated with the backward Euler are circum-
vented by using a predictor-corrector method. The computation thus occurs in
two pieces:

u(P )
n = u(m)

n + λ
(
u
(m)
n+1 − u

(m)
n−1

)
(3.2.19a)

u(m+1)
n =

1

2

[
u(m)
n + u(P )

n + λ
(
u
(P )
n+1 − u

(P )
n−1

)]
. (3.2.19b)

This method essentially combines forward and backward Euler schemes so that
we avoid the matrix solve and the variable coefficient problem.

The CFL condition will be discussed in detail in the next section. For now,
the basic stability properties of many of the schemes considered here are given
in Table ??. The stability of the various schemes hold only for the one-way
wave equation considered here as a prototypical example. Each partial differ-
ential equation needs to be considered and classified individually with regards
to stability.



Scientific Computing ( c©J. N. Kutz) 69

3.3 Stability analysis

In the preceeding lecture, we considered a variety of schemes which can solve
the time-space problem posed by partial differential equations. However, it re-
mains undetermined which scheme is best for implementation purposes. Two
criteria provide a basis for judgement: accuracy and stability. For each scheme,
we already know the accuracy due to the discretization error. However, a de-
termination of stability is still required.

To start to understand stability, we once again consider the one-way wave
equation

∂u

∂t
= c

∂u

∂x
. (3.3.1)

Using Euler time-stepping and central differencing in space gives the iteration
procedure

u(m+1)
n = u(m)

n +
λ

2

(
u
(m)
n+1 − u

(m)
n−1

)
(3.3.2)

where λ is the CFL number.

von Neumann Analysis

To determine the stability of a given scheme, we perform a von Neumann anal-
ysis [?]. This assumes the solution is of the form

u(m)
n = gm exp(iξnh) ξ ∈ [−π/h, π/h] (3.3.3)

where h = ∆x is the spatial discretization parameter. Essentially this assumes
the solution can be constructed of Fourier modes. The key then is to determine
what happens to gm as m→ ∞. Two possibilities exist

limm→∞ |g|m → ∞ unstable scheme (3.3.4a)

limm→∞ |g|m ≤ 1 (<∞) stable scheme . (3.3.4b)

Thus this stability check is very much like that performed for the time-stepping
schemes developed for ordinary differential equations.

Forward Euler for One-Way Wave Equation

The Euler discretization of the one-way wave equation produces the iterative
scheme (??). Plugging in the ansatz (??) gives the following relations:

gm+1 exp(iξnh) = gm exp(iξnh) +
λ

2
(gm exp(iξn+1h)− gm exp(iξn−1h))

gm+1 exp(iξnh) = gm
(
exp(iξnh) +

λ

2
(exp(iξn+1h)− exp(iξn−1h))

)

g = 1 +
λ

2
[exp(ih(ξn+1 − ξn))− exp(ih(ξn−1 − ξn))] . (3.3.5)



Scientific Computing ( c©J. N. Kutz) 70

Letting ξn = nζ reduces the equations further to

g(ζ) = 1 +
λ

2
[exp(iζh)− exp(−iζh)]

g(ζ) = 1 + iλ sin(ζh) . (3.3.6)

From this we can deduce that

|g(ζ)| =
√
g∗(ζ)g(ζ) =

√
1 + λ2 sin2 ζh . (3.3.7)

Thus
|g(ζ)| ≥ 1 → lim

m→∞
|g|m → ∞ unstable scheme . (3.3.8)

Thus the forward Euler time-stepping scheme is unstable for any value of λ.
The implementation of this scheme will force the solution to infinity due to a
numerical instability.

Backward Euler for One-Way Wave Equation

The Euler discretization of the one-way wave equation produces the iterative
scheme

u(m+1)
n = u(m)

n +
λ

2

(
u
(m+1)
n+1 − u

(m+1)
n−1

)
. (3.3.9)

Plugging in the ansatz (??) gives the following relations:

gm+1 exp(iξnh) = gm exp(iξnh) +
λ

2

(
gm+1 exp(iξn+1h)− gm+1 exp(iξn−1h)

)

g = 1 +
λ

2
g [exp(ih(ξn+1 − ξn))− exp(ih(ξn−1 − ξn))] . (3.3.10)

Letting ξn = nζ reduces the equations further to

g(ζ) = 1 +
λ

2
g[exp(iζh)− exp(−iζh)]

g(ζ) = 1 + iλg sin(ζh)

g[1− iλ sin(ζh)] = 1

g(ζ) =
1

1− iλ sin ζh
. (3.3.11)

From this we can deduce that

|g(ζ)| =
√
g∗(ζ)g(ζ) =

√
1

1 + λ2 sin2 ζh
. (3.3.12)

Thus

|g(ζ)| ≤ 1 → lim
m→∞

|g|m ≤ 1 unconditionally stable . (3.3.13)

Thus the backward Euler time-stepping scheme is stable for any value of λ. The
implementation of this scheme will not force the solution to infinity.



Scientific Computing ( c©J. N. Kutz) 71

Lax-Wendroff for One-Way Wave Equation

The Lax-Wendroff scheme is not as transparent as the forward and backward
Euler schemes.

u(m+1)
n = u(m)

n +
λ

2

(
u
(m)
n+1 − u

(m)
n−1

)
+
λ2

2

(
u
(m)
n+1 − 2u(m)

n + u
(m)
n−1

)
. (3.3.14)

Plugging in the standard ansatz (??) gives

gm+1 exp(iξnh) = gm exp(iξnh) +
λ

2
gm (exp(iξn+1h)− exp(iξn−1h))

+
λ2

2
gm (exp(iξn+1h)− 2 exp(iξnh) + exp(iξn−1h))

g = 1 +
λ

2
[exp(ih(ξn+1 − ξn))− exp(ih(ξn−1 − ξn))]

+
λ2

2
[exp(ih(ξn+1 − ξn)) + exp(ih(ξn−1 − ξn))− 2] . (3.3.15)

Letting ξn = nζ reduces the equations further to

g(ζ) = 1 +
λ

2
[exp(iζh)− exp(−iζh)] + λ2

2
[exp(iζh) + exp(−iζh)− 2]

g(ζ) = 1 + iλ sin ζh+ λ2(cos ζh− 1)

g(ζ) = 1 + iλ sin ζh− 2λ2 sin2(ζh/2) . (3.3.16)

This results in the relation

|g(ζ)|2 = λ4
[
4 sin4(ζh/2)

]
+ λ2

[
sin2 ζh− 4 sin2(ζh/2)

]
+ 1 . (3.3.17)

This expression determines the range of values for the CFL number λ for which
|g| ≤ 1. Ultimately, the stability of the Lax-Wendroff scheme for the one-way
wave equation is determined.

Leap-Frog (2,2) for One-Way Wave Equation

The leap-frog discretization for the one-way wave equation yields the iteration
scheme

u(m+1)
n = u(m−1)

n + λ
(
u
(m)
n+1 − u

(m)
n−1

)
. (3.3.18)

Plugging in the ansatz (??) gives the following relations:

gm+1 exp(iξnh) = gm−1 exp(iξnh) + λgm (exp(iξn+1h)− exp(iξn−1h))

g2 = 1 + λg [exp(ih(ξn+1 − ξn))− exp(ih(ξn−1 − ξn))] . (3.3.19)



Scientific Computing ( c©J. N. Kutz) 72

Letting ξn = nζ reduces the equations further to

g2 = 1 + λg[exp(iζh)− exp(−iζh)]

g − 1

g
= 2iλ sin(ζh) . (3.3.20)

From this we can deduce that

|g(ζ)| =
√
g∗(ζ)g(ζ) =

√
1

1 + λ2 sin2 ζh
. (3.3.21)

Thus to assure stability, it can be shown that we require

λ ≤ 1 . (3.3.22)

Thus the leap-frog (2,2) time-stepping scheme is stable for values of λ ≤ 1. The
implementation of this scheme with this restriction will not force the solution
to infinity.

A couple of general remarks should be made concerning the von Neumann
analysis.

• It is a general result that a scheme which is forward in time and centered in
space is unstable for the one-way wave equation. This assumes a standard
forward discretization, not something like Runge-Kutta.

• von Neumann analysis is rarely enough to guarantee stability, i.e. it is
necessary but not sufficient.

• Many other mechanisms for unstable growth are not captured by von
Neumann analysis.

• Nonlinearity usually kills the von Neumann analysis immediately. Thus
a large variety of nonlinear partial differential equations are beyond the
scope of a von Neumann analysis.

• Accuracy versus stability: it is always better to worry about accuracy. An
unstable scheme will quickly become apparent by causing the solution to
blow-up to infinity. Whereas an inaccurate scheme will simply give you a
wrong result without indicating a problem.

3.4 Comparison of time-stepping schemes

A few open questions remain concerning the stability and accuracy issues of
the time- and space-stepping schemes developed. In particular, it is not clear
how the stability results derived in the previous section apply to other partial
differential equations.



Scientific Computing ( c©J. N. Kutz) 73

Consider, for instance, the leap-frog (2,2) method applied to the one-way
wave equation

∂u

∂t
= c

∂u

∂x
. (3.4.1)

The leap-frog discretization for the one-way wave equation yielded the iteration
scheme

u(m+1)
n = u(m−1)

n + λ
(
u
(m)
n+1 − u

(m)
n−1

)
, (3.4.2)

where λ = c∆t/∆x is the CFL number. The von Neumann stability analysis

based upon the ansatz u
(m)
n = gm exp(iξnh) results in the expression

g − 1

g
= 2iλ sin(ζh) , (3.4.3)

where ξn = nζ. Thus the scheme was stable provided λ ≤ 1. Note that to
double the accuracy, both the time and space discretizations ∆t and ∆x need
to be simultaneously halved.

Diffusion Equation

We will again consider the leap frog (2,2) discretization applied to the diffusion
equation. The stability properties will be found to be very different than those
of the one-way wave equation. The difference in the one-way wave equation and
diffusion equation is an extra x derivative so that

∂u

∂t
= c

∂2u

∂x2
. (3.4.4)

Discretizing the spatial second derivative yields

∂u
(m)
n

∂t
=

c

∆x2

(
u
(m)
n+1 − 2u(m)

n + u
(m)
n−1

)
. (3.4.5)

Second order center differencing in time then yields

u(m+1)
n = u(m−1)

n + 2λ
(
u
(m)
n+1 − 2u(m)

n + u
(m)
n−1

)
, (3.4.6)

where now the CFL number is given by

λ =
c∆t

∆x2
. (3.4.7)

In this case, to double the accuracy and hold the CFL number constant requires
cutting the time-step by a factor of four. This is generally true of any partial
differential equation with the highest derivative term having two derivatives.



Scientific Computing ( c©J. N. Kutz) 74

The von Neumann stability analysis based upon the ansatz u
(m)
n = gm exp(iξnh)

results in the expression

gm+1 exp(iξnh) = gm−1 exp(iξnh)

+2λgm (exp(iξn+1h)− 2 exp(iξnh) + exp(iξn−1h))

g − 1

g
= 2λ(exp(iζh) + exp(−iζh)− 2)

g − 1

g
= 2λ(i sin(ζh)− 1) , (3.4.8)

where we let ξn = nζ. Unlike the one-way wave equation, the addition of the

term −2u
(m)
n in the discretization makes |g(ζ)| ≥ 1 for all values of λ. Thus the

leap-frog (2,2) is unstable for all CFL numbers for the diffusion equation.
Interestingly enough, the forward Euler method which was unstable when

applied to the one-way wave equation can be stable for the diffusion equation.
Using an Euler discretization instead of a center difference scheme in time yields

u(m+1)
n = u(m)

n + λ
(
u
(m)
n+1 − 2u(m)

n + u
(m)
n−1

)
. (3.4.9)

The von Neumann stability analysis based upon the ansatz u
(m)
n = gm exp(iξnh)

results in the expression

g = 1 + λ(i sin(ζh) − 1) , (3.4.10)

This gives
|g| = 1− 2λ+ λ2(1 + sin2 ζh) , (3.4.11)

so that

|g| ≤ 1 for λ ≤ 1

2
. (3.4.12)

Thus the maximum step size in time is given by ∆t = ∆x2/2c. Again, it is clear
that to double accuracy, the time-step must be reduced by a factor of four.

Hyper-Diffusion

Higher derivatives in x require central differencing schemes which successively
add powers of ∆x to the denominator. This makes for severe time-stepping
restrictions in the CFL number. As a simple example, consider the fourth-order
diffusion equation

∂u

∂t
= −c∂

4u

∂x4
. (3.4.13)

Using a forward Euler method in time and a central-difference scheme in space
gives the iteration scheme

u(m+1)
n = u(m)

n − λ
(
u
(m)
n+2 − 4u

(m)
n+1 + 6u(m)

n − 4u
(m)
n−1 + u

(m)
n−2

)
, (3.4.14)



Scientific Computing ( c©J. N. Kutz) 75

where the CFL number λ is now given by

λ =
c∆t

∆x4
. (3.4.15)

Thus doubling the accuracy requires a drop in the step-size to ∆t/16, i.e. the
run time takes 32 times as long since there are twice as many spatial points
and 16 times as many time-steps. This kind of behavior is often referred to as
numerical stiffness.

Numerical stiffness of this sort is not a result of the central differencing
scheme. Rather, it is an inherent problem with hyper diffusion. For instance,
we could consider solving the fourth-order diffusion equation (??) with Fast
Fourier Transforms. Transforming the equation in the x direction gives

∂û

∂t
= −c(ik)4û = −ck4û . (3.4.16)

This can then be solved with a differential equation time-stepping routine. The
time-step of any of the standard time-stepping routines is based upon the size
of the right hand side of the equation. If there are n = 128 Fourier modes, then
kmax = 64. But note that

(kmax)
4 = (64)4 = 16.8× 106 , (3.4.17)

which is a very large value. The time-stepping algorithm will have to adjust to
these large values which are generated strictly from the physical effect of the
higher-order diffusion.

There are a few key issues in dealing with numerical stiffness.

• Use a variable time-stepping routine which uses smaller steps when nec-
essary but large steps if possible. Every built-in MATLAB differential
equation solver uses an adaptive stepping routine to advance the solution.

• If numerical stiffness is a problem, then it is often useful to use an implicit
scheme. This will generally allow for larger time-steps. The time-stepping
algorithm ode113 uses a predictor-corrector method which partially uti-
lizes an implicit scheme.

• If stiffness comes from the behavior of the solution itself, i.e. you are
considering a singular problem, then it is advantageous to use a solver
specifically built for this stiffness. The time-stepping algorithm ode15s
relies on Gear methods and is well suited to this type of problem.

• From a practical viewpoint, beware of the accuracy of ode23 or ode45 when
strong nonlinearity or singular behavior is expected.



Scientific Computing ( c©J. N. Kutz) 76

3.5 Optimizing computational performance: rules of thumb

Computational performance is always crucial in choosing a numerical scheme.
Speed, accuracy and stability all play key roles in determining the appropriate
choice of method for solving. We will consider three prototypical equations:

∂u
∂t = ∂u

∂x one-way wave equation (3.5.1a)

∂u
∂t = ∂2u

∂x2 diffusion equation (3.5.1b)

i∂u∂t = 1
2
∂2u
∂x2 + |u|2u nonlinear Schrödinger equation . (3.5.1c)

Periodic boundary conditions will be assumed in each case. The purpose of this
section is to build a numerical routine which will solve these problems using the
iteration procedures outlined in the previous two sections. Of specific interest
will be the setting of the CFL number and the consequences of violating the
stability criteria associated with it.

The equations are considered in one dimension such that the first and second
derivative are given by

∂u

∂x
→ 1

2∆x




0 1 0 · · · 0 −1
−1 0 1 0 · · · 0

0
. . .

. . .
. . .

...
...
0

... · · · 0 −1 0 1
1 0 · · · 0 −1 0







u1
u2
...
un


 (3.5.2)

and

∂2u

∂x2
→ 1

∆x2




−2 1 0 · · · 0 1
1 −2 1 0 · · · 0

0
. . .

. . .
. . .

...
...
0

... · · · 0 1 −2 1
1 0 · · · 0 1 −2







u1
u2
...
un


 . (3.5.3)

From the previous lectures, we have the following discretization schemes for
the one-way wave equation (??):

Euler (unstable): u(m+1)
n =u(m)

n +
λ

2

(
u
(m)
n+1−u

(m)
n−1

)
(3.5.4a)

leap-frog (2,2) (stable for λ ≤ 1): u(m+1)
n =u(m−1)

n +λ
(
u
(m)
n+1−u

(m)
n−1

)
(3.5.4b)



Scientific Computing ( c©J. N. Kutz) 77

where the CFL number is given by λ = ∆t/∆x. Similarly for the diffusion
equation (??)

Euler (stable for λ ≤ 1/2): u(m+1)
n =u(m)

n +λ
(
u
(m)
n+1−2u(m)

n +u
(m)
n−1

)
(3.5.5a)

leap-frog (2,2) (unstable): u(m+1)
n =u(m−1)

n +2λ
(
u
(m)
n+1−2u(m)

n +u
(m)
n−1

)
(3.5.5b)

where now the CFL number is given by λ = ∆t/∆x2. The nonlinear Schrödinger
equation discretizes to the following form:

∂u
(m)
n

∂t
= − i

2∆x2

(
u
(m)
n+1 − 2u(m)

n + u
(m)
n−1

)
− i|u(m)

n |2u(m)
n . (3.5.6)

We will explore Euler and leap-frog (2,2) time-stepping with this equation.

One-Way Wave Equation

We first consider the leap-frog (2,2) scheme applied to the one-way wave equa-
tion. Figure ?? depicts the evolution of an initial Gaussian pulse. For this case,
the CFL=0.5 so that stable evolution is analytically predicted. The solution
propagates to the left as expected from the exact solution. The leap-frog (2,2)
scheme becomes unstable for λ ≥ 1 and the system is always unstable for the
Euler time-stepping scheme. Figure ?? depicts the unstable evolution of the
leap-frog (2,2) scheme with CFL=2 and the Euler time-stepping scheme. The
initial conditions used are identical to that in Fig. ??. Since we have predicted
that the leap-frog numerical scheme is only stable provided λ < 1, it is not sur-
prising that the figure on the left goes unstable. Likewise, the figure on the right
shows the numerical instability generated in the Euler scheme. Note that both
of these unstable evolutions develop high frequency oscillations which eventually
blow up. The MATLAB code used to generate the leap-frog and Euler iterative
solutions is given by

clear all; close all; % clear previous figures and values

% initialize grid size, time, and CFL number

Time=4;

L=20;

n=200;

x2=linspace(-L/2,L/2,n+1);

x=x2(1:n);

dx=x(2)-x(1);

dt=0.2;

CFL=dt/dx

time_steps=Time/dt;

t=0:dt:Time;



Scientific Computing ( c©J. N. Kutz) 78

% initial conditions

u0=exp(-x.^2)’;

u1=exp(-(x+dt).^2)’;

usol(:,1)=u0;

usol(:,2)=u1;

% sparse matrix for derivative term

e1=ones(n,1);

A=spdiags([-e1 e1],[-1 1],n,n);

A(1,n)=-1; A(n,1)=1;

% leap frog (2,2) or euler iteration scheme

for j=1:time_steps-1

% u2 = u0 + CFL*A*u1; % leap frog (2,2)

% u0 = u1; u1 = u2; % leap frog (2,2)

u2 = u1 + 0.5*CFL*A*u1; % euler

u1 = u2; % euler

usol(:,j+2)=u2;

end

% plot the data

waterfall(x,t,usol’);

map=[0 0 0];

colormap(map);

% set x and y limits and fontsize

set(gca,’Xlim’,[-L/2 L/2],’Xtick’,[-L/2 0 L/2],’FontSize’,[20]);

set(gca,’Ylim’,[0 Time],’ytick’,[0 Time/2 Time],’FontSize’,[20]);

view(25,40)

% set axis labels and fonts

xl=xlabel(’x’); yl=ylabel(’t’); zl=zlabel(’u’);

set(xl,’FontSize’,[20]);set(yl,’FontSize’,[20]);set(zl,’FontSize’,[20]);

print -djpeg -r0 fig.jpg % print jpeg at screen resolution

Heat Equation

In a similar fashion, we investigate the evolution of the diffusion equation when
the space-time discretization is given by the leap-frog (2,2) scheme or Euler
stepping. Figure ?? shows the expected diffusion behavior for the stable Euler
scheme (λ ≤ 0.5). In contrast, Fig. ?? shows the numerical instabilities which



Scientific Computing ( c©J. N. Kutz) 79

are generated from violating the CFL constraint for the Euler scheme or using
the always unstable leap-frog (2,2) scheme for the diffusion equation. The nu-
merical code used to generate these solutions follows that given previously for
the one-way wave equation. However, the sparse matrix is now given by

% sparse matrix for second derivative term

e1=ones(n,1);

A=spdiags([e1 -2*e1 e1],[-1 0 1],n,n);

A(1,n)=1; A(n,1)=1;

Further, the iterative process is now

% leap frog (2,2) or euler iteration scheme

for j=1:time_steps-1

u2 = u0 + 2*CFL*A*u1; % leap frog (2,2)

u0 = u1; u1 = u2; % leap frog (2,2)

% u2 = u1 + CFL*A*u1; % euler

% u1 = u2; % euler

usol(:,j+2)=u2;

end

where we recall that the CFL condition is now given by λ = ∆t/∆x2, i.e.

CFL=dt/dx/dx

This solves the one-dimensional heat equation with periodic boundary condi-
tions.

Nonlinear Schrödinger Equation

The nonlinear Schrödinger equation can easily be discretized by the above tech-
niques. However, as with most nonlinear equations, it is a bit more difficult to
perform a von Neumann analysis. Therefore, we explore the behavior for this
system for two different discretization schemes: Euler and leap-frog (2,2). The
CFL number will be the same with both schemes (λ = 0.05) and the stability
will be investigated through numerical computations. Figure ?? shows the evo-
lution of the exact one-soliton solution of the nonlinear Schrödinger equation
(u(x, 0) = sech(x)) over six units of time. The Euler scheme is observed to
lead to numerical instability whereas the leap-frog (2,2) scheme is stable. In
general, the leap-frog schemes work well for wave propagation problems while
Euler methods are better for problems of a diffusive nature.

The MATLAB code modifications necessary to solve the nonlinear Schrödinger
equation are trivial. Specifically, the iteration scheme requires change. For the
stable leap-frog scheme, the following command structure is required



Scientific Computing ( c©J. N. Kutz) 80

u2 = u0 + -i*CFL*A*u1- i*2*dt*(conj(u1).*u1).*u1;

u0 = u1; u1 = u2;

Note that i is automatically defined in MATLAB as i =
√
−1. Thus it is

imperative that you do not use the variable i as a counter in your FOR loops.
You will solve a very different equation if not careful with this definition.

4 Spectral Methods

Spectral methods are one of the most powerful solution techniques for ordinary
and partial differential equations. The best known example of a spectral method
is the Fourier transform. We have already made use of the Fourier transform
using FFT routines. Other spectral techniques exist which render a variety of
problems easily tractable and often at significant computational savings.

4.1 Fast-Fourier Transforms and Cosine/Sine transform

From our previous lectures, we are already familiar with the Fourier transform
and some of its properties. At the time, the distinct advantage to using the
FFT was its computational efficiency of solving a problem in O(N logN). This
lecture explores the underlying mathematical reasons for such performance.

One of the abstract definitions of a Fourier transform pair is given by

F (k) =

∫ ∞

−∞

e−ikxf(x)dx (4.1.1a)

f(x) =
1

2π

∫ ∞

−∞

eikxF (k)dk . (4.1.1b)

On a practical level, the value of the Fourier transform revolves squarely around
the derivative relationship

f̂ (n) = (ik)nf̂ (4.1.2)

which results from the definition of the Fourier transform and integration by

parts. Recall that we denote the Fourier transform of f(x) as f̂(x).
When considering a computational domain, the solution can only be found

on a finite length domain. Thus the definition of the Fourier transform needs
to be modified in order to account for the finite sized computational domain.
Instead of expanding in terms of a continuous integral for values of wavenumber
k and cosines and sines (exp(ikx)), we expand in a Fourier series

F (k) =

N∑

n=1

f(n) exp

[
−i2π(k − 1)

N
(n− 1)

]
1 ≤ k ≤ N (4.1.3a)

f(n) =
1

N

N∑

k=1

F (k) exp

[
i
2π(k − 1)

N
(n− 1)

]
1 ≤ n ≤ N . (4.1.3b)



Scientific Computing ( c©J. N. Kutz) 81

command expansion boundary conditions

fft Fk =
∑2N−1

j=0 fj exp(iπjk/N) periodic: f(0) = f(L)

dst Fk =
∑N−1

j=1 fj sin(πjk/N) pinned: f(0) = f(L) = 0

dct Fk =
∑N−2

j=0 fj cos(πjk/2N) no-flux: f ′(0) = f ′(L) = 0

Table 9: MATLAB functions for Fourier, sine, and cosine transforms and their
associated boundary conditions. To invert the expansions, the MATLAB com-
mands are ifft, idst, and idct repectively.

Thus the Fourier transform is nothing but an expansion in a basis of cosine and
sine functions. If we define the fundamental oscillatory piece as

wnk=exp

(
2iπ(k−1)(n−1)

N

)
=cos

(
2π(k−1)(n−1)

N

)
+ i sin

(
2π(k−1)(n−1)

N

)
,

(4.1.4)
then the Fourier transform results in the expression

Fn =

N−1∑

k=0

wnkfk 0 ≤ n ≤ N − 1 . (4.1.5)

Thus the calculation of the Fourier transform involves a double sum and an
O(N2) operation. Thus, at first, it would appear that the Fourier transform
method is the same operation count as LU decomposition. The basis functions
used for the Fourier transform, sine transform and cosine transform are depicted
in Fig. ??. The process of solving a differential or partial differential equation
involves evaluating the coefficient of each of the modes. Note that this expan-
sion, unlike the finite difference method, is a global expansion in that every basis
function is evaluated on the entire domain.

The Fourier, sine, and cosine transforms behave very differently at the
boundaries. Specifically, the Fourier transform assumes periodic boundary con-
ditions whereas the sine and cosine transforms assume pinned and no-flux bound-
aries respectively. The cosine and sine transform are often chosen for their
boundary properties. Thus for a given problem, an evaluation must be made of
the type of transform to be used based upon the boundary conditions needing
to be satisfied. Table ?? illustrates the three different expansions and their
associated boundary conditions. The appropriate MATLAB command is also
given.

Fast-Fourier Transforms: Cooley-Tukey Algorithm

To see how the FFT gets around the computational restriction of an O(N2)
scheme, we consider the Cooley-Tukey algorithm which drops the computations



Scientific Computing ( c©J. N. Kutz) 82

to O(N logN). To consider the algorithm, we begin with the N ×N matrix FN
whose components are given by

(FN )jk = wjkn = exp(i2πjk/N) (4.1.6)

The coefficients of the matrix are points on the unit circle since |wjkn | = 1. They
are also the basis functions for the Fourier transform.

The FFT starts with the following trivial observation

w2
2n = wn , (4.1.7)

which is easy to show since wn = exp(i2π/n) and

w2
2n = exp(i2π/(2n)) exp(i2π/(2n)) = exp(i2π/n) = wn . (4.1.8)

The consequences to this simple relationship are enormous and at the core of
the success of the FFT algorithm. Essentially, the FFT is a matrix operation

y = FNx (4.1.9)

which can now be split into two separate operations. Thus defining

xe =




x0
x2
x4
...

xN−2




and xo =




x1
x3
x5
...

xN−1




(4.1.10)

which are both vectors of lengthM = N/2, we can form the twoM×M systems

ye = FMxe and yo = FMxo (4.1.11)

for the even coefficient terms xe,ye and odd coefficient terms xo,yo. Thus the
computation size goes from O(N2) to O(2M2) = O(N2/2). However, we must
be able to reconstruct the original y from the smaller system of ye and yo. And
indeed we can reconstruct the original y. In particular, it can be shown that
component by component

yn = yen + wnNy
o
n n = 0, 1, 2, ...,M − 1 (4.1.12a)

yn+M = yen − wnNy
o
n n = 0, 1, 2, ...,M − 1 . (4.1.12b)

This is where the shift occurs in the FFT routine which maps the domain
x ∈ [0, L] to [−L, 0] and x ∈ [−L, 0] to [0, L]. The command fftshift undoes this
shift. Details of this construction can be found elsewhere [?, ?].

There is no reason to stop the splitting process at this point. In fact, provided
we choose the size of our domain and matrix FN so that N is a power of two,
then we can continue to split the system until we have a simple algebraic, i.e.
a 1 × 1 system, solution to perform. The process is illustrated graphically in
Fig. ?? where the switching and factorization are illustrated. Once the final
level is reached, the algebraic expression is solved and the process is reversed.
This factorization process renders the FFT scheme O(N logN).



Scientific Computing ( c©J. N. Kutz) 83

4.2 Chebychev Polynomials and Transform

The Fast Fourier Transform is only one of many possible expansion bases, i.e.
there is nothing special about expanding in cosines and sines. Of course, the
FFT expansion does have the unusual property of factorization which drops it
to an O(N logN) scheme. Regardless, there are a myriad of other expansion
bases which can be considered. The primary motivation for considering other
expansions is based upon the specifics of the given governing equations and its
physical boundaries and constraints. Special functions are often prime candi-
dates for use as expansion bases. The following are some important examples

• Bessel functions: radial, 2D problems

• Legendre polynomials: 3D Laplaces equation

• Hermite-Gauss polynomials: Schrödinger with harmonic potential

• Spherical harmonics: radial, 3D problems

• Chebychev polynomials: bounded 1D domains

The two key properties required to use any expansion basis successfully are its
orthogonality properties and the calculation of the norm. Regardless, all the
above expansions appear to require O(N2) calculations.

Chebychev Polynomials

Although not often encountered in mathematics courses, the Chebychev poly-
nomial is an important special function from a computational viewpoint. The
reason for its prominence in the computational setting will become apparent
momentarily. For the present, we note that the Chebychev polynomials are
solutions to the differential equation

√
1− x2

d

dx

(√
1− x2

dTn
dx

)
+ n2Tn = 0 x ∈ [−1, 1] . (4.2.1)

This is a self-adjoint Sturm-Lioville problem. Thus the following properties are
known

1. eigenvalues are real: λn = n2

2. eigenfunctions are real: Tn(x)

3. eigenfunctions are orthogonal:

∫ 1

−1

(1− x2)−1/2Tn(x)Tm(x)dx =
π

2
cnδnm (4.2.2)

where c0 = 2, cn = 1(n > 0) and δnm is the Delta function



Scientific Computing ( c©J. N. Kutz) 84

4. eigenfunctions form a complete basis

Each Chebychev polynomial (of degree n) is defined by

Tn(cos θ) = cosnθ . (4.2.3)

Thus we find

T0(x) = 1 (4.2.4a)

T1(x) = x (4.2.4b)

T2(x) = 2x2 − 1 (4.2.4c)

T3(x) = 4x3 − 3x (4.2.4d)

T4(x) = 8x4 − 8x2 + 1 . (4.2.4e)

The behavior of the first five Chebychev polynomials is illustrated in Fig. ??.
It is appropriate to ask why the Chebychev polynomials, of all the special

functions listed, are of such computational interest. Especially given that the
equation which the Tn(x) satisfy, and their functional form shown in Fig. ??, ap-
pear to be no better than Bessel, Hermite-Gauss, or any other special function.
The distinction with the Chebychev polynomials is that you can transform them
so that use can be made of the O(N logN) discrete cosine transform. This effec-
tively yields the Chebychev expansion scheme an O(N logN) transformation.
Specifically, we transform from the interval x ∈ [−1, 1] by letting

x = cos θ θ ∈ [0, π] . (4.2.5)

Thus when considering a function f(x), we have f(cos θ) = g(θ). Under differ-
entiation we find

dg

dθ
= −f ′ · sin θ (4.2.6)

Thus dg/dθ = 0 at θ = 0, π, i.e. no-flux boundary conditions are satisfied. This
allows us to use the dct (discrete cosine transform) to solve a given problem in
the new transformed variables.

The Chebychev expansion is thus given by

f(x) =
∞∑

k=0

akTk(x) (4.2.7)

where the coefficients ak are determined from orthogonality and inner products
to be

ak =

∫ 1

−1

1√
1− x2

f(x)Tk(x)dx . (4.2.8)

It is these coefficients which are calculated in O(N logN) time. Some of the
properties of the Chebychev polynomials are as follows:



Scientific Computing ( c©J. N. Kutz) 85

• Tn+1 = 2xTn(x)− Tn−1(x)

• |Tn(x)| ≤ 1, |T ′
n(x)| ≤ n2

• Tn(±1) = (±1)n

• dp/dxp(Tn(±1)) = (±1)n+p
∏p−1
k=0(n

2 − k2)/(2k + 1)

• if n is even (odd), Tn(x) is even (odd)

There are a couple of critical practical issues which must be considered when
using the Chebychev scheme. Specifically the grid generation and spatial reso-
lution are a little more difficult to handle. In using the discrete cosine transform
on the variable θ ∈ [0, π], we recall that our original variable is actually x = cos θ
where x ∈ [−1, 1]. Thus the discretization of the θ variable leads to

xm = cos

(
(2m− 1)π

2n

)
m = 1, 2, ..., n . (4.2.9)

Thus although the grid points are uniformly spaced in θ, the grid points are
clustered in the original x variable. Specifically, there is a clustering of grid
points at the boundaries. The Chebychev scheme then automatically has higher
resolution at the boundaries of the computational domain. The clustering of
the grid points at the boundary is illustrated in Fig. ??. So as the resolution is
increased, it is important to be aware that the resolution increase is not uniform
across the computational domain.

Solving Differential Equations

As with any other solution method, a solution scheme must have an efficient way
of relating derivatives to the function itself. For the FFT method, there was a
very convenient relationship between the transform of a function and the trans-
form of its derivatives. Although not as transparent as the the FFT method, we
can also relate the Chebychev transform derivatives to the Chebychev transform
itself.

Defining L to be a linear operator so that

Lf(x) =

∞∑

n=0

bnTn(x) , (4.2.10)

then with f(x) =
∑∞
n=0 anTn(x) we find

• Lf = f ′(x) : cnbn = 2
∑∞
p=n+1(p+nodd) pap

• Lf = f ′′(x) : cnbn =
∑∞

p=n+2(p+neven)

• Lf = xf(x) : bn = (cn−1an−1 + an+1)/2

• Lf = x2f(x) : bn = (cn−2an−2 + (cn + cn−1)an + an+2)/4

where c0 = 2, cn = 0(n < 0), cn = 1(n > 0), dn = 1(n ≥ 0), and dn = 0(n < 0).



Scientific Computing ( c©J. N. Kutz) 86

4.3 Spectral method implementation

In this lecture, we develop an algorithm which implements a spectral method
solution technique. We begin by considering the general partial differential
equation

∂u

∂t
= Lu+N(u) (4.3.1)

where L is a linear, constant coefficient operator, i.e. it can take the form
L = ad2/dx2+bd/dx+c where a, b, and c are constants. The second term N(u)
includes the nonlinear and non-constant coefficient terms. An example of this
would be N(u) = u3 + f(x)u + g(x)d2u/dx2.

By applying a Fourier transform, the equations reduce to the system of
differential equations

dû

dt
= α(k)û + N̂(u) . (4.3.2)

This system can be stepped forward in time with any of the standard time-
stepping techniques. Typically ode45 or ode23 is a good first attempt.

The parameter α(k) arises from the linear operator Lu and is easily deter-
mined from Fourier transforming. Specifically, if we consider the linear operator:

Lu = a
d2u

dx2
+ b

du

dx
+ cu . (4.3.3)

then upon transforming this becomes

(ik)2aû+ b(ik)û+ cû

= (−k2a+ ibk + c)û

= α(k)û . (4.3.4)

The parameter α(k) therefore takes into account all constant coefficient, linear
differentiation terms.

The nonlinear terms are a bit more difficult to handle, but still they are
relatively easy. Consider the following examples

1. f(x)du/dx

• determine du/dx→ ̂du/dx = ikû, du/dx = FFT−1(ikû)

• multiply by f(x) → f(x)du/dx

• Fourier transform FFT (f(x)du/dx)

2. u3

• Fourier transform FFT (u3)

3. u3d2u/dx2



Scientific Computing ( c©J. N. Kutz) 87

• determine d2u/dx2 → ̂d2u/dx2 = (ik)2û, d2u/dx2 = FFT−1(−k2û)
• multiply by u3 → u3d2u/dx2

• Fourier transform FFT (u3d2u/dx2)

These examples give an outline of how the nonlinear, non-constant coefficient
schemes would work in practice.

To illustrate the implementation of these ideas, we solve the advection-
diffusion equations spectrally. Thus far the equations have been considered
largely with finite difference techniques. However, the MATLAB codes pre-
sented here solve the equations using the FFT for both the streamfunction and
vorticity evolution. We begin by initializing the appropriate numerical param-
eters

clear all; close all;

nu=0.001;

Lx=20; Ly=20; nx=64; ny=64; N=nx*ny;

x2=linspace(-Lx/2,Lx/2,nx+1); x=x2(1:nx);

y2=linspace(-Ly/2,Ly/2,ny+1); y=y2(1:ny);

Thus the computational domain is for x ∈ [−10, 10] and y ∈ [−10, 10]. The
diffusion parameter is chosen to be ν = 0.001. The initial conditions are then
defined as a stretched Gaussian

% INITIAL CONDITIONS

[X,Y]=meshgrid(x,y);

w=1*exp(-0.25*X.^2-Y.^2);

figure(1), pcolor(abs(w)); shading interp; colorbar; drawnow

The next step is to define the spectral k values in both the x and y directions.
This allows us to solve for the streamfunction (??) spectrally. Once the stream-
function is determined, a call is made to a time-stepping scheme which steps
the vorticity solution forward in time. In this example, the streamfunction is
updated every ∆t = 0.5. The loop is run through ten times for a total time of
t = 5.

% SPECTRAL K VALUES

kx=(2*pi/Lx)*[0:(nx/2-1) (-nx/2):-1]’; kx(1)=10^(-6);

ky=(2*pi/Ly)*[0:(ny/2-1) (-ny/2):-1]’; ky(1)=10^(-6);

% Streamfunction

for stream_loop=1:10



Scientific Computing ( c©J. N. Kutz) 88

wt=fft2(w)/N;

for j=1:ny

psit(:,j)=-wt(:,j)./(kx.^2+ky(j)^2);

end

for j=1:nx

psitx(j,:)=i*(psit(j,:).*kx’);

end

psix=real(ifft2(psitx*N));

for j=1:ny

psity(:,j)=i*(psit(:,j).*ky);

end

psiy=real(ifft2(psity*N));

wt2=reshape(wt,N,1);

[t,wsol]=ode23(’spc_rhs’,[0 0.5],wt2,[],psix,psiy,kx,ky,nu,nx,ny,N);

wt2=wsol(end,:)’;

wt=reshape(wt2,nx,ny);

w=ifft2(wt*N);

figure(1)

pcolor(abs(w)); shading interp; colorbar; drawnow

end

The right hand side of the system of differential equations which results from
Fourier transforming is contained within the function spc rhs.m. The outline of
this routine is provided below. Aside from the first function call line, the rest
of the routine first finds the derivatives of the vorticity with respect to x and y
respectively. The derivatives of the streamfunction are sent into the program.
Once these terms are determined, the matrix components are reshaped and a
large system of differential equations is solved.

function rhs=spc_rhs(tspan,wt2,dummy,psix,psiy,kx,ky,nu,nx,ny,N);

wt=reshape(wt2,nx,ny);

% w_x

for j=1:nx

wtx(j,:)=i*(wt(j,:).*kx’);

end

wx=ifft2(wtx*N);

% w_y

for j=1:ny



Scientific Computing ( c©J. N. Kutz) 89

wty(:,j)=i*(wt(:,j).*ky);

end

wy=ifft2(wty*N);

% transform w_x*psi_y and w_y*psi_x and reshape

wxpyt=fft2(wx.*psiy)/N;

wypxt=fft2(wy.*psix)/N;

wxpyt2=reshape(wxpyt,N,1);

wypxt2=reshape(wypxt,N,1);

% Laplacian Terms

for j=1:nx

wtxx(j,:)=-wt(j,:).*(kx.^2)’;

end

for j=1:ny

wtyy(:,j)=-wt(:,j).*(ky.^2);

end

wtxx2=reshape(wtxx,N,1);

wtyy2=reshape(wtyy,N,1);

rhs=(nu*(wtxx2+wtyy2)-wypxt2+wxpyt2);

The code will quickly and efficiently solve the advection-diffusion equations in
two dimensions. Figure 14 demonstrates the evolution of the initial stretched
Gaussian vortex over t ∈ [0, 8].

4.4 Pseudo-spectral techniques with filtering

The decomposition of the solution into Fourier mode components does not al-
ways lead to high performance computing. Specifically when some form of nu-
merical stiffness is present, computational performance can suffer dramatically.
However, there are methods available which can effectively eliminate some of
the numerical stiffness by making use of analytic insight into the problem.

We consider again the example of hyper-diffusion for which the governing
equations are

∂u

∂t
= −∂

4u

∂x4
. (4.4.1)

In the Fourier domain, this becomes

dû

dt
= −(ik)4û = −k4û (4.4.2)

which has the solution
û = û0 exp(−k4t) . (4.4.3)



Scientific Computing ( c©J. N. Kutz) 90

However, a time-stepping scheme would obviously solve (??) directly without
making use of the analytic solution.

For n = 128 Fourier modes, the wavenumber k ranges in values from k ∈
[−64, 64]. Thus the largest value of k for the hyper-diffusion equation is

k4max = (64)4 = 16, 777, 216 , (4.4.4)

or roughly k4max = 1.7× 107. For n = 1024 Fourier modes, this is

k4max = 6.8× 1010 . (4.4.5)

Thus even if our solution is small at the high wavenumbers, this can create
problems. For instance, if the solution at high wavenumbers is O(10−6), then

dû

dt
= −(1010)(10−6) = −104 . (4.4.6)

Such large numbers on the right hand side of the equations forces time-stepping
schemes like ode23 and ode45 to take much smaller time-steps in order to main-
tain tolerance constraints. This is a form of numerical stiffness which can be
circumvented.

Filtered Pseudo-Spectral

There are a couple of ways to help get around the above mentioned numerical
stiffness. We again consider the very general partial differential equation

∂u

∂t
= Lu+N(u) (4.4.7)

where as before L is a linear, constant coefficient operator, i.e. it can take the
form L = ad2/dx2+ bd/dx+ c where a, b, and c are constants. The second term
N(u) includes the nonlinear and non-constant coefficient terms. An example of
this would be N(u) = u3 + f(x)u+ g(x)d2u/dx2.

Previously, we transformed the equation by Fourier transforming and con-
structing a system of differential equations. However, there is a better way to
handle this general equation and remove some numerical stiffness at the same
time. To introduce the technique, we consider the first-order differential equa-
tion

dy

dt
+ p(t)y = g(t) . (4.4.8)

We can multiply by the integrating factor µ(t) so that

µ
dy

dt
+ µp(t)y = µg(t) . (4.4.9)



Scientific Computing ( c©J. N. Kutz) 91

We note from the chain rule that (µy)′ = µ′y + µy′ where the prime denotes
differentiation with respect to t. Thus the differential equation becomes

d

dt
(µy) = µg(t) , (4.4.10)

provided dµ/dt = µp(t). The solution then becomes

y =
1

µ

[∫
µ(t)g(t)dt+ c

]
µ(t) = exp

(∫
p(t)dt

)
(4.4.11)

which is the standard integrating factor method of a first course on differential
equations.

We use the key ideas of the integrating factor method to help solve the
general partial differential equation and remove stiffness. Fourier transforming
(??) results in the spectral system of differential equations

dû

dt
= α(k)û + N̂(u) . (4.4.12)

This can be rewritten
dû

dt
− α(k)û = N̂(u) . (4.4.13)

Multiplying by exp(−α(k)t) gives

dû

dt
exp(−α(k)t)− α(k)û exp(−α(k)t) = exp(−α(k)t)N̂(u)

d

dt
[û exp(−α(k)t)] = exp(−α(k)t)N̂(u) .

By defining v̂ = û exp(−α(k)t), the system of equations reduces to

dv̂

dt
= exp(−α(k)t)N̂(u) (4.4.14a)

û = v̂ exp(α(k)t) . (4.4.14b)

Thus the linear, constant coefficient terms are solved for explicitly, and the
numerical stiffness associated with the Lu term is effectively eliminated.

Example: Fisher-Kolmogorov Equation

As an example of the implementation of the the filtered pseudo-spectral scheme,
we consider the Fisher-Kolmogorov equation

∂u

∂t
=
∂2u

∂x2
+ u3 + cu . (4.4.15)



Scientific Computing ( c©J. N. Kutz) 92

Fourier transforming the equation yields

dû

dt
= (ik)2û+ û3 + cû (4.4.16)

which can be rewritten
dû

dt
+ (k2 − c)û = û3 . (4.4.17)

Thus α(k) = c− k2 and

dv̂

dt
= exp[−(c− k2)t]û3 (4.4.18a)

û = v̂ exp[(c− k2)t] . (4.4.18b)

It should be noted that the solutions u must continually be updating the value
of u3 which is being transformed in the right hand side of the equations. Thus

after every time-step ∆t, the new u should be used to evaluate û3.
There are a couple of practical issues that should be considered when imple-

menting this technique

• When solving the general equation

∂u

∂t
= Lu+N(u) (4.4.19)

it is important to only step forward ∆t in time with

dv̂

dt
= exp(−α(k)t)N̂(u)

û = v̂ exp(α(k)t)

before the nonlinear term N̂(u) is updated.

• The computational savings for this method generally does not manifest
itself unless there are more than two spatial derivatives in the highest
derivative of Lu.

• Care must be taken in handling your time-step ∆t in MATLAB since it
uses adaptive time-stepping.

Comparison of Spectral and Finite Difference Methods

Before closing the discussion on the spectral method, we investigate the ad-
vantages and disadvantages associated with the spectral and finite difference
schemes. Of particular interest are the issues of accuracy, implementation, com-
putational efficiency, and boundary conditions. The strengths and weaknesses
of the schemes will be discussed.



Scientific Computing ( c©J. N. Kutz) 93

A. Accuracy

• Finite Differences: Accuracy is determined by the ∆x and ∆y
chosen in the discretization. Accuracy is fairly easy to compute and
generally much worse than spectral methods.

• Spectral Method: Spectral methods rely on a global expansion and
are often called spectrally accurate. In particular, spectral methods
have infinite order accuracy. Although the details of what this means
will not be discussed here, it will suffice to say that they are generally
of much higher accuracy than finite differences.

B. Implementation

• Finite Differences: The greatest difficulty in implementing the
finite difference schemes is generating the correct sparse matrices.
Many of these matrices are very complicated with higher order schemes
and in higher dimensions. Further, when solving the resulting system
Ax = b, it should always be checked whether detA = 0. The MAT-
LAB command cond(A) checks the condition number of the matrix.
If cond(A)> 1015, then detA ≈ 0 and steps must be taken in order
to solve the problem correctly.

• Spectral Method: The difficulty with using FFTs is the continual
switching between the time or space domain and the spectral do-
main. Thus it is imperative to know exactly when and where in the
algorithm this switching must take place.

C. Computational Efficiency

• Finite Differences: The computational time for finite differences is
determined by the size of the matrices and vectors in solvingAx = b.
Generally speaking, you can guarantee O(N2) efficiency by using LU
decomposition. At times, iterative schemes can lower the operation
count, but there are no guarantees about this.

• Spectral Method: The FFT algorithm is an O(N logN) operation.
Thus it is almost always guaranteed to be faster than the finite dif-
ference solution method which is O(N2). Recall that this efficiency
improvement comes with an increased accuracy as well. Thus making
the spectral highly advantageous when implemented.

D. Boundary Conditions

• Finite Differences: Of the above categories, spectral methods are
generally better in every regard. However, finite differences are clearly



Scientific Computing ( c©J. N. Kutz) 94

superior when considering boundary conditions. Implementing the
generic boundary conditions

αu(L) + β
du(L)

dx
= γ (4.4.20)

is easily done in the finite difference framework. Also, more com-
plicated computational domains may be considered. Generally any
computational domain which can be constructed of rectangles is eas-
ily handled by finite difference methods.

• Spectral Method: Boundary conditions are the critical limitation
on using the FFT method. Specifically, only periodic boundary con-
ditions can be considered. The use of the discrete sine or cosine
transform allows for the consideration of pinned or no-flux boundary
conditions, but only odd or even solutions are admitted respectively.

4.5 Boundary conditions and the Chebychev Transform

Thus far, we have focused on the use of the FFT as the primary tool for spectral
methods and their implementation. However, many problems do not in fact have
periodic boundary conditions and the accuracy and speed of the FFT is rendered
useless. The Chebychev polynomials are a set of mathematical functions which
still allow for the construction of a spectral method which is both fast and
accurate. The underlying concept is that Chebychev polynomials can be related
to sines and cosines, and therefore they can be connected to the FFT routine.

Before constructing the details of the Chebychev method, we begin by con-
sidering three methods for handling non-periodic boundary conditions.

Method 1: periodic extension with FFTs

Since the FFT only handles periodic boundary conditions, we can periodically
extend a general function f(x) in order to make the function itself now peri-
odic. The FFT routine can now be used. However, the periodic extension will
in general generate discontinuities in the periodically extended function. The
discontinuities give rise to Gibb’s phenomena: strong oscillations and errors are
accumulated at the jump locations. This will greatly effect the accuracy of the
scheme. So although spectral accuracy and speed is retained away from discon-
tinuities, the errors and the jumps will begin to propagate out to the rest of the
computational domain.

To see this phenomena, Fig. ??a considers a function which is periodically
extended as shown in Fig. ??b. The FFT approximation to this function is
shown in Fig. ??c where the Gibb’s oscillations are clearly seen at the jump lo-
cations. The oscillations clearly impact the usefulness of this periodic extension
technique.



Scientific Computing ( c©J. N. Kutz) 95

Method 2: polynomial approximation with equi-spaced points

In moving away from an FFT basis expansion method, we can consider the most
straight forward method available: polynomial approximation. Thus we simply
discretize the given function f(x) with N + 1 equally spaced points and fit an
N th degree polynomial through it. This amounts to letting

f(x) ≈ a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
N (4.5.1)

where the coefficients an are determined by an (N+1)×(N+1) system of equa-
tions. This method easily satisfies the prescribed non-periodic boundary condi-
tions. Further, differentiation of such an approximation is trivial. In this case
however, Runge phenomena (polynomial oscillations) generally occurs. This is
because a polynomial of degree n generally has N − 1 combined maximums and
minimums.

The Runge phenomena can easily be illustrated with the simple example
function f(x) = (1 + 16x2)−1. Figure ??(a)-(b) illustrates the large oscillations
which develop near the boundaries due to Runge phenomena for N = 12 and
N = 24. As with the Gibb’s oscillations generated by FFTs, the Runge oscil-
lations render a simple polynomial approximation based upon equally spaced
points useless.

Method 3: polynomial approximation with clustered points

There exists a modification to the straight forward polynomial approximation
given above. Specifically, this modification constructs a polynomial approxima-
tion on a clustered grid as opposed to the equal spacing which led to Runge
phenomena. This polynomial approximation involves a clustered grid which is
transformed to fit onto the unit circle, i.e. the Chebychev points. Thus we have
the transformation

xn = cos(nπ/N) (4.5.2)

where n = 0, 1, 2, ..., N . This helps to greatly reduce the effects of the Runge
phenomena.

The clustered grid approximation results in a polynomial approximation
shown in Fig. ??(c)-(d). There are reasons for this great improvement using a
clustered grid [?]. However, we will not discuss them since they are beyond the
scope of this course. This clustered grid suggests an accurate and easy way to
represent a function which does not have periodic boundaries.

Clustered Points and Chebychev Differentiation

The clustered grid given in method 3 above is on the Chebychev points. The
resulting algorithm for constructing the polynomial approximation and differ-
entiating it is as follows.



Scientific Computing ( c©J. N. Kutz) 96

1. Let p be a unique polynomial of degree ≤ N with p(xn) = Vn, 0 ≤ n ≤ N
where V (x) is the function we are approximating.

2. Differentiate by setting wn = p′(xn).

The second step in the process of calculating the derivative is essentially the
matrix multiplication

w = DNv (4.5.3)

where DN represents the action of differentiation. By using interpolation of the
Lagrange form [?], the matrix elements of p(x) can be constructed along with
the (N + 1)× (N + 1) matrix DN . This results in each matrix element (DN )ij
being given by

(DN )00 =
2N2 + 1

6
(4.5.4a)

(DN )NN = −2N2 + 1

6
(4.5.4b)

(DN )jj = − xj
2(1− x2j)

j = 1, 2, ..., N − 1 (4.5.4c)

(DN )ij =
ci(−1)i+j

cj(xi − xj)
i, j = 0, 1, ..., N (i 6= j) (4.5.4d)

where the parameter cj = 2 for j = 0 or N or cj = 1 otherwise.
Calculating the individual matrix elements results in the matrix DN

DN =




2N2+1
6

2(−1)j

1−xj

(−1)N

2

. . . (−1)i+j

xi−xj

−(−1)i

2(1−xi)
−xj

2(1−x2
j
)

(−1)N+i

2(1+xj)

(−1)i+j

xi−xj

. . .

−(−1)N

2
−2(−1)N+j

1+xj
− 2N2+1

6




(4.5.5)

which is a full matrix, i.e. it is not sparse. To calculate second, third, fourth,
and higher derivatives, simply raise the matrix to the appropriate power:

• D2
N - second derivative

• D3
N - third derivative

• D4
N - fourth derivative

• Dm
N - mth derivative



Scientific Computing ( c©J. N. Kutz) 97

Boundaries

The construction of the differentiation matrix DN does not explicitly include
the boundary conditions. Thus the general differentiation given by (??) must
be modified to include the given boundary conditions. Consider, for example,
the simple boundary conditions

v(−1) = v(1) = 0 . (4.5.6)

The given differentiation matrix is then written as




w0

w1

...
wN−1

wN




=




top row

first (DN ) last
column column

bottom row







v0
v1
...

vN−1

vN



. (4.5.7)

In order to satisfy the boundary conditions, we must manually set v0 = vN = 0.
Thus only the interior points in the differentiation matrix are relevant. Note
that for more general boundary conditions v(−1) = α and v(1) = β, we would
simply set v0 = α and vN = β. The remaining (N − 1) × (N − 1) system is
given by

w̃ = D̃N ṽ (4.5.8)

where w̃ = (w1w2 · · ·wN−1)
T , ṽ = (v1v2 · · · vN−1)

T and we construct the matrix
D̃N with the simple MATLAB command:

tildeD=D(2:N,2:N)

Note that the new matrix created is the old DN matrix with the top and bottom
rows and the first and last columns removed.

Connecting to the FFT

We have already discussed the connection of the Chebychev polynomial with
the FFT algorithm. Thus we can connect the differentiation matrix with the
FFT routine. After transforming via (??), then for real data the discrete Fourier
transform can be used. For complex data, the regular FFT is used. Note that
for the Chebychev polynomials

∂Tn(±1)

∂x
= 0 (4.5.9)

so that no-flux boundaries are already satisfied. To impose pinned boundary
conditions v(±1) = 0, then the differentiation matrix must be imposed as shown
above.



Scientific Computing ( c©J. N. Kutz) 98

4.6 Implementing the Chebychev Transform

In order to make use of the Chebychev polynomials, we must generate our given
function on the clustered grid given by

xj = cos(jπ/N) j = 0, 1, 2, ..., N . (4.6.1)

This clustering will give higher resolution near the boundaries than the interior
of the computational domain. The Chebychev differentiation matrix

DN (4.6.2)

can then be constructed. Recall that the elements of this matrix are given by

(DN )00 =
2N2 + 1

6
(4.6.3a)

(DN )NN = −2N2 + 1

6
(4.6.3b)

(DN )jj = − xj
2(1− x2j)

j = 1, 2, ..., N − 1 (4.6.3c)

(DN )ij =
ci(−1)i+j

cj(xi − xj)
i, j = 0, 1, ..., N (i 6= j) (4.6.3d)

where the parameter cj = 2 for j = 0 or N or cj = 1 otherwise. Thus given
the number of discretization points N , we can build the matrix DN and also
the associated clustered grid. The following MATLAB code simply required the
number of points N to generate both of these fundamental quantities. Recall
that it is assumed that the computational domain has been scaled to x ∈ [−1, 1].

% cheb.m - compute the matrix D_N

function [D,x]=cheb(N)

if N==0, D=0; x=1; return; end

x=cos(pi*(0:N)/N)’;

c=[2; ones(N-1,1); 2].*(-1).^(0:N)’;

X=repmat(x,1,N+1);

dX=X-X’;

D=(c*(1./c)’)./(dX+eye(N+1))); % off diagonals

D=D-diag(sum(D’)); % diagonals

To test the differentiation, we consider two functions for which we know the
exact values for the derivative and second derivative. Consider then

x=[-1:0.01:1]

u=exp(x).*sin(5*x);

v=sech(x);



Scientific Computing ( c©J. N. Kutz) 99

The first and second derivative of each of these functions is given by

ux=exp(x).*sin(5*x) + 5*exp(x).*cos(5*x);

uxx=-4*exp(x).*sin(5*x) + 10*exp(x).*cos(5*x);

vx=-sech(x).*tanh(x);

vxx=sech(x)-2*sech(x).^3;

We can also use the Chebychev differentiation matrix to numerically calculate
the values of the first and second derivative. All that is required is the number
of discretation points N and the routine cheb.m.

N=20

[D,x2]=cheb(N) % x2-clustered grid, D-differentiation matrix

D2=D^2; % D2 - second derivative matrix

Given the differentiation matrix DN and clustered grid, the given function and
its derivatives can be constructed numerically.

u2=exp(x2).*sin(5*x2);

v2=sech(x2);

u2x=D*u2; % first derivatives

v2x=D*v2;

u2xx=D2*u2; % second derivatives

v2xx=D2*v2;

A comparison between the exact values for the differentiated functions and their
approximations is shown in Fig. ??. As is expected the agreement is best for
higher values of N . The MATLAB code for generating these graphical figures
is given by

figure 1; plot(x,u,’r’,x2,u2,’.’,x,v,’g’,x2,v2,’.’);

figure 2; plot(x,ux,’r’,x2,u2x,’.’,x,vx,’g’,x2,v2x,’.’):

figure 3; plot(x,uxx,’r’,x2,u2xx,’.’,x,vxx,’g’,x2,v2xx,’.’);

Differentiation matrix in 2-D

Unlike finite difference schemes which result in sparse differentiation matrices,
the Chebychev differentiation matrix is full. The construction of 2D differenti-
ation matrices thus would seem to be a complicated matter. However, the use
of the kron command is MATLAB makes this calculation trivial. In particular,
the 2D Laplacian operator L given by

Lu =
∂2u

∂x2
+
∂2u

∂y2
(4.6.4)

can be constructed with



Scientific Computing ( c©J. N. Kutz) 100

L = kron(I,D2) + kron(D2,I)

where D2 = D2 and I is the identity matrix of size N ×N . The D2 in each slot
takes the x and y derivatives respectively.

Solving PDEs with the Chebychev differentiation matrix

To illustrate the use of the Chebychev differentiation matrix, the two dimen-
sional heat equation is considered:

∂u

∂t
= ∇2u =

∂2u

∂x2
+
∂2u

∂y2
(4.6.5)

on the domain x, y ∈ [−1, 1] with the Dirichlet boundary conditions u = 0.
The number of Chebychev points is first chosen and the differentiation matrix

constructed in one dimension.

clear all; close all;

N=30;

[D,x]=cheb(N); D2=D^2; y=x;

The Dirichlet boundary conditions are then imposed by modifying the first and
last rows of the differentiation matrix. Specifically, these rows are set to zero.

D22=D2;

D22(N+1,:)=zeros(1,N+1);

D22(1,:)=zeros(1,N+1);

The two dimensional Laplacian is then constructed from the one dimensional
differentiation matrix by using the kron command

I=eye(length(D22));

L=kron(I,D22)+kron(D22,I); % 2D Laplacian

The initial conditions for this simulation will be a Gaussian centered at the
origin.

[X,Y]=meshgrid(x,y);

U=exp(-(X.^2+Y.^2)/0.1);

surfl(x,y,U), shading interp, colormap(gray), drawnow

Note that the vectors x and y in the meshgrid command correspond to the
Chebychev points for a given N . The final step is to build a loop which will
advance and plot the solution in time. This requires the use of the reshape
command since we are in two dimensions and an ODE solver such as ode23.



Scientific Computing ( c©J. N. Kutz) 101

u=reshape(U,(N+1)^2,1);

for j=1:4

[t,ysol]=ode23(’heatrhs2D’,[0 0.05],u,[],L);

u=ysol(end,:);

U=reshape(u,N+1,N+1);

surfl(x,y,U), shading interp, colormap(gray), drawnow

end

This code will advance the solution ∆t = 0.05 in the future and plot the solution.
Figure ?? depicts the two dimensional diffusive behavior given the Dirichlet
boundary conditions using the Chebychev differentiation matrix.

4.7 Operator splitting techniques

With either the finite difference or spectral method, the governing partial differ-
ential equations are transformed into a system of differential equations which are
advanced in time with any of the standard time-stepping schemes. A von Neu-
mann analysis can often suggest the appropriateness of a scheme. For instance,
we have the following:

A. wave behavior: ∂u/∂t = ∂u/∂x

• forward Euler: unstable for all λ

• leap-frog (2,2): stable λ ≤ 1

B. diffusion behavior: ∂u/∂t = ∂2u/∂x2

• forward Euler: stable λ ≤ 1/2

• leap-frog (2,2): unstable for all λ

Thus the physical behavior of the governing equation dictates the kind of scheme
which must be implemented. But what if we wanted to consider the equation

∂u

∂t
=
∂u

∂x
+
∂2u

∂x2
. (4.7.1)

This has elements of both diffusion and wave propagation. What time-stepping
scheme is appropriate for such an equation. Certainly the Euler method seems
to work well for diffusion, but destabilizes wave propagation. In contrast, leap-
frog (2,2) works well for wave behavior and destabilizes diffusion.

Operator Splitting

The key idea behind operator splitting is to decouple the various physical ef-
fects of the problem from each other. Over very small time-steps, for instance,
one can imagine that diffusion would essentially act independently of the wave



Scientific Computing ( c©J. N. Kutz) 102

propagation and vice-versa in (??). Just as in (??), the advection-diffusion can
also be thought of as decoupling. So we can consider

∂ω

∂t
+ [ψ, ω] = ν∇2ω (4.7.2)

where the bracketed terms represent the advection (wave propagation) and the
right hand side represents the diffusion. Again there is a combination of wave
dynamics and diffusive spreading.

Over a very small time interval ∆t, it is reasonable to conjecture that the
diffusion process is independent of the advection. Thus we could split the cal-
culation into the following two pieces:

∆t :
∂ω

∂t
+ [ψ, ω] = 0 advection only (4.7.3a)

∆t :
∂ω

∂t
= ν∇2ω diffusion only . (4.7.3b)

This then allows us to time-step each physical effect independently over ∆t.
Advantage can then be taken of an appropriate time-stepping scheme which is
stable for those particular terms. For instance, in this decoupling we could solve
the advection (wave propagation) terms with a leap-frog (2,2) scheme and the
diffusion terms with a forward Euler method.

Additional Advantages of Splitting

There can be additional advantages to the splitting scheme. To see this, we
consider the nonlinear Schrödinger equation

i
∂u

∂t
+

1

2

∂2u

∂x2
+ |u|2u = 0 (4.7.4)

where we split the operations so that

I. ∆t : i
∂u

∂t
+

1

2

∂2u

∂x2
= 0 (4.7.5a)

II. ∆t : i
∂u

∂t
+ |u|2u = 0 . (4.7.5b)

Thus the solution will be decomposed into a linear and nonlinear part. We begin
by solving the linear part I. Fourier transforming yields

i
dû

dt
− k2

2
û = 0 (4.7.6)

which has the solution

û = û0 exp

(
−ik

2

2
t

)
. (4.7.7)



Scientific Computing ( c©J. N. Kutz) 103

So at each step, we simply need to calculate the transform of the initial condition
û0, multiply by exp(−ik2t/2), and then invert.

The next step is to solve the nonlinear evolution II. over a time-step ∆t.
This is easily done since the nonlinear evolution admits the exact solution

u = u0 exp(i|u0|2t) (4.7.8)

where u0 is the initical condition. This part of the calculation then requires no
computation, i.e. we have an exact, analytic solution. The fact that we can
take advantage of this property is why the splitting algorithm is so powerful.

To summarize then, the split-step method for the nonlinear Schrödinger
equation yields the following algorithm.

1. dispersion: u1 = FFT−1
[
û0 exp(−ik2∆t/2)

]

2. nonlinearity: u2 = u1 exp(i|u1|2∆t)

3. solution: u(t+∆t) = u2

Note the advantage that is taken of the analytic properties of the solution of
each aspect of the split operators.

Symmetrized Splitting

Although we will not perform an error analysis on this scheme. It is not hard
to see that the error will depend heavily on the time-step ∆t. Thus our scheme
for solving

∂u

∂t
= Lu+N(u) (4.7.9)

involves the splitting

I. ∆t :
∂u

∂t
+ Lu = 0 (4.7.10a)

II. ∆t :
∂u

∂t
+N(u) = 0 . (4.7.10b)

To drop the error down by another O(∆t), we use what is called a Strang
splitting technique [?] which is based upon the Trotter product formula. This
essentially involves symmetrizing the splitting algorithm so that

I.
∆t

2
:

∂u

∂t
+ Lu = 0 (4.7.11a)

II. ∆t :
∂u

∂t
+N(u) = 0 (4.7.11b)

III.
∆t

2
:

∂u

∂t
+ Lu = 0 (4.7.11c)

This essentially cuts the time-step in half and allows the error to drop down an
order of magnitude. It should always be used so as to keep the error in check.



Scientific Computing ( c©J. N. Kutz) 104

5 Finite Element Methods

The numerical methods considered thus far, i.e. finite difference and spectral,
are powerful tools for solving a wide variety of physical problems. However,
neither method is well suited for complicated boundary configurations or com-
plicated boundary conditions associated with such domains. The finite element
method is ideally suited for complex boundaries and very general boundary
conditions. This method, although perhaps not as fast as finite difference and
spectral, is instrumental in solving a wide range of problems which is beyond
the grasp of other techniques.

5.1 Finite element basis

The finite difference method approximates a solution by discretizing and solving
the matrix problem Ax = b. Spectral methods use the FFT to expand the
solution in global sine and consine basis functions. Finite elements are another
form of finite difference in which the approximation to the solution is made
by interpolating over patches of our solution region. Ultimately, to find the
solution we will once again solve a matrix problem Ax = b. Five essential steps
are required in the finite element method

1. Discretization of the computational domain

2. Selection of the interpolating functions

3. Derivation of characteristic matrices and vectors

4. Assembly of characteristic matrices and vectors

5. Solution of the matrix problem Ax = b

As will be seen, each step in the finite element method is mathematically sig-
nificant and relatively challenging. However, there are a large number of com-
mercially available packages that take care of implementing the above ideas.
Keep in mind that the primary reason to develop this technique is boundary
conditions: both complicated domains and general boundary conditions.

Domain Discretization

Finite element domain discretization usually involves the use of a commercial
package. Two commonly used packages are the MATLAB PDE Toolbox and
FEMLAB (which is built on the MATLAB platform). Writing your own code to
generate an unstructured computational grid is a difficult task and well beyond
the scope of this course. Thus we will use commercial packages to generate the
computational mesh necessary for a given problem. The key idea is to discretize
the domain with triangular elements (or another appropriate element function).



Scientific Computing ( c©J. N. Kutz) 105

Figure ?? shows the discretization of a domain with complicated boundaries
inside the computationally relevant region. Note that the triangular discretiza-
tion is such that it adaptively sizes the triangles so that higher resolution is
automatically in place where needed. The key features of the discretization are
as follows:

• The width and height of all discretization triangles should be similar.

• All shapes used to span the computational domain should be approxi-
mated by polygons.

• A commercial package is almost always used to generate the grid unless
you are doing research in this area.

Interpolating Functions

Each element in the finite element basis relies on a piecewise approximation.
Thus the solution to the problem is approximated by a simple function in each
triangular (or polygonal) element. As might be expected, the accuracy of the
scheme depends upon the choice of the approximating function chosen.

Polynomials are the most commonly used interpolating functions. The sim-
pler the function, the less computationally intensive. However, accuracy is
usually increased with the use of higher order polynomials. Three groups of
elements are usually considered in the basic finite element scheme

• simplex elements: linear polynomials are used

• complex elements: higher order polynomials are used

• multiplex elements: rectangles are used instead of triangles

An example of each of the three finite elements is given in Figs. ?? and ?? for
one-dimensional and two-dimensional finite elements.

=a+bxφ

simplex

Figure 34: Finite element discretization
Essentially the finite elements

φi
φ

xi

(x)

Figure 36: One dimensional

1D Simplex

To consider the finite element implementation, we begin by considering the
one-dimensional problem. Figure ?? shows the linear polynomial used to ap-
proximate the solution between points xi and xj . The approximation of the
function is thus

φ(x) = a+ bx = (1 x)

(
a
b

)
. (5.1.1)

The coefficients a and b are determined by enforcing that the function goes
through the end points. This gives

φi = a+ bxi (5.1.2a)

φj = a+ bxj (5.1.2b)



Scientific Computing ( c©J. N. Kutz) 106

which is a 2 × 2 system for the unknown coefficients. In matrix form this can
be written

φ = Aa → φ =

(
φi
φj

)
, A =

(
1 xi
1 xj

)
, a =

(
a
b

)
. (5.1.3)

Solving for a gives

a = A−1φ =
1

xj − xi

(
xj −xi
−1 1

)(
φi
φj

)
=

1

l

(
xj −xi
−1 1

)(
φi
φj

)

(5.1.4)
where l = xj − xi. Recalling that φ = (1 x)a then gives

φ =
1

l
(1 x)

(
xj −xi
−1 1

)(
φi
φj

)
. (5.1.5)

Multiplying this expression out yields the approximate solution

φ(x) = Ni(x)φi +Nj(x)φj (5.1.6)

where Ni(x) and Nj(x) are the Lagrange polynomial coefficients [?] (shape
functions)

Ni(x) =
1

l
(xj − x) (5.1.7a)

Nj(x) =
1

l
(x − xi) . (5.1.7b)

Note the following properties Ni(xi) = 1, Ni(xj) = 0 and Nj(xi) = 0, Nj(xj) =
1. This completes the generic construction of the polynomial which approxi-
mates the solution in one dimension.

2D simplex

In two dimensions, the construction becomes a bit more difficult. However, the
same approach is taken. In this case, we approximate the solution over a region
with a plane (see Figure ??)

φ(x) = a+ bx+ cy . (5.1.8)

The coefficients a, b, and c are determined by enforcing that the function goes
through the end points. This gives

φi = a+ bxi + cyi (5.1.9a)

φj = a+ bxj + cyj (5.1.9b)

φk = a+ bxk + cyk (5.1.9c)



Scientific Computing ( c©J. N. Kutz) 107

which is now a 3 × 3 system for the unknown coefficients. In matrix form this
can be written

φ = Aa → φ =




φi
φj
φk


 , A =




1 xi yi
1 xj yj
1 xk yk


 , a =




a
b
c


 . (5.1.10)

The geometry of this problem is reflected in Fig. ?? where each of the points of
the discretization triangle is illustrated.

Solving for a gives

a = A−1φ =
1

2S




xjyk − xkyj xkyi − xiyk xiyj − xjyi
yj − yk yk − yi yi − yj
xk − xj xi − xk xj − xi






φi
φj
φk




(5.1.11)
where S is the area of the triangle projected onto the x− y plane (see Fig. ??.
Recalling that φ = Aa gives

φ(x) = Ni(x, y)φi +Nj(x, y)φj +Nk(x, y)φk (5.1.12)

where Ni(x, y), Nj(x, y), Nk(x, y) are the Lagrange polynomial coefficients [?]
(shape functions)

Ni(x, y) =
1

2S
[(xjyk − xkyj) + (yj − yk)x+ (xk − xj)y] (5.1.13a)

Nj(x, y) =
1

2S
[(xkyi − xiyk) + (yk − yi)x+ (xi − xk)y] (5.1.13b)

Nk(x, y) =
1

2S
[(xiyj − xjyi) + (yi − yj)x+ (xj − xi)y] . (5.1.13c)

Note the following end point propertiesNi(xi, yi) = 1, Nj(xj , yj) = Nk(xk, yk) =
0 andNj(xj , yj) = 1, Nj(xi, yi) = Nj(xk, yk) = 0 andNk(xk, yk) = 1, Nk(xi, yi) =
Nk(xj , yj) = 0. This completes the generic construction of the polynomial which
approximates the solution in one dimension. This completes the generic con-
struction of the surface which approximates the solution in two dimensions.

5.2 Discretizing with finite elements and boundaries

In the previous lecture, an outline was given for the construction of the polyno-
mials which approximate the solution over a finite element. Once constructed,
however, they must be used to solve the physical problem of interest. The finite
element solution method relies on solving the governing set of partial differential
equations in the weak formulation of the problem, i.e. the integral formulation
of the problem. This is because we will be using linear interpolation pieces
whose derivatives don’t necessarily match accross elements. In the integral for-
mulation, this does not pose a problem.



Scientific Computing ( c©J. N. Kutz) 108

We begin by considering the elliptic partial differential equation

∂

∂x

(
p(x, y)

∂u

∂x

)
+

∂

∂y

(
q(x, y)

∂u

∂y

)
+ r(x, y)u = f(x, y) (5.2.1)

where over part of the boundary

u(x, y) = g(x, y) on S1 (5.2.2)

and

p(x, y)
∂u

∂x
cos θ1 + q(x, y)

∂u

∂y
cos θ2 + g1(x, y)u = g2(x, y) on S2 . (5.2.3)

The boundaries and domain are illustrated in Fig. ??. Note that the normal
derivative determines the angles θ1 and θ2. A domain such as this would be
very difficult to handle with finite difference techniques. And further, because
of the boundary conditions, spectral methods cannot be implemented. Only the
finite element method renders the problem tractable.

The Variational Principle

To formulate the problem correctly for the finite element method, the governing
equations and its associated boundary conditions are recast in an integral form.
This recasting of the problem involves a variational principle. Although we will
not discuss the calculus of variations here [?], the highlights of this method will
be presented.

The variational method expresses the governing partial differential as an
integral which is to be minimized. In particular, the functional to be minimized
is given by

I(φ) =

∫ ∫ ∫

V

F

(
φ,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
dV +

∫ ∫

S

g

(
φ,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
dS , (5.2.4)

where a three dimensional problem is being considered. The derivation of the
functions F , which captures the governing equation, and g, which captures
the boundary conditions, follow the Euler-Lagrange equations for minimizing
variations:

δF

δφ
=

∂

∂x

(
∂F

∂(φx)

)
+

∂

∂y

(
∂F

∂(φy)

)
+

∂

∂z

(
∂F

∂(φz)

)
− ∂F

∂φ
= 0 . (5.2.5)

This is essentially a generalization of the concept of the zero derivative which
minimizes a function. Here we are minimizing a functional.

For our governing elliptic problem (??) with boundary conditions given by
those of S2 (??), we find the functional I(u) to be given by

I(u) =
1

2

∫ ∫

D

dxdy

[
p(x, y)

(
∂u

∂x

)2

+q(x, y)

(
∂u

∂y

)2

−r(x, y)u2+2f(x, y)u

]



Scientific Computing ( c©J. N. Kutz) 109

+

∫

S2

dS

[
−g2(x, y)u +

1

2
g1(x, y)u

2

]
. (5.2.6)

Thus the interior domain over which we integrate D has the integrand

ID =
1

2

[
p(x, y)

(
∂u

∂x

)2

+q(x, y)

(
∂u

∂y

)2

−r(x, y)u2+2f(x, y)u

]
. (5.2.7)

This integrand was derived via variational calculus as the minimization over the
functional space of interest. To confirm this, we apply the variational derivative
as given by (??) and find

δID
δu

=
∂

∂x

(
∂ID
∂(ux)

)
+

∂

∂y

(
∂ID
∂(uy)

)
− ∂ID

∂u
= 0

=
∂

∂x

(
1

2
p(x, y) · 2∂u

∂x

)
+
∂

∂y

(
1

2
q(x, y)·2∂u

∂y

)
−
(
−1

2
r(x, y)·2u+f(x, y)

)

=
∂

∂x

(
p(x, y)

∂u

∂x

)
+
∂

∂y

(
q(x, y)

∂u

∂y

)
+r(x, y)u−f(x, y) = 0 . (5.2.8)

Upon rearranging, this gives back the governing equation (??)

∂

∂x

(
p(x, y)

∂u

∂x

)
+

∂

∂y

(
q(x, y)

∂u

∂y

)
+ r(x, y)u = f(x, y) . (5.2.9)

A similar procedure can be followed on the boundary terms to derive the ap-
propriate boundary conditions (??) or (??). Once the integral formulation has
been achieved, the finite element method can be implemented with the following
key ideas:

1. The solution is expressed in the weak (integral) form since the linear (sim-
plex) interpolating functions give that the second derivates (e.g. ∂2x and
∂2y) are zero. Thus the elliptic operator (??) would have no contribu-
tion from a finite element of the form φ = a1 + a2x + a3y. However, in
the integral formulation, the second derivative terms are proportional to
(∂u/∂x)2 + (∂u/∂y)2 which gives φ = a22 + a23.

2. A solution is sought which takes the form

u(x, y) =

m∑

i=1

γiφi(x, y) (5.2.10)

where φi(x, y) are the linearly independent piecewise-linear polynomials
and γ1, γ2, ..., γm are constants.

• γn+1, γn+2, ..., γm ensure that the boundary conditions are satisfied,
i.e. those elements which touch the boundary must meet certain
restrictions.

• γ1, γ2, ..., γn ensure that the integrand I(u) in the interior of the com-
putational domain is minimized, i.e. ∂I/∂γi = 0 for i = 1, 2, 3, ..., n.



Scientific Computing ( c©J. N. Kutz) 110

Solution Method

We begin with the governing equation in integral form (??) and assume an
expansion of the form (??). This gives

I(u) = I

(
m∑

i=1

γiφi(x, y)

)

=
1

2

∫ ∫

D

dxdy


p(x, y)

(
m∑

i=1

γi
∂φi
∂x

)2

+q(x, y)

(
m∑

i=1

γi
∂φi
∂y

)2

−r(x, y)
(

m∑

i=1

γiφi(x, y)

)2

+2f(x, y)

(
m∑

i=1

γiφi(x, y)

)
 (5.2.11)

+

∫

S2

dS


−g2(x, y)

m∑

i=1

γiφi(x, y) +
1

2
g1(x, y)

(
m∑

i=1

γiφi(x, y)

)2

 .

This completes the expansion portion.
The functional I(u) must now be differentiated with respect to all the interior

points and minimized. This involves differentiating the above with respect to
γi where i = 1, 2, 3, ..., n. This results in the rather complicated expression

∂I

∂γj
=

∫ ∫

D

dxdy

[
p(x, y)

m∑

i=1

γi
∂φi
∂x

∂φj
∂x

+q(x, y)

m∑

i=1

γi
∂φi
∂y

∂φj
∂y

−r(x, y)
m∑

i=1

γiφiφj+f(x, y)φj

]
(5.2.12)

+

∫

S2

dS

[
−g2(x, y)φj + g1(x, y)

m∑

i=1

γiφiφj

]
= 0 .

Term by term, this results in an expression for the γi given by

m∑

i=1

{∫ ∫

D

dxdy

[
p
∂φi
∂x

∂φj
∂x

+q
∂φi
∂y

∂φj
∂y

−rφiφj
]
+

∫

S2

dSg1φiφj

}
γi

+

∫ ∫

D

dxdyfφj −
∫

S2

dSg2(x, y)φj = 0 . (5.2.13)

But this expression is simply a matrix solve Ax = b for the unknowns γi. In
particular, we have

x =




γ1
γ2
...
γn


 b =




β1
β2
...
βn


 A = (αij) (5.2.14)



Scientific Computing ( c©J. N. Kutz) 111

where

βi=−
∫ ∫

D

dxdyfφi +

∫

S2

dSg2φi −
m∑

k=n+1

αikγk (5.2.15a)

αij=

∫ ∫

D

dxdy

[
p
∂φi
∂x

∂φj
∂x

+q
∂φi
∂y

∂φj
∂y

−rφiφj
]
+

∫

S2

dSg1φiφj . (5.2.15b)

Recall that each element φi is given by the simplex approximation

φi =
3∑

i=1

N
(i)
j (x, y)φ

(i)
j =

3∑

i=1

(
a
(i)
j + b

(i)
j x+ c

(i)
j y
)
φ
(i)
j . (5.2.16)

This concludes the construction of the approximate solution in the finite element
basis. From an algorithmic point of view, the following procedure would be
carried out to generate the solution.

1. Discretize the computational domain into triangles. T1, T2, ..., Tk are the
interior triangles and Tk+1, Tk+2, ..., Tm are triangles that have at least
one edge which touches the boundary.

2. For l = k + 1, k + 2, ...,m, determine the values of the vertices on the
triangles which touch the boundary.

3. Generate the shape functions

N
(i)
j = a

(i)
j + b

(i)
j x+ c

(i)
j y (5.2.17)

where i = 1, 2, 3, ...,m and j = 1, 2, 3, ...,m.

4. Compute the integrals for matrix elements αij and vector elements βj in
the interior and boundary.

5. Construct the matrix A and vector b.

6. Solve Ax = b.

7. Plot the solution u(x, y) =
∑m
i=1 γiφi(x, y).

For a wide variety of problems, the above procedures can simply be automated.
That is exactly what commercial packages do. Thus once the coefficients and
boundary conditions associated with (??), (??), and (??) are known, the solu-
tion procedure is straightforward.



Scientific Computing ( c©J. N. Kutz) 112

A Application Problems

The purpose of this class: to be able to solve realistic and difficult problems
which arise in a variety of physical settings. This appendix outlines a few
physical problems which give rise to phenomena of great general interest. The
techniques developed in the lectures on finite difference, spectral, and finite
element methods provide all the necessary tools for solving these problems.
Thus each problem isn’t simply a mathematical problem, but rather a way to
describe phenomena which may be observed in various physically interesting
systems.

A.1 Advection-diffusion and Atmospheric Dynamics

The shallow-water wave equations are of fundamental interest in several con-
texts. In one sense, the ocean can be thought of as a shallow water description
over the surface of the earth. Thus the circulation and movement of currents
can be studied. Second, the atmosphere can be thought of as a relatively thin
layer of fluid (gas) above the surface of the earth. Again the circulation and
atmospheric dynamics are of general interest. The shallow-water approximation
relies on a separation of scale: the height of the fluid (or gas) must be much less
than the characteristic horizontal scales. The physical setting for the shallow-
water modeling is illustrated in Fig. ??. In this figure, the characteristic height
is given by the parameter D while the characteristic horizontal fluctuations are
given by the parameter L. For the shallow-water approximation to hold, we
must have

δ =
D

L
≪ 1 . (A.1.1)

This gives the necessary separation of scales for reducing the Navier-Stokes
equations to the shallow-water description.

The motion of the layer of fluid is described by its velocity field

v =




u
v
w


 (A.1.2)

where u, v, and w are the velocities in the x, y, and z directions respectively. An
alternative way to describe the motion of the fluid is through the quantity known
as the vorticity. Roughly speaking the vorticity is a vector which measures the
twisting of the fluid, i.e. Ω = (ωx ωy ωz)

T . Since with shallow-water we are
primarily interested in the vorticity or fluid rotation in the x−y plane, we define
the vorticity of interest to be

ωz = ω =
∂v

∂x
− ∂u

∂y
. (A.1.3)

This quantity will characterize the evolution of the fluid in the shallow-water
approximation.



Scientific Computing ( c©J. N. Kutz) 113

Conservation of Mass

The equations of motion are a consequence of a few basic physical principles, one
of those being conservation of mass. The implications of conservation of mass:
the time rate of change of mass in a volume must equal the net inflow/outflow
through the boundaries of the volume. Consider a volume from Fig. ?? which
is bounded between x ∈ [x1, x2] and y ∈ [y1, y2]. The mass in this volume is
given by

mass =

∫ x2

x1

∫ y2

y1

ρ(x, y)h(x, y, t)dxdy (A.1.4)

where ρ(x, y) is the fluid density and h(x, y, t) is the surface height. We will
assume the density ρ is constant in what follows. The conservation of mass in
integral form is then expressed as

∂

∂t

∫ x2

x1

∫ y2

y1

h(x, y, t)dxdy

+

∫ y2

y1

[u(x2, y, t)h(x2, y, t)− u(x1, y, t)h(x1, y, t)] dy

+

∫ x2

x1

[v(x, y2, t)h(x, y2, t)−v(x, y1, t)h(x, y1, t)] dx = 0, (A.1.5)

where the density has been divided out. Here the first term measures the rate
of change of mass while the second and third terms measure the flux of mass
across the x boundaries and y boundaries respectively. Note that from the
fundamental theorem of calculus, we can rewrite the second and third terms:

∫ y2

y1

[u(x2, y, t)h(x2, y, t)−u(x1, y, t)h(x1, y, t)] dy=
∫ x2

x1

∫ y2

y1

∂

∂x
(uh)dxdy (A.1.6a)

∫ x2

x1

[v(x, y2, t)h(x, y2, t)−v(x, y1, t)h(x, y1, t)] dx=
∫ x2

x1

∫ y2

y1

∂

∂y
(vh)dxdy. (A.1.6b)

Replacing these new expressions in (??) shows all terms to have a double integral
over the volume. The integrand must then be identically zero for conservation
of mass. This results in the expression

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 . (A.1.7)

Thus a fundamental relationship is established from a simple first principles
argument. The second and third equations of motion for the shallow-water
approximation result from the conservation of momentum in the x and y di-
rections. These equations may also be derived directly from the Navier-Stokes
equations or conservation laws.



Scientific Computing ( c©J. N. Kutz) 114

Shallow-Water Equations

The conservation of mass and momentum generates the following three govern-
ing equations for the shallow-water description

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 (A.1.8a)

∂

∂t
(hu) +

∂

∂x

(
hu2 +

1

2
gh2
)
+

∂

∂y
(huv) = fhv (A.1.8b)

∂

∂t
(hv) +

∂

∂y

(
hv2 +

1

2
gh2
)
+

∂

∂x
(huv) = −fhu . (A.1.8c)

Various approximations are now used to reduce the governing equations to a
more manageable form. The first is to assume that at leading order the fluid
height h(x, y, t) is constant. The conservation of mass equation (??a) then
reduces to

∂u

∂x
+
∂v

∂y
= 0 , (A.1.9)

which is referred to as the imcompressible flow condition. Thus under this
assumption, the fluid cannot be compressed.

Under the assumption of a constant height h(x, y, t), the remaining two
equations reduce to

∂u

∂t
+ 2u

∂u

∂x
+

∂

∂y
(uv) = fv (A.1.10a)

∂v

∂t
+ 2v

∂v

∂y
+

∂

∂x
(uv) = −fu . (A.1.10b)

To simplify further, take the y derivative of the first equation and the x deriva-
tive of the second equation. The new equations are

∂2u

∂t∂y
+ 2

∂u

∂y

∂u

∂x
+ 2u

∂2u

∂x∂y
+

∂2

∂y2
(uv) = f

∂v

∂y
(A.1.11a)

∂2v

∂t∂x
+ 2

∂v

∂x

∂v

∂y
+ 2v

∂2v

∂x∂y
+

∂2

∂x2
(uv) = −f ∂u

∂x
. (A.1.11b)

Subtracting the first equation from the second gives the following reductions

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
− 2

∂u

∂y

∂u

∂x
− 2u

∂2u

∂x∂y
− ∂2

∂y2
(uv)

+2
∂v

∂x

∂v

∂y
+ 2v

∂2v

∂x∂y
+

∂2

∂x2
(uv) = −f

(
∂u

∂x
+
∂v

∂y

)

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ 2

∂u

∂x

(
∂v

∂x
− ∂u

∂y

)
+ 2

∂v

∂y

(
∂v

∂x
− ∂u

∂y

)
(A.1.12)



Scientific Computing ( c©J. N. Kutz) 115

+u

(
∂2v

∂x2
− ∂2v

∂y2
− 2

∂2u

∂x∂y

)
+ v

(
∂2u

∂x2
− ∂2u

∂y2
+ 2

∂2v

∂x∂y

)
= −f

(
∂u

∂x
+
∂v

∂y

)

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ u

∂

∂x

(
∂v

∂x
− ∂u

∂y

)
+ v

∂

∂y

(
∂v

∂x
− ∂u

∂y

)
− u

∂

∂y

(
∂u

∂x
+
∂v

∂y

)

+v
∂

∂x

(
∂u

∂x
+
∂v

∂y

)
+ 2

(
∂v

∂x
− ∂u

∂y

)(
∂u

∂x
+
∂v

∂y

)
= −f

(
∂u

∂x
+
∂v

∂y

)
.

The final equation is reduced greatly by recalling the definition of the vorticity
(??) and using the imcompressibility condition (??). The governing equations
then reduce to

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= 0 . (A.1.13)

This gives the governing evolution of a shallow-water fluid in the absence of
diffusion.

The Streamfunction

It is typical in many fluid dynamics problems to work with the quantity known
as the streamfunction. The streamfunction ψ(x, y, t) is defined as follows:

u = −∂ψ
∂y

v =
∂ψ

∂x
. (A.1.14)

Thus the streamfunction is specified up to an arbitrary constant. Note that the
streamfunction automatically satisfies the imcompressibility condition since

∂u

∂x
+
∂v

∂y
= − ∂2ψ

∂x∂y
+

∂2ψ

∂x∂y
= 0 . (A.1.15)

In terms of the vorticity, the streamfunction is related as follows:

ω =
∂v

∂x
− ∂u

∂y
= ∇2ψ . (A.1.16)

This gives a second equation of motion which must be considered in solving the
shallow-water equations.

Advection-Diffusion

The advection of a fluid is governed by the evolution (??). In the presence of
frictional forces, modification of this governing equation occurs. Specifically, the
motion in the shallow-water limit is given by

∂ω

∂t
+ [ψ, ω] = ν∇2ω (A.1.17a)

∇2ψ = ω (A.1.17b)



Scientific Computing ( c©J. N. Kutz) 116

where

[ψ, ω] =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
(A.1.18)

and ∇2 = ∂2x + ∂2y is the two dimensional Laplacian. The diffusion component
which is proportional to ν measures the frictional forces present in the fluid
motion.

The advection-diffusion equations have the characteristic behavior of the
three partial differential equations classifications: parabolic, elliptic, and hyper-
bolic:

parabolic:
∂ω

∂t
= ν∇2ω (A.1.19a)

elliptic: ∇2ψ = ω (A.1.19b)

hyperbolic:
∂ω

∂t
+ [ψ, ω] = 0 . (A.1.19c)

Two things need to be solved for as a function of time:

ψ(x, y, t) streamfunction (A.1.20a)

ω(x, y, t) vorticity . (A.1.20b)

We are given the initial vorticity ω0(x, y) and periodic boundary conditions.
The solution procedure is as follows:

1. Elliptic Solve: Solve the elliptic problem ∇2ψ = ω0 to find the stream-
function at time zero ψ(x, y, t = 0) = ψ0.

2. Time-Stepping: Given now ω0 and ψ0, solve the advection-diffusion
problem by time-stepping with a given method. The Euler method is
illustrated below

ω(x, y, t+∆t) = ω(x, y, t) + ∆t
(
ν∇2ω(x, y, t)− [ψ(x, y, t), ω(x, y, t)]

)

This advances the solution ∆t into the future.

3. Loop: With the updated value of ω(x, y,∆t), we can repeat the process
by again solving for ψ(x, y,∆t) and updating the vorticity once again.

This gives the basic algorithmic structure which must be followed in order to
generate the solution for the vorticity and streamfunction as a function of time.
It only remains to discretize the problem and solve.

A.2 Introduction to Reaction-Diffusion Systems

To begin a discussion of the need for generic reaction-diffusion equations, we
consider a set of simplified models relating to predator-prey population dynam-
ics. These models consider the interaction of two species: predators and their



Scientific Computing ( c©J. N. Kutz) 117

prey. It should be obvious that such species will have significant impact on one
another. In particular, if there is an abundance of prey, then the predator popu-
lation will grow due to the surplus of food. Alternatively, if the prey population
is low, then the predators may die off due to starvation.

To model the interaction between these species, we begin by considering the
predators and prey in the absence of any interaction. Thus the prey population
(denoted by x(t)) is governed by

dx

dt
= ax (A.2.1)

where a > 0 is a net growth constant. The solution to this simple differential
equation is x(t) = x(0) exp(at) so that the population grows without bound.
We have assumed here that the food supply is essentially unlimited for the prey
so that the unlimited growth makes sense since there is nothing to kill off the
population.

Likewise, the predators can be modeled in the absence of their prey. In this
case, the population (denoted by y(t)) is governed by

dy

dt
= −cy (A.2.2)

where c > 0 is a net decay constant. The reason for the decay is that the
population starves off since there is no food (prey) to eat.

We now try to model the interaction. Essentially, the interaction must ac-
count for the fact the the predators eat the prey. Such an interaction term can
result in the following system:

dx

dt
= ax− αxy (A.2.3a)

dy

dt
= −cx+ αxy , (A.2.3b)

where α > 0 is the interaction constant. Note that α acts as a decay to the
prey population since the predators will eat them, and as a growth term to the
predators since they now have a food supply. These nonlinear and autonomous
equations are known as the Lotka–Volterra equations. There are two fundamen-
tal limitations of this model: the interaction is only heuristic in nature and there
is no spatial dependence. Thus the validity of this simple modeling is certainly
questionable.

Spatial Dependence

One way to model the dispersion of a species in a given domain is by assuming
the dispersion is governed by a diffusion process. If in addition we assume that



Scientific Computing ( c©J. N. Kutz) 118

the prey population can saturate at a given level, then the governing population
equations are

∂x

∂t
= a

(
x− x2

k

)
− αxy +D1∇2x (A.2.4a)

∂y

∂t
= −cx+ αxy +D2∇2y , (A.2.4b)

which are known as the modified Lotka-Volterra equations. It includes the
species interaction with saturation, i.e. the reaction terms, and spatial spreading
through diffusion, i.e. the diffusion term. Thus it is a simple reaction-diffusion
equation.

Along with the governing equations, boundary conditions must be speci-
fied. A variety of conditions may be imposed, these include periodic bound-
aries, clamped boundaries such that x and y are known at the boundary, flux
boundaries in which ∂x/∂n and ∂y/∂n are known at the boundaries, or some
combination of flux and clamped. The boundaries are significant in determining
the ultimate behavior in the system.

Spiral Waves

One of the many phenomena which can be observed in reaction-diffusion sys-
tems is spiral waves. An excellent system for studying this phenomena is the
Fitzhugh-Nagumo model which provides a heuristic description of an excitable
nerve potential:

∂u

∂t
= u(a− u)(1− u)− v +D∇2u (A.2.5a)

∂v

∂t
= bu− γv , (A.2.5b)

where a,D, b, and γ are tunable parameters.
A basic understanding of the spiral wave phenomena can be achieved by

considering this problem in the absence of the diffusion. Thus the reaction
terms alone give

∂u

∂t
= u(a− u)(1− u)− v (A.2.6a)

∂v

∂t
= bu− γv . (A.2.6b)

This reduces to a system of differential equations for which the fixed points can
be considered. Fixed points occur when ∂u/∂t = ∂v/∂t = 0. The three fixed
points for this system are given by

(u, v) = (0, 0) (A.2.7a)

(u, v) = (u±, (a− u±)(1 − u±)u±) (A.2.7b)



Scientific Computing ( c©J. N. Kutz) 119

where u± = [(a+ 1)± ((a+ 1)2 − 4(a− b/γ))1/2]/2.
The stability of these three fixed points can be found by linearization [?].

In particular, consider the behavior near the steady-state solution u = v = 0.
Thus let

u = 0 + ũ (A.2.8a)

v = 0 + ṽ (A.2.8b)

where ũ, ṽ ≪ 1. Plugging in and discarding higher order terms gives the lin-
earized equations

∂ũ

∂t
= aũ− ṽ (A.2.9a)

∂ṽ

∂t
= bũ− γṽ . (A.2.9b)

This can be written as the linear system

dx

dt
=

(
a −1
b −γ

)
x . (A.2.10)

Assuming a solution of the form x = v exp(λt) results in the eigenvalue problem

(
a− λ −1
b −γ − λ

)
v = 0 (A.2.11)

which has the eigenvalues

λ± =
1

2

[
(a− γ)±

√
(a− γ)2 + 4(b− aγ)

]
. (A.2.12)

In the case where b − aγ > 0, the eigenvalues are purely real with one positive
and one negative eigenvalue, i.e. it is a saddle node. Thus the steady-state
solution in this case is unstable.

Further, if the condition b−aγ > 0 holds, then the two remaning fixed points
occur for u− < 0 and u+ > 0. The stability of these points may also be found.
For the parameter restrictions considered here, these two remaining points are
found to be stable upon linearization.

The question which can then naturally arise: if the two stable solutions
u± are connected, how will the front between the two stable solutions evolve?
The scenario is depicted in one dimension in Fig. ?? where the two stable u±
branches are connected through the unstable u = 0 solution. Figure ?? depicts
the spatial-temporal evolution of the solution of the Fitzhugh-Nagumo model
for the parameterD = 2×10−6, a = 0.25, b = 10−3, and γ = 3×10−3. The dark
regions are where u = u+ whereas the white regions are where u = u−. Note
the formation of spiral waves. The boundary conditions used here are no flux,



Scientific Computing ( c©J. N. Kutz) 120

i.e. ∂u/∂x = 0 or ∂u/∂y = 0 across the left/right and top/bottom boundaries
respectively.

Not just an interesting mathematical phenomena, spiral waves are also ex-
hibited in nature. Figure ?? illustrates a series of experimental observations
in which target patterns and spiral waves are both exhibited. These behaviors
are generated in the Belousov-Zhabotinskii reaction by pacemaker nuclei and
by the slime mold Dictyostelium which emit periodic signals of the chemical
cyclic AMP, which is a chemoattractant for the cells. Spiral waves are seen to
be naturally generated in these systems and are of natural interest for analytic
study.

The λ− ω Reaction-Diffusion System

The general reaction-diffusion system can be written in the vector form

∂u

∂t
= f(u) +D∇2u (A.2.13)

where the diffusion is proportional to the parameter D and the reaction terms
are given by f(u). The specific case we consider is the λ−ω system which takes
the form

∂

∂t

(
u
v

)
=

(
λ(A) −ω(A)
ω(A) λ(A)

)(
u
v

)
+D∇2

(
u
v

)
(A.2.14)

where A = u2+v2. Thus the nonlinearity is cubic in nature. This allows for the
possibility of supporting three steady-state solutions as in the Fitzhugh-Nagumo
model which led to spiral wave behavior. The spirals to be investigated in this
case can have one, two, three or more arms. An example of a spiral wave initial
condition is given by

u0(x, y) = tanh |r| cos(mθ − |r|) (A.2.15a)

v0(x, y) = tanh |r| sin(mθ − |r|) (A.2.15b)

where |r| =
√
x2 + y2 and θ = x+ iy. The parameter m determines the number

of arms on the spiral. The stability of the spiral evolution under perturbation
and in different parameter regimes is essential in understanding the underly-
ing dynamics of the system. A wide variety of boundary conditions can also
be applied. Namely, periodic, clamped, no-flux, or mixed. In each case, the
boundaries have significant impact on the resulting evolution as the boundary
effects creep into the middle of the computational domain.

A.3 Steady State Flow Over an Airfoil

The derivation for the steady-state flow over an airfoil is similar to that of the
vorticity and streamfunction dynamics in shallow-water. The physical setting



Scientific Computing ( c©J. N. Kutz) 121

of interest now is geared towards the behavior of fluids around airfoils. In this
case, a separation of scales is achieved by assuming the airfoil (wing) is much
longer in length than its thickness or width. The scale separation once again
allows for a two-dimensional study of the problem. Additionally, since we are
considering the steady-state flow, the time-dependence of the problem will be
eliminated. The resulting problem will be of the elliptic type. This will give the
steady-state streamfunction and flow over the wing.

The physical setting for the airfoil modeling is illustrated in Fig. ??. In
this figure, the characteristic wing width is given by the parameter D while
the characteristic wing length is given by the parameter L. For a quasi-two-
dimensional description to hold, we must have

δ =
D

L
≪ 1 . (A.3.1)

This gives the necessary separation of scales for reducing the Navier-Stokes
equations to the shallow-water description. In particular, the shallow-water re-
duction which led to the vorticity-streamfunction equations can be pursued here.
The governing equations which result from mass conservation and momentum
conservation in the x and z planes give

∂r

∂t
+

∂

∂x
(ru) +

∂

∂z
(rw) = 0 (A.3.2a)

∂

∂t
(ru) +

∂

∂x

(
ru2 +

1

2
gr2
)
+

∂

∂z
(ruw) = 0 (A.3.2b)

∂

∂t
(rw) +

∂

∂z

(
rw2 +

1

2
gr2
)
+

∂

∂x
(ruw) = 0 (A.3.2c)

where we have ignored the coriolis parameter.
At leading order, we assume r(x, y, t) ≈constant so that the conservation of

mass equation reduces to
∂u

∂x
+
∂w

∂z
= 0 , (A.3.3)

which is again referred to as the imcompressible flow condition. Under the as-
sumption of a constant width r(x, z, t), the remaining two momentum equations
reduce further. The final reduction comes from taking the z derivative of the
first equation and the x derivative of the second equation and performing the
algebra associated with (??) through (??) which gives

∂ω

∂t
+ [ψ, ω] = ν∇2ω (A.3.4a)

∇2ψ = ω (A.3.4b)

where

[ψ, ω] =
∂ψ

∂x

∂ω

∂z
− ∂ψ

∂z

∂ω

∂x
(A.3.5)



Scientific Computing ( c©J. N. Kutz) 122

and ∇2 = ∂2x + ∂2z is the two dimensional Laplacian. The diffusion component
which is proportional to ν measures the frictional forces present in the fluid
motion. Note that we have once again introduced the streamfunction ψ(x, z, t)
which is defined as

u = −∂ψ
∂z

w =
∂ψ

∂x
. (A.3.6)

Thus the streamfunction is specified up to an arbitrary constant. Note that the
streamfunction automatically satisfies the imcompressibility condition since

∂u

∂x
+
∂w

∂z
= − ∂2ψ

∂x∂z
+

∂2ψ

∂x∂z
= 0 . (A.3.7)

In terms of the vorticity, the streamfunction is related as follows:

ω = ωy =
∂w

∂x
− ∂u

∂z
= ∇2ψ . (A.3.8)

This gives a second equation of motion (??a) which must be considered in solving
the airfoil equations.

Steady-State Flow

The behavior of the fluid as it propagates over the airfoil can change drastically
depending upon the density and velocity of the fluid. The typical measure of the
combined fluid density and velocity is given by a quantity known as the Reynolds
number R. Essentially, as the the Reynolds number increases, then the fluid is
either moving at higher velocities or has a lower density. The experimental fluid
flow around a cylinder, which can be thought of as an airfoil, is depicted in
Fig. ??. The four pictures correspond to R = 9.6, 41.0, 140, and 10000. Note
the transition from laminar (steady-state) flow to a recirculating steady-state
flow, to Kárman vortex shedding and finally to fully turbulent flow. The same
type of phenomena occurs also in three dimensions. A fully developed turbulent
flow over a sphere is illustrated in Fig. ?? for R = 15000.

The general turbulent behavior is difficult to capture computationally. How-
ever, the steady-state behavior can be well understood by considering the equa-
tions of motion in the steady-state limit. In particular, at large times in the
steady-state flow the diffusion term in the advection-diffusion equation (??a)
causes the vorticity to diffuse to zero, i.e. as t → ∞ then ω → 0. The stream-
function equation (??b) then becomes Poisson’s equation

∇2ψ = 0 . (A.3.9)

Thus an elliptic solve is the only thing required to find the steady-state behavior.



Scientific Computing ( c©J. N. Kutz) 123

Boundary Conditions

To capture the steady-state flow which is governed by the elliptic problem, we
need to develop boundary conditions for both the computational domain and air-
foil. Figure ?? illustrates the computational domain which may be implemented
to capture the steady-state flow over an airfoil. Five boundary conditions are
specified to determine the steady-state flow over the airfoil. These five boundary
conditions on the domain x ∈ [−L,L] and y ∈ [−L,L] are as follows:

1. x = −L: The incoming flux flow it imposed at this location. Assuming
the flow enters so that u(x = −L) = u0 and w(x = −L) = 0 gives

u = u0 = −∂ψ
∂z

→ ∂ψ

∂z
= −u0 (A.3.10)

2. x = L: The outgoing flux flow should be indentical to that imposed for 1.
Thus (??) should apply.

3. z = −L: Assume that far above or below the airfoil, the fluid flow remains
parallel to the x direction. Thus (??) still applies. However, we also have
that

w = 0 =
∂ψ

∂x
→ ∂ψ

∂x
= 0 (A.3.11)

4. z = L: The boundary conditions at the top of the domain will mirror
those at the bottom.

5. airfoil: the steady-state flow cannot peneratrate into the airfoil. Thus a
boundary condition is required on the wing itself. Physically, a no slip
boundary condition is applied. Thus the fluid is stationary on the domain
of the wing:

u = w = 0 → ∂ψ

∂x
=
∂ψ

∂z
= 0 (A.3.12)

Although the rectangular computational domain is easily handled with finite
difference techniques, the airfoil itself presents a significant challenge. In partic-
ular, the shape is not regular and the finite difference technique is only equipped
to handle rectangular type domains. Thus an alternative method should be used.
Specifically, finite elements can be considered since it allows for an unstructured
domain and can handle any complicated wing shape. Realistically, any attempt
with finite difference or spectral techniques on a complicated domain is more
trouble than its worth.

References

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and
Boundary Value Problems, 7th Ed. (Wiley, 2001).



Scientific Computing ( c©J. N. Kutz) 124

[2] See, for instance, R. Finney, F. Giordano, G. Thomas, and M. Weir, Cal-
culus and Analytic Geometry, 10th Ed. (Prentice Hall, 2000).

[3] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations, (Prentice Hall, 1971).

[4] J. D. Lambert, Computational Methods in Ordinary Differential Equations,
(Wiley, 1973)

[5] R. L. Burden and J. D. Faires, Numerical Analysis, (Brooks/Cole, 1997).

[6] A. Greenbaum, Iterative Methods for Solving Linear Systems, (SIAM,
1997).

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipes, 2nd Ed. (Cambridge, 1992).

[8] R. Courant, K. O. Friedrichs, and H. Lewy, “Über die partiellen differen-
zengleichungen der mathematischen physik,” Mathematische Annalen 100,
32-74 (1928).

[9] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equa-
tions, (Chapman & Hall, 1989).

[10] N. L. Trefethen, Spectral methods in MATLAB, (SIAM, 2000).

[11] G. Strang, Introduction to Applied Mathematics, (Wellesley-Cambridge
Press, 1986).

[12] I. M. Gelfand and S. V. Fomin, Calculus of Variations, (Prentice-Hall,
1963).



Scientific Computing ( c©J. N. Kutz) 125

-60 -40 -20 0 20 40 60
Fourier modes

-20

-10

0

10

20

re
al

[ff
ts

hi
ft(

U
)]

-10 -5 0 5 10
x

0

0.2

0.4

0.6

0.8

1

u=
ex

p(
-x

2 )

-64 -32 0 32 64
Fourier modes

0

5

10

15

ab
s(

fft
sh

ift
(U

))

-64 -32 0 32 64
Fourier modes

-15

-10

-5

0

5

10

15

re
al

[U
]

Figure 15: Fast Fourier Transform of Gaussian data illustrating the shifting
properties of the FFT routine. Note that the fftshift command restores the
transform to its mathematically correct, unshifted state.



Scientific Computing ( c©J. N. Kutz) 126

Figure 16: Sparse matrix structure for the Laplacian operator using second order
discretization. The output is generated via the spy command in MATLAB.



Scientific Computing ( c©J. N. Kutz) 127

n+2

lines

t

t

t

t

t

time t

x xx xx
space x

solution progession

along 1D lines

0

1

2

j

j+1

n-2 n-1 n n+1

Figure 17: Graphical representation of the progression of the numerical solu-
tion using the method of lines. Here a second order discretization scheme is
considered which couples each spatial point with its nearest neighbor.

u uu

u
m+1 n

m+1

t

t

n-1 n n+1
m m m

m

Figure 18: Four-point stencil for second-order spatial discretization and Euler
time-stepping of the one-wave wave equation.



Scientific Computing ( c©J. N. Kutz) 128

uu

un
m+1

m-1

t

t

n-1 n+1
m m

m

m+1

un
m-1

t

Figure 19: Four-point stencil for second-order spatial discretization and central-
difference time-stepping of the one-wave wave equation.

Figure 20: Evolution of the one-way wave equation with the leap-frog (2,2)
scheme and with CFL=0.5. The stable traveling wave solution is propagated in
this case to the left.



Scientific Computing ( c©J. N. Kutz) 129

Figure 21: Evolution of the one-way wave equation using the leap-frog (2,2)
scheme with CFL=2 (left) along with the Euler time-stepping scheme (right).
The analysis predicts stable evolution of leap-frog provided the CFL≤ 1. Thus
the onset of numerical instability near t ≈ 3 for the CFL=2 case is not surprising.
Likewise, the Euler scheme is expected to be unstable for all CFL.

Figure 22: Stable evolution of the heat equation with the Euler scheme with
CFL=0.5. The initial Gaussian is diffused in this case.



Scientific Computing ( c©J. N. Kutz) 130

Figure 23: Evolution of the heat equation with the Euler time-stepping scheme
(left) and leap-frog (2,2) scheme (right) with CFL=1. The analysis predicts
that both these schemes are unstable. Thus the onset of numerical instability
is observed.

Figure 24: Evolution of the nonlinear Schrödinger equation with the Euler time-
stepping scheme (left) and leap-frog (2,2) scheme (right) with CFL=0.05.



Scientific Computing ( c©J. N. Kutz) 131

0 π 2π
−1

−0.5

0

0.5

1

0 π 2π
−1

−0.5

0

0.5

1

0 π 2π
−1

−0.5

0

0.5

1

mode 1
mode 2
mode 3
mode 4
mode 5

Figure 25: Basis functions used for a Fourier mode expansion (top), a sine
expansion (middle), and a cosine expansion (bottom).



Scientific Computing ( c©J. N. Kutz) 132

7

y
0
e

y
1
e

y
2
e

y
3
e

y
o

N=23

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

y
6

y
5

y
4

y
3

y
2

y
1

y
0

y
0
o

y
1
o

y
2
o

y
3

Figure 26: Graphical description of the Fast Fourier Transform process which
systematically continues to factor the problem in two. This process allows the
FFT routine to drop to O(N logN) operations.



Scientific Computing ( c©J. N. Kutz) 133

−1 −0.5 0 0.5 1
x

−1.0

−0.5

0.0

0.5

1.0

Tn T0

T1

T2

T3

T4

Figure 27: The first five Chebychev polynomials over the the interval of defini-
tion x ∈ [−1, 1].

−1 −0.5 0 0.5 1
x

−1

0

1

xm=cos[(2m−1)π/2n]      m=1,2,...,n

Figure 28: Clustered grid generation for n = 30 points using the Chebychev
polynomials. Note that although the points are uniformaly spaced in θ, they
are clustered due to the fact that xm = cos[(2m− 1)π/2n] where m = 1, 2, ..., n.



Scientific Computing ( c©J. N. Kutz) 134

-1 -0.5 0 0.5 1
x

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

y

(a)

-3 -2 -1 0 1 2 3
x

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

y

(b)

-3 -2 -1 0 1 2 3
x

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

y

n=8
n=16

(c)

Figure 29: The function y(x) = x for x ∈ [−1, 1] (a) and its periodic extension
(b). The FFT approximation is shown in (c) for n = 8 Fourier modes and
n = 16 Fourier modes. Note the Gibb’s oscillations.



Scientific Computing ( c©J. N. Kutz) 135

−1 −0.5 0 0.5 1
x

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

(c)
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

(a)

−1 −0.5 0 0.5 1
x

(d)

(b)

Figure 30: The function y(x) = (1 + 16x2)−1 for x ∈ [−1, 1] (dotted line) with
the bold points indicating the grid points for equi-spaced spaced points (a)
n = 12 and (b) n = 24 and Chebychev clustered points (c) n = 12 and (d)
n = 24. The solid lines are the polynomial approximations generated using the
equi-spaced points (a)-(b) and clustered points (c)-(d) respectively.



Scientific Computing ( c©J. N. Kutz) 136

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

2

y

y=exp(x)sin(5x)

-1 -0.5 0 0.5 1
0.6

0.7

0.8

0.9

1
y=sech(x)

-1 -0.5 0 0.5 1
-20

-15

-10

-5

0

5

dy
/d

x

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

-1 -0.5 0 0.5 1
x

-40
-20

0
20
40
60
80

d2 y/
dx

2

-1 -0.5 0 0.5 1
x

-1
-0.8
-0.6
-0.4
-0.2

0

Figure 31: The function y(x) = exp(x) sin 5x (left) and y(x) = sechx (right)
for x ∈ [−1, 1] and their first and second derivatives. The dots indicate the
numerical values while the solid line is the exact solution. For these calculations,
N = 20 in the differentiation matrix DN .



Scientific Computing ( c©J. N. Kutz) 137

t=0 t=0.05

t=0.2

y y

yy xx

x x

1

-1 -1

-1 -1

1
t=0.1

1

1

1

1

11

1

-1

-1

-1

-1

0 0

uu

u u

00

1

1 1

Figure 32: Evolution of an initial two dimensional Gaussian governed by the
heat equation on the domain x, y ∈ [−1, 1] with Dirichlet boundary conditions
u = 0. The Chebychev differentiation matrix is used to calculate the Laplacian
with N = 30.


