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1 MATLAB Introduction

The first three sections of these notes deals with the preliminaries necessary
for manipulating data, constructing logical statements and plotting data. The
remainder of the course relies heavily on proficiency with these basic skills.

1.1 Vectors and Matrices

The manipulation of matrices and vectors is of fundamental importance in MAT-
LAB proficiency. This section deals with the construction and manipulation of
basic matrices and vectors. We begin by considering the construction of row
and column vectors. Vectors are simply a subclass of matrices which have only
a single column or row. A row vector can be created by executing the command
struture

>>x=[1 3 2]

which creates the row vector
~x = (1 2 3) . (1.1.1)

Row vectors are oriented in a horizontal fashion. In contrast, column vectors
are oriented in a vertical fashion and are created with either of the two following
command structures:

>>x=[1; 3; 2]

where the semicolons indicate advancement to the next row. Otherwise a return
can be used in MATLAB to initiate the next row. Thus the following command
structure is equivalent

>>x=[1

3

2]

Either one of these creates the column vector

~x =




1
3
2


 . (1.1.2)

All row and column vectors can be created in this way.
Vectors can also be created by use of the colon. Thus the following command

line

>>x=0:1:10
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creates a row vector which goes from 0 to 10 in steps of 1 so that

~x = (0 1 2 3 4 5 6 7 8 9 10) . (1.1.3)

Note that the command line

>>x=0:2:10

creates a row vector which goes from 0 to 10 in steps of 2 so that

~x = (0 2 4 6 8 10) . (1.1.4)

Steps of integer size need not be used. This allows

>>x=0:0.2:1

to create a row vector which goes from 0 to 1 in steps of 0.2 so that

~x = (0 0.2 0.4 0.6 0.8 1) . (1.1.5)

Matrices are just as simple to generate. Now there are a specified number
of rows (N) and columns (M). This matrix would be referred to as an N ×M
matrix. The 3 × 3 matrix

A =




1 3 2
5 6 7
8 3 1


 (1.1.6)

can be created by use of the semicolons

>>A=[1 3 2; 5 6 7; 8 3 1]

or by using the return key so that

>>A=[1 3 2

5 6 7

8 3 1]

In this case, the matrix is square with an equal number of rows and columns
(N = M).

Accessing components of a given matrix of vector is a task that relies on
knowing the row and column of a certain piece of data. The coordinate of any
data in a matrix is found from its row and column location so that the elements
of a matrix A are given by

A(i, j) (1.1.7)

where i denotes the row and j denotes the column. To access the second row
and third column of (1.1.6), which takes the value of 7, use the command
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>>x=A(2,3)

This will return the value x = 7. To access an entire row, the use of the colon
is required

>>x=A(2,:)

This will access the entire second row and return the row vector

~x = (5 6 7) . (1.1.8)

Columns can be similarly be extracted. Thus

>>x=A(:,3)

will access the entire third column to produce

~x =




2
7
1


 . (1.1.9)

More sophisticated data extraction and manipulation can be performed with
the aid of colons. To show examples of these techniques we consider the 4 × 4
matrix

B =




1 7 9 2
2 3 3 4
5 0 2 6
6 1 5 5


 . (1.1.10)

The command

>>x=B(2:3,2)

removes the second through third row of column 2. This produces the column
vector

~x =

(
3
0

)
. (1.1.11)

The command

>>x=B(4,2:end)

removes the second through last columns of row 4. This produces the row vector

~x = (1 5 5) . (1.1.12)

We can also remove a specified number of rows and columns. The command

>>C=B(1:end-1,2:4)
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removes the first row through the next to last row along with the second through
fourth columns. This then produces the matrix

C =




7 9 2
3 3 4
0 2 6


 . (1.1.13)

As a last example, we make use of the transpose symbol which turns row
vectors into column vectors and vice-versa. In this example, the command

>>D=[B(1,2:4); B(1:3,3).’]

makes the first row of D the second through fourth columns of the first row of
B. The second row of D, which is initiated with the semicolon, is made from the
transpose (.’) of the first three rows of the third column of B. This produces
the matrix

D =

(
7 9 2
9 3 2

)
. (1.1.14)

An important comment about the transpose function is in order. In par-
ticular, when transposing a vector with complex numbers, the period must be
put in before the ’ symbol. Specifically, when considering the transpose of the
column vector

~x =




3 + 2i
1
8


 . (1.1.15)

where i is the complex (imaginary) number i =
√
−1, the command

>>y=x.’

produces the row vector
~y = (3 + 2i 1 8) , (1.1.16)

whereas the command

>>y=x’

produces the row vector
~y = (3 − 2i 1 8) . (1.1.17)

Thus the use of the ’ symbol alone also conjugates vector, i.e. it changes the
sign of the imaginary part.
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1.2 Logic, Loops and Iterations

The basic building blocks of any MATLAB program are for loops and if state-
ments. They form the background for carrying out the complicated manipula-
tions required of sophisticated and simple codes alike. This lecture will focus
on the use of these two ubiquitous logic structures in programming.

To illustrate the use of the for loop structure, we consider some very basic
programs which revolve around its implementation. We begin by constructing a
loop which will recursively sum a series of numbers. The basic format for such
a loop is the following:

sum=0

for j=1:5

sum=sum+j

end

This program begins with the variable sum being zero. It then proceeds to go
through the for loop five times, i.e. the counter j takes the value of one, two,
three, four and five in succession. In the loop, the value of sum is updated by
adding the current value of j. Thus starting with an initial value of sum equal
to zero, we find that sum is equal to 1 (j = 1), 3 (j = 2), 6 (j = 3), 10 (j = 4),
and 15 (j = 5).

The default incremental increase in the counter j is one. However, the
increment can be specified as desired. The program

sum=0

for j=1:2:5

sum=sum+j

end

is similar to the previous program. But for this case the incremental steps in
j are specified to be two. Thus starting with an initial value of sum equal to
zero, we find that sum is equal to 1 (j = 1), 4 (j = 3), and 9 (j = 5). And even
more generally, the for loop counter can be simply given by a row vector. As
an example, the program

sum=0

for j=[1 5 4]

sum=sum+j

end

will go through the loop three times with the values of j being 1, 5, and 4
successively. Thus starting with an initial value of sum equal to zero, we find
that sum is equal to 1 (j = 1), 6 (j = 5), and 10 (j = 4).

The if statement is similarly implemented. However, unlike the for loop, a
series of logic statements are usually considered. The basic format for this logic
is as follows:
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if (logical statement)

(expressions to execute)

elseif (logical statement)

(expressions to execute)

elseif (logical statement)

(expressions to execute)

else

(expressions to execute)

end

In this logic structure, the last set of expressions are executed if the three
previous logical statements do not hold.

In practice, the logical if may only be required to execute a command if
something is true. Thus there would be no need for the else logic structure.
Such a logic format might be as follows:

if (logical statement)

(expressions to execute)

elseif (logical statement)

(expressions to execute)

end

In such a structure, no commands would be executed if the logical statements
do not hold.

To make a practical example of the use of for and if statements, we consider
the bisection method for finding zeros of a function. In particular, we will
consider the transcendental function

exp(x) − tan(x) = 0 (1.2.1)

for which the values of x which make this true must be found computationally.
We can begin to get an idea of where the relevant values of x are by plotting this
function. The following MATLAB script will plot the function over the interval
x ∈ [−10, 10].

clear all % clear all variables

close all % close all figures

x=-10:0.1:10; % define plotting range

y=exp(x)-tan(x); % define function to consider

plot(x,y) % plot the function

It should be noted that tan(x) takes on the value of ±∞ at π/2 + 2nπ where
n = · · · ,−2,−1, 0, 1, 2, · · ·. By zooming in to smaller values of the function, one
can find that there are a large number (infinite) of roots to this equation. In
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particular, there is a root located between x ∈ [−4, 2.8]. At x = −4, the function
exp(x)− tan(x) > 0 while at x = −2.8 the function exp(x)− tan(x) < 0. Thus,
in between these points lies a root.

The bisection method simply cuts the given interval in half and determines
if the root is on the left or right side of the cut. Once this is established, a new
interval is chosen with the mid point now becoming the left or right end of the
new domain, depending of course on the location of the root. This method is
repeated until the interval has become so small and the function considered has
come to within some tolerance of zero. The following algorithm uses an outside
for loop to continue cutting the interval in half while the imbedded if statement
determines the new interval of interest. A second if statement if used to ensure
that once a certain tolerance has been achieved, i.e. the absolute value of the
function exp(x)− tan(x) is less than 10−5, then the iteration process is stopped.

bisection.m

clear all % clear all variables

xr=-2.8; % initial right boundary

xl=-4; % initial left boundary

for j=1:1000 % j cuts the interval

xc=(xl+xr)/2; % calculate the midpoint

fc=exp(xc)-tan(xc); % calculate function

if fc>0

xl=xc; % move left boundary

else

xr=xc; % move right boundary

end

if abs(fc)<10^(-5)

break % quit the loop

end

end

xc % print value of root

fc % print value of function

Note that the break command ejects you from the current loop. In this case,
that is the j loop. This effectively stops the iteration procedure for cutting the
intervals in half. Further, extensive use has been made of the semicolons at the
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end of each line. The semicolon simply represses output to the computer screen,
saving valuable time and clutter.

1.3 Plotting and Importing/Exporting Data

The graphical representation of data is a fundamental aspect of any technical
scientific communications. MATLAB provides an easy and powerful interface
for plotting and representing a large variety of data formats. Like all MATLAB
structures, plotting is dependent on the effective manipulation of vectors and
matrices.

To begin the consideration of graphical routines, we first construct a set of
functions to plot and manipulate. To define a function, the plotting domain
must first be specified. This can be done by using a routine which creates a row
vector

x1=-10:0.1:10;

y1=sin(x);

Here the row vector ~x spans the interval x ∈ [−10, 10] in steps of ∆x = 0.1.
The second command creates a row vector ~y which gives the values of the sine
function evaluated at the corresponding values of ~x. A basic plot of this function
can then be generated by the command

plot(x1,y1)

Note that this graph lacks a title or axis labels. These are important in gener-
ating high quality graphics.

The preceding example considers only equally spaced points. However,
MATLAB will generate functions values for any specified coordinate values.
For instance, the two lines

x2=[-5 sqrt(3) pi 4];

y2=sin(x2);

will generate the values of the sine function at x = −5,
√

3, π and 4. The
linspace command is also helpful in generating a domain for defining and eval-
uating functions. The basic procedure for this function is as follows

x3=linspace(-10,10,64);

y3=x3.*sin(x3);

This will generate a row vector x which goes from -10 to 10 in 64 steps. This
can often be a helpful function when considering intervals where the number of
discretized steps give a complicated ∆x. In this example, we are considering the
function x sin x over the interval x ∈ [−10, 10]. By doing so, the period must be
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included before the multiplication sign. This will then perform a component by
component multiplication. Thus creating a row vector with the values of x sinx.

To plot all of the above data sets in a single plot, we can do either one of
the following routines.

figure(1)

plot(x1,y1), hold on

plot(x2,y2)

plot(x3,y3)

In this case, the hold on command is necessary after the first plot so that the
second plot command will not overwrite the first data plotted. This will plot all
three data sets on the same graph with a default blue line. This graph will be
figure 1. Alternatively, all the data sets can be plotted on the same graph with

figure(2)

plot(x1,y1,x2,y2,x3,y3)

For this case, the three pairs of vectors are prescribed within a single plot
command. This figure generated will be figure 2. And advantage to this method
is that the three data sets will be of different colors, which is better than having
them all the default color of blue.

This is only the beginning of the plotting and visualization process. Many
aspects of the graph must be augmented with specialty commands in order to
more accurately relay the information. Of significance is the ability to change
the line colors and styles of the plotted data. By using the help plot command,
a list of options for customizing data representation is given. In the following,
a new figure is created which is customized as follows

figure(3)

plot(x1,y1,x2,y2,’g*’,x3,y3,’mO:’)

This will create the same plot as in figure 2, but now the second data set is
represented by green * and the third data set is represented by a magenta
dotted line with the actual data points given by a magenta hollow circle. This
kind of customization greatly helps distinguish the various data sets and their
individual behaviors.

Labeling the axis and placing a title on the figure is also of fundamental
importance. This can be easily accomplished with the commands

xlabel(’x values’)

ylabel(’y values’)

title(’Example Graph’)
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The strings given within the ’ sign are now printed in a centered location along
the x-axis, y-axis and title location respectively.

A legend is then important to distinguish and label the various data sets
which are plotted together on the graph. Within the legend command, the
position of the legend can be easily specified. The command help legend gives
a summary of the possible legend placement positions, one of which is to the
right of the graph and does not interfere with the graph data. To place a legend
in the above graph in an optimal location, the following command is used.

legend(’Data set 1’,’Data set 2’,’Data set 3’,0)

Here the strings correspond to the the three plotted data sets in the order they
were plotted. The zero at the end of the legend command is the option setting
for placement of the legend box. In this case, the option zero tries to pick the
best possible location which does not interfere with any of the data.

subplots

Another possible method for representing data is with the subplot command.
This allows for multiple graphs to be arranged in a row and column format.
In this example, we have three data sets which are under consideration. To
plot each data set in an individual subplot requires three plot frames. Thus we
construct a plot containing three rows and a single column. The format for this
command structure is as follows:

figure(4)

subplot(3,1,1), plot(x1,y1), axis([-10 10 -10 10])

subplot(3,1,2), plot(x2,y2,’*’), axis([-10 10 -10 10])

subplot(3,1,3), plot(x3,y3,’mO:’)

Note that the subplot command is of the structure subplot(row,column,graph
number) where the graph number refers to the current graph being considered.
In this example, the axis command has also been used to make all the graphs
have the same x and y values. The command structure for the axis command
is axis([xmin xmax ymin ymax]). For each subplot, the use of the legend,
xlabel, ylabel, and title command can be used.

Remark 1: All the graph customization techniques discussed can be performed
directly within the MATLAB graphics window. Simply go to the edit button
and choose to edit axis properties. This will give full control of all the axis
properties discussed so far and more. However, once MATLAB is shut down
or the graph is closed, all the customization properties are lost and you must
start again from scratch. This gives an advantage to developing a nice set of
commands in a .m file to customize your graphics.
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Remark 2: To put a grid on the a graph, simply use the grid on command.
To take it off, use grid off. The number of grid lines can be controlled from
the editing options in the graphics window. This feature can aid in illustrating
more clearly certain phenomena and should be considered when making plots.

Remark 3: To put a variable value in a string, the num2str (number to string)
command can be used. For instance, the code

rho=1.5;

title([’value of rho=’ num2str(rho)])

creates a title which reads ”value of rho=1.5”. Thus this command converts
variable values into useful string configurations.

load, save and print

Once a graph has been made or data generated, it may be useful to save the data
or print the graphs for inclusion in a write up or presentation. The save and
print commands are the appropriate commands for performing such actions.

The save command will write any data out to a file for later use in a separate
program or for later use in MATLAB. To save workspace variables to a file, the
following command structure is used

save filename

this will save all the current workspace variables to a binary file named file-
name.mat. In the preceding example, this will save all the vectors created
along with any graphics settings. This is an extremely powerful and easy com-
mand to use. However, you can only access the data again through MATLAB.
To recall this data at a future time, simply load it back into MATLAB with the
command

load filename

This will reload into the workspace all the variables saved in filename.mat.
This command is ideal when closing down operations on MATLAB and resuming
at a future time.

Alternatively, it may be advantageous to save data for use in a different
software package. In this case, data needs to be saved in an ASCII format in
order to be read by other software engines. The save command can then be
modified for this purpose. The command

save x1 x1.dat -ASCII

saves the row vector x1 generated previously to the file x1.dat in ASCII format.
This can then be loaded back into MATLAB with the command
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load x1.dat

This saving option is advantageous when considering the use of other software
packages to manipulate or analyze data generated in MATLAB.

If you desire to print a figure to a file, the the print command needs to
be utilized. There a large number of graphics formats which can be used. By
typing help print, a list of possible options will be listed. A common graphics
format would involve the command

print -djpeg fig.jpg

which will print the current figure as a jpeg file named fig.jpg. Note that you
can also print or save from the figure window by pressing the file button and
following the links to the print or export option respectively.

2 Linear Systems

The solution of linear systems is one of the most basic aspects of computational
science. In many applications, the solution technique often gives rise to a system
of linear equations which need to be solved as efficiently as possible. In addition
to Gaussian elimination, there are a host of other techniques which can be used
to solve a given problem. This section offers an overview for these methods and
techniques.

2.1 Direct solution methods for Ax=b

A central concern in almost any computational strategy is a fast and efficient
computational method for achieving a solution of a large system of equations
Ax = b. In trying to render a computation tractable, it is crucial to minimize
the operations it takes in solving such a system. There are a variety of direct
methods for solving Ax = b: Gaussian elimination, LU decomposition, and
inverting the matrix A. In addition to these direct methods, iterative schemes
can also provide efficient solution techniques. Some basic iterative schemes will
be discussed in what follows.

The standard beginning to discussions of solution techniques for Ax = b
involves Gaussian elimination. We will consider a very simple example of a
3×3 system in order to understand the operation count and numerical procedure
involved in this technique. Thus consider Ax = b with

A =




1 1 1
1 2 4
1 3 9


 b =




1
−1

1


 . (2.1.1)
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The Gaussian elimination procedure begins with the construction of the aug-
mented matrix

[A|b] =




1 1 1 1
1 2 4 −1
1 3 9 1




=




1 1 1 1
0 1 3 −2
0 2 8 0




=




1 1 1 1
0 1 3 −2
0 1 4 0




=




1 1 1 1
0 1 3 −2
0 0 1 2


 (2.1.2)

where we have underlined and bolded the pivot of the augmented matrix. Back
substituting then gives the solution

x3 = 2 → x3 = 2 (2.1.3a)

x2 + 3x3 = −2 → x2 = −8 (2.1.3b)

x1 + x2 + x3 = 1 → x1 = 7 . (2.1.3c)

This procedure can be carried out for any matrix A which is nonsingular, i.e.
detA 6= 0. In this algorithm, we simply need to avoid these singular matrices
and occasionally shift the rows around to avoid a zero pivot. Provided we do
this, it will always yield an answer.

The fact that this algorithm works is secondary to the concern of the time
required in generating a solution in scientific computing. The operation count
for the Gaussian elimination can be easily be estimated from the algorithmic
procedure for an N ×N matrix:

1. Movement down the N pivots

2. For each pivot, perform N additions/subtractions across a given row.

3. For each pivot, perform the addition/subtraction down the N rows.

In total, this results in a scheme whose operation count is O(N3). The back
substitution algorithm can similarly be calculated to give an O(N2) scheme.

LU Decomposition

Each Gaussian elimination operation costs O(N3) operations. This can be com-
putationally prohibitive for large matrices when repeated solutions of Ax = b
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must be found. When working with the same matrix A however, the operation
count can easily be brought down to O(N2) using LU factorization which splits
the matrix A into a lower triangular matrix L, and an upper triangular matrix
U. For a 3 × 3 matrix, the LU factorization scheme splits A as follows:

A=LU →



a11 a12 a13

a21 a22 a23

a31 a32 a33


=




1 0 0
m21 1 0
m31 m32 1





u11 u12 u13

0 u22 u23

0 0 u33


 .

(2.1.4)
Thus the L matrix is lower triangular and the U matrix is upper triangular.
This then gives

Ax = b → LUx = b (2.1.5)

where by letting y = Ux we find the coupled system

Ly = b and Ux = y (2.1.6)

where the system Ly = b

y1 = b1 (2.1.7a)

m21y1 + y2 = b2 (2.1.7b)

m31y1 +m32y2 + y3 = b3 (2.1.7c)

can be solved by O(N2) forward substitution and the system Ux = y

u11x1 + u12x2 + x3 = y1 (2.1.8a)

u22x2 + u23x3 = y2 (2.1.8b)

u33x3 = y3 (2.1.8c)

can be solved by O(N2) back substitution. Thus once the factorization is ac-
complished, the LU results in an O(N2) scheme for arriving at the solution.
The factorization itself is O(N3), but you only have to do this once. Note, you
should always use LU decomposition if possible. Otherwise, you are doing far
more work than necessary in achieving a solution.

As an example of the application of the LU factorization algorithm, we
consider the 3 × 3 matrix

A=




4 3 −1
−2 −4 5

1 2 6


 . (2.1.9)

The factorization starts from the matrix multiplication of the matrix A and the
identity matrix I

A = IA =




1 0 0
0 1 0
0 0 1






4 3 −1
−2 −4 5

1 2 6


 . (2.1.10)
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The factorization begins with the pivot element. To use Gaussian elimination,
we would multiply the pivot by −1/2 to eliminate the first column element in
the second row. Similarly, we would multiply the pivot by 1/4 to eliminate the
first column element in the third row. These multiplicative factors are now part
of the first matrix above:

A =




1 0 0
−1/2 1 0

1/4 0 1






4 3 −1
0 −2.5 4.5
0 1.25 6.25


 . (2.1.11)

To eliminate on the third row, we use the next pivot. This requires that we
multiply by −1/2 in order to eliminate the second column, third row. Thus we
find

A =




1 0 0
−1/2 1 0

1/4 −1/2 1






4 3 −1
0 −2.5 4.5
0 0 8.5


 . (2.1.12)

Thus we find that

L =




1 0 0
−1/2 1 0

1/4 −1/2 1


 and U =




4 3 −1
0 −2.5 4.5
0 0 8.5


 . (2.1.13)

It is easy to verify by direct substitution that indeed A = LU. Just like
Gaussian elimination, the cost of factorization is O(N3). However, once L and
U are known, finding the solution is an O(N2) operation.

The Permutation Matrix

As will often happen with Gaussian elimination, following the above algorithm
will at times result in a zero pivot. This is easily handled in Gaussian elim-
ination by shifting rows in order to find a non-zero pivot. However, in LU
decomposition, we must keep track of this row shift since it will effect the right
hand side vector b. We can keep track of row shifts with a row permutation
matrix P. Thus if we need to permute two rows, we find

Ax = b → PAx = Pb → PLUx = Pb (2.1.14)

thus PA = LU. To shift rows one and two, for instance, we would have

P =




0 1 0 · · ·
1 0 0 · · ·
0 0 1 · · ·
...


 . (2.1.15)

If permutation is necessary, MATLAB can supply the permutation matrix as-
sociated with the LU decomposition.
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MATLAB: A \ b

Given the alternatives for solving the linear system Ax = b, it is important to
know how the MATLAB command structure for A \ b works. The following is
an outline of the algorithm performed.

1. It first checks to see if A is triangular, or some permutation thereof. If it
is, then all that is needed is a simple O(N2) substitution routine.

2. It then checks if A is symmetric, i.e. Hermitian or Self-Adjoint. If so, a
Cholesky factorization is attempted. If A is positive definite, the Cholesky
algorithm is always succesful and takes half the run time of LU factoriza-
tion.

3. It then checks if A is Hessenberg. If so, it can be written as an upper
triangular matrix and solved by a substitution routine.

4. If all the above methods fail, then LU factorization is used and the forward
and backward substitution routines generate a solution.

5. If A is not square, a QR (Householder) routine is used to solve the system.

6. If A is not square and sparse, a least squares solution using QR factoriza-
tion is performed.

Note that solving by b = A−1x is the slowest of all methods, taking 2.5 times
longer or more than A \ b. It is not recommended. However, just like LU
factorization, once the inverse is known it need not be calculated again. Care
must also be taken when the detA ≈ 0, i.e. the matrix is ill-conditioned.

MATLAB commands

The commands for executing the linear system solve are as follows

• A \ b: Solve the system in the order above.

• [L,U ] = lu(A): Generate the L and U matrices.

• [L,U, P ] = lu(A): Generate the L and U factorization matrices along with
the permutation matrix P .

2.2 Iterative solution methods for Ax=b

In addition to the standard techniques of Gaussian elimination or LU decom-
position for solving Ax = b, a wide range of iterative techniques are available.
These iterative techniques can often go under the name of Krylov space meth-
ods [6]. The idea is to start with an initial guess for the solution and develop
an iterative procedure that will converge to the solution. The simplest example
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of this method is known as a Jacobi iteration scheme. The implementation of
this scheme is best illustrated with an example. We consider the linear system

4x− y + z = 7 (2.2.1a)

4x− 8y + z = −21 (2.2.1b)

−2x+ y + 5z = 15 . (2.2.1c)

We can rewrite each equation as follows

x =
7 + y − z

4
(2.2.2a)

y =
21 + 4x+ z

8
(2.2.2b)

z =
15 + 2x− y

5
. (2.2.2c)

To solve the system iteratively, we can define the following Jacobi iteration
scheme based on the above

xk+1 =
7 + yk − zk

4
(2.2.3a)

yk+1 =
21 + 4xk + zk

8
(2.2.3b)

zk+1 =
15 + 2xk − yk

5
. (2.2.3c)

An algorithm is then easily implemented computationally. In particular, we
would follow the structure:

1. Guess initial values: (x0, y0, z0).

2. Iterate the Jacobi scheme: xk+1 = Axk.

3. Check for convergence: ‖ xk+1 − xk ‖<tolerance.

Note that the choice of an initial guess is often critical in determining the con-
vergence to the solution. Thus the more that is known about what the solution
is supposed to look like, the higher the chance of successful implementation of
the iterative scheme. Table 1 shows the convergence of this scheme for this
simple example.

Given the success of this example, it is easy to conjecture that such a scheme
will always be effective. However, we can reconsider the original system by
interchanging the first and last set of equations. This gives the system

−2x+ y + 5z = 15 (2.2.4a)

4x− 8y + z = −21 (2.2.4b)

4x− y + z = 7 . (2.2.4c)
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k xk yk zk

0 1.0 2.0 2.0
1 1.75 3.375 3.0
2 1.84375 3.875 3.025
...

...
...

...
15 1.99999993 3.99999985 2.9999993

...
...

...
...

19 2.0 4.0 3.0

Table 1: Convergence of Jacobi iteration scheme to the solution value of
(x, y, z) = (2, 4, 3) from the initial guess (x0, y0, z0) = (1, 2, 2).

k xk yk zk

0 1.0 2.0 2.0
1 -1.5 3.375 5.0
2 6.6875 2.5 16.375
3 34.6875 8.015625 -17.25
...

...
...

...
±∞ ±∞ ±∞

Table 2: Divergence of Jacobi iteration scheme from the initial guess
(x0, y0, z0) = (1, 2, 2).

To solve the system iteratively, we can define the following Jacobi iteration
scheme based on this rearranged set of equations

xk+1 =
yk + 5zk − 15

2
(2.2.5a)

yk+1 =
21 + 4xk + zk

8
(2.2.5b)

zk+1 = yk − 4xk + 7 . (2.2.5c)

Of course, the solution should be exactly as before. However, Table 2 shows
that applying the iteration scheme leads to a set of values which grow to infinity.
Thus the iteration scheme quickly fails.

Strictly Diagonal Dominant

The difference in the two Jacobi schemes above involves the iteration procedure
being strictly diagonal dominant. We begin with the definition of strict diagonal
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dominance. A matrix A is strictly diagonal dominant if for each row, the sum
of the absolute values of the off-diagonal terms is less than the absolute value
of the diagonal term:

|akk| >
N∑

j=1,j 6=k

|akj | . (2.2.6)

Strict diagonal dominance has the following consequence; given a stricly diag-
onal dominant matrix A, then Ax = b has a unique solution x = p. Jacobi
iteration produces a sequence pk that will converge to p for any p0. For the
two examples considered here, this property is crucial. For the first example
(2.2.1), we have

A =




4 −1 1
4 −8 1

−2 1 5


→

row 1: |4| > | − 1| + |1| = 2
row 2: | − 8| > |4| + |1| = 5
row 3: |5| > |2| + |1| = 3

, (2.2.7)

which shows the system to be strictly diagonal dominant and guaranteed to
converge. In contrast, the second system (2.2.4) is not stricly diagonal dominant
as can be seen from

A =




−2 1 5
4 −8 1
4 −1 1


→

row 1: | − 2| < |1| + |5| = 6
row 2: | − 8| > |4| + |1| = 5
row 3: |1| < |4| + | − 1| = 5

. (2.2.8)

Thus this scheme is not guaranteed to converge. Indeed, it diverges to infinity.

Modification and Enhancements: Gauss-Seidel

It is sometimes possible to enhance the convergence of a scheme by applying
modifications to the basic Jacobi scheme. For instance, the Jacobi scheme given
by (2.2.3) can be enhanced by the following modifications

xk+1 =
7 + yk − zk

4
(2.2.9a)

yk+1 =
21 + 4xk+1 + zk

8
(2.2.9b)

zk+1 =
15 + 2xk+1 − yk+1

5
. (2.2.9c)

Here use is made of the supposedly improved value xk+1 in the second equation
and xk+1 and yk+1 in the third equation. This is known as the Gauss-Seidel
scheme. Table 3 shows that the Gauss-Seidel procedure converges to the solution
in half the number of iterations used by the Jacobi scheme.

Unlike the Jacobi scheme, the Gauss-Seidel method is not guaranteed to con-
verge even in the case of strict diagonal dominance. Further, the Gauss-Seidel
modification is only one of a large number of possible changes to the iteration
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k xk yk zk

0 1.0 2.0 2.0
1 1.75 3.75 2.95
2 1.95 3.96875 2.98625
...

...
...

...
10 2.0 4.0 3.0

Table 3: Convergence of Jacobi iteration scheme to the solution value of
(x, y, z) = (2, 4, 3) from the initial guess (x0, y0, z0) = (1, 2, 2).

scheme which can be implemented in an effort to enhance convergence. It is
also possible to use several previous iterations to achieve convergence. Krylov
space methods [6] are often high end iterative techniques especially developed
for rapid convergence. Included in these iteration schemes are conjugant gradi-
ent methods and generalized minimum residual methods which we will discuss
and implement [6].

2.3 Eigenvalues, Eigenvectors, and Solvability

Another class of linear systems of equations which are of fundamental impor-
tance are known as eigenvalue problems. Unlike the system Ax = b which has
the single unknown vector ~x, eigenvalue problems are of the form

Ax = λx (2.3.1)

which have the unknows x and λ. The values of λ are known as the eigenvalues
and the corresponding x are the eigenvectors.

Eigenvalue problems often arise from differential equations. Specifically, we
consider the example of a linear set of coupled differential equations

dy

dt
= Ay . (2.3.2)

By attempting a solution of the form

y = x exp(λt) , (2.3.3)

where all the time-dependence is captured in the exponent, the resulting equa-
tion for x is

Ax = λx (2.3.4)

which is just the eigenvalue problem. Once the full set of eigenvalues and eigen-
vectors of this equation are found, the solution of the differential equation is
written as

~y = c1x1 exp(λ1t) + c2x2 exp(λ2t) + · · · + cNxN exp(λN t) (2.3.5)



AMATH 301 ( c©J. N. Kutz) 23

where N is the number of linearly independent solutions to the eigenvalue prob-
lem for the matrix A which is of size N × N . Thus solving a linear system of
differential equations relies on the solution of an associated eigenvalue problem.

The questions remains: how are the eigenvalues and eigenvectors found? To
consider this problem, we rewrite the eigenvalue problem as

Ax = λIx (2.3.6)

where a multiplication by unity has been performed, i.e. Ix = x. Moving the
right hand side to the left side of the equation gives

Ax − λIx = 0. (2.3.7)

Factoring out the vector x then gives the desired result

(A − λI)x = 0 . (2.3.8)

Two possibilities now exist.

Option I: The determinant of the matrix (A−λI) is not zero. If this is true, the
matrix is nonsingular and its inverse, (A − λI)−1, can be found. The solution
to the eigenvalue problem (2.3.8) is then

x = (A − λI)−10 (2.3.9)

which implies that
x = 0 . (2.3.10)

This trivial solution could have been guessed from (2.3.8). However, it is not
relevant as we require nontrivial solutions for x.

Option II: The determinant of the matrix (A− λI) is zero. If this is true, the
matrix is singular and its inverse, (A−λI)−1, cannot be found. Although there
is no longer a guarantee that there is a solution, it is the only scenario which
allows for the possibility of x 6= 0. It is this condition which allows for the
construction of eigenvalues and eigenvectors. Indeed, we choose the eigenvalues
λ so that this condition holds and the matrix is singular.

To illustrate how the eigenvalues and eigenvectors are computed, an example
is shown. Consider the matrix

A =

(
1 3

−1 5

)
(2.3.11)

This gives the eigenvalue problem

A =

(
1 3

−1 5

)
x = λx (2.3.12)
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which when manipulated to the form (A − λI)x = 0 gives
[(

1 3
−1 5

)
− λ

(
1 0
0 1

)]
x =

(
1 − λ 3
−1 5 − λ

)
x = 0 . (2.3.13)

We now require that the determinant is zero

det

∣∣∣∣
1 − λ 3
−1 5 − λ

∣∣∣∣ = (1 − λ)(5 − λ) + 3 = λ2 − 6λ+ 8 = (λ− 2)(λ− 4) = 0

(2.3.14)
which gives the two eigenvalues

λ = 2, 4 . (2.3.15)

The eigenvectors are then found from (2.3.13) as follows:

λ = 2 :

(
1 − 2 3
−1 5 − 2

)
x =

(
−1 3
−1 3

)
x = 0 . (2.3.16)

Given that x = (x1 x2)
T , this leads to the single equation

−x1 + 3x2 = 0 (2.3.17)

This is an underdetermined system of equations. Thus we have freedom in
choosing one of the values. Choosing x2 = 1 gives x1 = 3 and

x1 =

(
3
1

)
. (2.3.18)

The second eigenvector comes from (2.3.13) as follows:

λ = 4 :

(
1 − 4 3
−1 5 − 4

)
x =

(
−3 3
−1 1

)
x = 0 . (2.3.19)

Given that x = (x1 x2)
T , this leads to the single equation

−x1 + x2 = 0 (2.3.20)

This is an underdetermined system of equations. Thus we have freedom in
choosing one of the values. Choosing x2 = 1 gives x1 = 1 and

x2 =

(
1
1

)
. (2.3.21)

These results can be found from MATLAB by using the eig command.
Specifically, the command structure

[V,D]=eig(A)

gives the matrix V containing the eigenvectors as columns and the matrix D
whose diagonal elements are the corresponding eigenvalues.
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Matrix Powers

Another important operation which can be performed with eigenvalue and eigen-
vectors is the evaluation of

AM (2.3.22)

where M is a large integer. For large matrices A, this operation is computa-
tionally expensive. However, knowing the eigenvalues and eigenvectors of of A
allows for a significant ease in computational expense. Assuming we have all
the eigenvalues and eigenvectors of A, then

Ax1 = λ1x1

Ax2 = λ2x2

...

Axn = λ1xn .

This collection of eigenvalues and eigenvectors gives the matrix system

AS = SΛ (2.3.23)

where the columns of the matrix S are the eigenvectors of A,

S = (x1 x2 · · · xn) , (2.3.24a)

and Λ is a matrix whose diagonals are the corresponding eigenvalues

Λ =




λ1 0 · · · 0
0 λ2 0 · · · 0
...

. . .
...

0 · · · 0 λn


 . (2.3.25)

By multiplying (2.3.24)on the right by S−1, the matrix A can then be rewritten
as

A = SΛS−1 . (2.3.26)

The final observation comes from

A2 = (SΛS−1)(SΛS−1) = SΛ2S−1 . (2.3.27)

This then generalizes to
AM = SΛMS−1 (2.3.28)

where the matrix ΛM is easily calculated as

ΛM =




λM
1 0 · · · 0
0 λM

2 0 · · · 0
...

. . .
...

0 · · · 0 λM
n


 . (2.3.29)
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Since raising the diagonal terms to the M th power is easily accomplished, the
matrix A can then be easily calculated by multiplying the three matrices in
(2.3.28)

Solvability and the Fredholm-Alternative Theorem

It is easy to ask under what conditions the system

Ax = b (2.3.30)

can be solved. Aside from requiring the detA 6= 0, we also have a solvability
condition on b. Consider the adjoint problem

A†y = 0 (2.3.31)

where A† = A∗T is the adjoint which is the transpose and complex conjugate
of the matrix A.

The definition of the adjoint is such that

y · Ax = A†y · x . (2.3.32)

Since Ax = b, the left side of the equation reduces to y · b while the right side
reduces to 0 since A†y = 0. This then gives the condition

y · b = 0 (2.3.33)

which is known as the Fredholm-Alternative theorem, or a solvability condition.
In words, the equation states the in order for the system Ax = b to be solvable,
the right-hand side forcing b must be orthogonal to the null-space of the adjoint
operator A†.

3 Curve Fitting

Analyzing data is fundamental to any aspect of science. Often data can be
noisy in nature and only the trends in the data are sought. A variety of curve
fitting schemes can be generated to provide simplified descriptions of data and
its behavior. The least-squares fit method is explored along with fitting methods
of polynomial fits and splines.

3.1 Least-Square Fitting Methods

One of the fundamental tools for data analysis and recognizing trends in physical
systems is curve fitting. The concept of curve fitting is fairly simple: use a
simple function to describe a trend by minimizing the error between the selected
function to fit and a set of data. The mathematical aspects of this are laid out
in this section.
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Suppose we are given a set of n data points

(x1, y1), (x2, y2), (x3, y3), · · · , (xn, yn) . (3.1.1)

Further, assume that we would like to fit a best fit line through these points.
Then we can approximate the line by the function

f(x) = Ax+B (3.1.2)

where the constants A and B are chosen to minimize some error. Thus the
function gives an approximation to the true value which is off by some error so
that

f(xk) = yk + Ek (3.1.3)

where yk is the true value and Ek is the error from the true value.
Various error measurements can be minimized when approximating with a

given function f(x). Three standard possibilities are given as follows

I. MaximumError : E∞(f) = max
1<k<n

|f(xk) − yk| (3.1.4a)

II. AverageError : E1(f) =
1

n

n∑

k=1

|f(xk) − yk| (3.1.4b)

III. Root−meanSquare : E2(f) =

(
1

n

n∑

k=1

|f(xk) − yk|2
)1/2

. (3.1.4c)

In practice, the root-mean square error is most widely used and accepted. Thus
when fitting a curve to a set of data, the root-mean square error is chosen to be
minimized. This is called a least-squares fit.

Least-Squares Line

To apply the least-square fit criteria, consider the data points {xk, yk}. where
k = 1, 2, 3, · · · , n. To fit the curve

f(x) = Ax+B (3.1.5)

to this data, the E2 is found by minimizing the sum

E2(f) =

n∑

k=1

|f(xk) − yk|2 =

n∑

k=1

(Axk +B − yk)2 . (3.1.6)

Minimizing this sum requires differentiation. Specifically, the constants A and
B are chosen so that a minimum occurs. thus we require: ∂E2/∂A = 0 and
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∂E2/∂B = 0. This gives:

∂E2

∂A
= 0 :

n∑

k=1

2(Axk +B − yk)xk = 0 (3.1.7a)

∂E2

∂B
= 0 :

n∑

k=1

2(Axk +B − yk) = 0 . (3.1.7b)

Upon rearranging, the 2 × 2 system of equations is found for A and B
( ∑n

k=1 x
2
k

∑n
k=1 xk∑n

k=1 xk n

)(
A
B

)
=

( ∑n
k=1 xkyk∑n

k=1 yk

)
. (3.1.8)

This equation can be easily solved using the backslash command in MATLAB.
This method can be easily generalized to higher polynomial fits. In partic-

ular, a parabolic fit to a set of data requires the fitting function

f(x) = Ax2 +Bx+ C (3.1.9)

where now the three constants A,B, and C must be found. These can be found
from the 3 × 3 system which results from minimizing the error E2(A,B,C)

∂E2

∂A
= 0 (3.1.10a)

∂E2

∂B
= 0 (3.1.10b)

∂E2

∂C
= 0 (3.1.10c)

Data Linearization

Although a powerful method, the minimization of procedure can result in equa-
tions which are nontrivial to solve. Specifically, consider fitting data to the
exponential function

f(x) = C exp(Ax) . (3.1.11)

The error to be minimized is

E2(A,C) =

n∑

k=1

(C exp(Axk) − yk)2 . (3.1.12)

Applying the minimizing conditions leads to

∂E2

∂A
= 0 :

n∑

k=1

2(C exp(Axk) − yk)Cxk exp(Axk) = 0 (3.1.13a)

∂E2

∂C
= 0 :

n∑

k=1

2(C exp(Axk) − yk) exp(Axk) = 0 . (3.1.13b)



AMATH 301 ( c©J. N. Kutz) 29

This in turn leads to the 2 × 2 system

C

n∑

k=1

xk exp(2Axk) −
n∑

k=1

xkyk exp(Axk) = 0 (3.1.14a)

C

n∑

k=1

exp(Axk) −
n∑

k=1

yk exp(Axk) = 0 . (3.1.14b)

This system of equations is nonlinear and cannot be solved in a straightforward
fashion. Indeed, a solution may not even exist. Or many solution may exist.

To avoid the difficulty of solving this nonlinear system, the exponential fit
can be linearized by the transformation

Y = ln(y) (3.1.15a)

X = x (3.1.15b)

B = lnC . (3.1.15c)

Then the fit function
f(x) = y = C exp(Ax) (3.1.16)

can be linearized by taking the natural log of both sides so that

ln y = ln(C exp(Ax)) = lnC+ln(exp(Ax)) = B+Ax→ Y = AX+B . (3.1.17)

So by fitting to the natural log of the y-data

(xi, yi) → (xi, ln yi) = (Xi, Yi) (3.1.18)

the curve fit for the exponential function becomes a linear fitting problem which
is easily handled.

General Fitting

Given the preceding examples, a theory can be developed for a general fitting
procedure. The key idea is to assume a form of the fitting function

f(x) = f(x,C1, C2, C3, · · · , CM ) (3.1.19)

where the Ci are constants used to minimize the error and M < n. The root-
mean square error is then

E2(C1, C2, C3, · · · , Cm) =

n∑

k=1

(f(xk, C1, C2, C3, · · · , CM ) − yk)2 (3.1.20)

which can be minimized by considering the M ×M system generated from

∂E2

∂Cj
= 0 j = 1, 2, · · · ,M . (3.1.21)



AMATH 301 ( c©J. N. Kutz) 30

In general, this gives the nonlinear set of equations

n∑

k=1

(f(xk, C1, C2, C3, · · · , CM ) − yk)
∂f

∂Cj
= 0 j = 1, 2, 3, · · · ,M . (3.1.22)

Solving this set of equations can be quite difficult. Most attempts at solving
nonlinear systems are based upon iterative schemes which require good initial
guesses to converge to the solution. Regardless, the general fitting procedure is
straightforward and allows for the construction of a best fit curve to match the
data.

3.2 Polynomial Fits and Splines

One of the primary reasons for generating data fits from polynomials, splines,
or least-square methods is to interpolate or extrapolate data values. In practice,
when considering only a finite number of data points

(x0, y0)

(x1, y1)

...

(xn, yn) .

then the value of the curve at points other than the xi are unknown. Interpola-
tion uses the data points to predict values of y(x) at locations where x 6= xi and
x ∈ [x0, xn]. Extrapolation is similar, but it predicts values of y(x) for x > xn

or x < x0, i.e. outside the range of the data points.
Interpolation and extrapolation are easy to do given a least-squares fit. Once

the fitting curve is found, it can be evaluated for any value of x, thus giving
an interpolated or extrapolated value. Polynomial fitting is another method
for getting these values. With polynomial fitting, a polynomial is chosen to go
through all data points. For the n + 1 data points given above, an nth degree
polynomial is chosen

pn(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0 (3.2.1)

where the coefficients aj are chosen so that the polynomial passes through each
data point. Thus we have the resulting system

(x0, y0) : y0 = anx
n
0 + an−1x

n−1
0 + · · · + a1x0 + a0

(x1, y1) : y1 = anx
n
1 + an−1x

n−1
1 + · · · + a1x1 + a0

...

(xn, yn) : yn = anx
n
n + an−1x

n−1
n + · · · + a1xn + a0 .
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This system of equations is nothing more than a linear system Ax = b which
can be solved by using the backslash command in MATLAB.

Although this polynomial fit method will generate a curve which passes
through all the data, it is an expensive computation since we have to first set
up the system and then perform an O(n3) operation to generate the coefficients
aj . A more direct method for generating the relevant polynomial is the Lagrange
Polynomials method. Consider first the idea of constructing a line between the
two points (x0, y0) and (x1, y1). The general form for a line is y = mx+ b which
gives

y = y0 + (y1 − y0)
x− x0

x1 − x0
. (3.2.2)

Although valid, it is hard to continue to generalize this technique to fitting higher
order polynomials through a larger number of points. Lagrange developed a
method which expresses the line through the two points as

p1(x) = y0
x− x1

x0 − x1
+ y1

x− x0

x1 − x0
(3.2.3)

which can be easily verified to work. In a more compact and general way, this
first degree polynomial can be expressed as

p1(x) =

1∑

k=0

ykL1,k(x) = y0L1,0(x) + y1L1,1(x) (3.2.4)

where the Lagrange coefficients are given by

L1,0(x) =
x− x1

x0 − x1
(3.2.5a)

L1,1(x) =
x− x0

x1 − x0
. (3.2.5b)

The power of this method is that it can be easily generalized to consider the n+1
points of our original data set. In particular, we fit an nth degree polynomial
through the given data set of the form

pn(x) =
n∑

k=0

ykLn,k(x) (3.2.6)

where the Lagrange coefficient is

Ln,k(x) =
(x− x0)(x− x1) · · · (x− xk−1)(x − xk+1) · · · (x− xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

(3.2.7)
Thus there is no need to solve a linear system to generate the desired polynomial.
This is the preferred method for generating a polynomial fit to a given set of
data and is the core algorithm employed by most commercial packages such as
MATLAB for polynomial fitting.
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Splines

Although MATLAB makes it a trivial matter to fit polynomials or least-square
fits through data, a fundamental problem can arise as a result of a polynomial fit:
polynomial wiggle. Polynomial wiggle is generated by the fact that an nth degree
polynomial has, in general, n− 1 turning points from up to down or vice-versa.
One way to overcome this is to use a piecewise polynomial interpolation scheme.
Essentially, this simply draws a line between neighboring data points and uses
this line to give interpolated values. This technique is rather simple minded,
but it does alleviate the problem generated by polynomial wiggle. However,
the interpolating function is now only a piecewise function. Therefore, when
considering interpolating values between the points (x0, y0) and (xn, yn), there
will be n linear functions each valid only between two neighboring points.

The data generated by a piecewise linear fit can be rather crude and it tends
to be choppy in appearance. Splines provide a better way to represent data
by constructing cubic functions between points so that the first and second
derivative are continuous at the data points. This gives a smooth looking func-
tion without polynomial wiggle problems. The basic assumption of the spline
method is to construct a cubic function between data points:

Sk(x) = Sk,0 + Sk,1(x− xk) + Sk,2(x− xk)2 + Sk,3(x− xk)3 (3.2.8)

where x ∈ [xk, xk+1] and the coefficients Sk,j are to be determined from various
constraint conditions. Four constraint conditions are imposed

Sk(xk) = yk (3.2.9a)

Sk(xk+1) = Sk+1(xk+1) (3.2.9b)

S′
k(xk+1) = S′

k+1(xk+1) (3.2.9c)

S′′
k (xk+1) = S′′

k+1(xk+1) . (3.2.9d)

This allows for a smooth fit to the data since the four constraints correspond
to fitting the data, continuity of the function, continuity of the first derivative,
and continuity of the second derivative respectively.

To solve for these quantities, a large system of equations Ax = b is con-
structed. The number of equations and unknowns must be first calculated.

• Sk(xk) = yk → Solution fit: n+ 1 equations

• Sk = Sk+1 → Continuity: n− 1 equations

• S′
k = S′

k+1 → Smoothness: n− 1 equations

• S′′
k = S′′

k+1 → Smoothness: n− 1 equations

This gives a total of 4n − 2 equations. For each of the n intervals, there are
4 parameters which gives a total of 4n unknowns. Thus two extra constraint
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conditions must be placed on the system to achieve a solution. There are a
large variety of options for assumptions which can be made at the edges of the
spline. It is usually a good idea to use the default unless the application involved
requires a specific form. The spline problem is then reduced to a simple solution
of an Ax = b problem which can be solved with the backslash command.

As a final remark on splines, splines are heavily used in computer graph-
ics and animation. The primary reason is for their relative ease in calculating,
and for their smoothness properties. There is an entire spline toolbox avail-
able for MATLAB which attests to the importance of this technique for this
application. Further, splines are also commonly used for smoothing data before
differentiating. This will be considered further in upcoming lectures.

3.3 Data Fitting with MATLAB

This section will discuss the practical implementation of the curve fitting schemes
presented in the preceding two sections. The schemes to be explored are least-
square fits, polynomial fits, line interpolation, and spline interpolation. Addi-
tionally, a non-polynomial least-square fit will be considered which results in a
nonlinear system of equations. This nonlinear system requires additional insight
into the problem and sophistication in its solution technique.

To begin the data fit process, we first import a relevant data set into the
MATLAB environment. To do so, the load command is used. The file linefit.dat
is a collection of x and y data values put into a two column format separated
by spaces. The file is the following:

linefit.dat

0.0 1.1

0.5 1.6

1.1 2.4

1.7 3.8

2.1 4.3

2.5 4.7

2.9 4.8

3.3 5.5

3.7 6.1

4.2 6.3

4.9 7.1

5.3 7.1

6.0 8.2

6.7 6.9

7.0 5.3

This data is just an example of you may want to import into MATLAB. The
command structure to read this data is as follows
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load linefit.dat

x=linefit(:,1);

y=linefit(:,2);

figure(1), plot(x,y,’O:’)

After reading in the data, the two vectors x and y are created from the first
and second column of the data respectively. It is this set of data which will be
explored with line fitting techniques. The code will also generate a plot of the
data in figure 1 of MATLAB.

Least-Squares Fitting

The least-squares fit technique is considered first. The polyfit and polyval
commands are essential to this method. Specifically, the polyfit command is
used to generate the n+ 1 coefficients aj of the nth-degree polynomial

pn(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0 (3.3.1)

used for fitting the data. The basic structure requires that the vectors x and y
be submitted to polyval along with the desired degree of polynomial fit n. To
fit a line (n = 1) through the data, the structure, use the command

pcoeff=polyfit(x,y,1);

The output of this function call is a vector pcoeff which includes the coefficients
a1 and a0 of the line fit p1(x) = a1x+ a0. To evaluate and plot this line, values
of x must be chosen. For this example, the line will be plotted for x ∈ [0, 7] in
steps of ∆x = 0.1.

xp=0:0.1:7;

yp=polyval(pcoeff,xp);

figure(2), plot(x,y,’O’,xp,yp,’m’)

The polyval command uses the coefficients generated from polyfit to generate
the y−values of the polynomial fit at the desired values of x given by xp. Figure
2 in MATLAB depicts both the data and the best line fit in the least-square
sense.

To fit a parabolic profile through the data, a second degree polynomial is
used. This is generated with

pcoeff2=polyfit(x,y,2);

yp2=polyval(pcoeff2,xp);

figure(3), plot(x,y,’O’,xp,yp2,’m’)
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Here the vector yp2 contains the parabolic fit to the data evaluated at the
x-values xp. These results are plotted in MATLAB figure 3. To find the least-
square error, the sum of the squares of the differences between the parabolic fit
and the actualy data must be evaluated. Specifically, the quantity

E2(f) =

(
1

n

n∑

k=1

|f(xk) − yk|2
)1/2

(3.3.2)

is calculated. For the parabolic fit considered in the last example, the polynomial
fit must be evaluated at the x−values for the given data linefit.dat. The error
is then calculated

yp3=polyval(pcoeff2,x);

E2=sqrt( sum( ( abs(yp3-y) ).^2 )/n )

This is a quick and easy calculation which allows for an evaluation of the fitting
procedure. In general, the error will continue to drop as the degree of polynomial
is increased. this is because every extra degree of freedom allows for a better
least-squares fit to the data.

Interpolation

In addition to least-square fitting, interpolation techniques can be developed
which go through all the given data points. The error in this case is zero, but
each interpolation scheme must be evaluated for its accurate representation of
the data. The first interpolation scheme is a polynomial fit to the data. Given
n+1 points, an nth degree polynomial is chosen. The polyfit command is again
used for the calculation

n=length(x)-1;

pcoeffn=polyfit(x,y,n);

ypn=polyval(pcoeffn,xp);

figure(4), plot(x,y,’O’,xp,ypn,’m’)

The MATLAB script will produce an nth degree polynomial through the data
points. But as always is the danger with polynomial interpolation, polynomial
wiggle can dominate the behavior. This is indeed the case as illustrated in
figure 4. The strong oscillatory phenomena at the edges is a common feature of
this type of interpolation.

In contrast to a polynomial fit, a piecewise linear fit gives a simple minded
connect-the-dot interpolation to the data. The interp1 command gives the
piecewise linear fit algorithm

yint=interp1(x,y,xp);

figure(5), plot(x,y,’O’,xp,yint,’m’)
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The linear interpolation is illustrated in figure 5 of MATLAB. The are a few
options available with the interp1 command, including the nearest option and
the spline option. The nearest option gives the nearest value of the data to the
interpolated value while the spline option gives a cubic spline fit interpolation
to the data. The two options can be compared with the default linear option.

yint=interp1(x,y,xp);

yint2=interp1(x,y,xp,’nearest’)

yint3=interp1(x,y,xp,’spline’)

figure(5), plot(x,y,’O’,xp,yint,’m’,xp,int2,’k’,xp,int3,’r’)

Note that the spline option is equivalent to using the spline algorithm supplied
by MATLAB. Thus a smooth fit can be achieved with either spline or interp1.

The spline command is used by giving the x and y data along with a vector
xp for which we desire to generate corresponding y−values.

yspline=spline(x,y,xp);

figure(6), plot(x,y,’O’,xp,yspline,’k’)

The generated spline is depicted in figure 6. This is the same as that using
interp1 with the spline option. Note that the data is smooth as expected from
the enforcement of continuous smooth derivatives.

Nonlinear Least-Square Fitting

To consider more sophisticated least-square fitting routines, consider the follow-
ing data set which looks like it good be nicely fitted with a Gaussian profile.

gaussfit.dat

-3.0 -0.2

-2.2 0.1

-1.7 0.05

-1.5 0.2

-1.3 0.4

-1.0 1.0

-0.7 1.2

-0.4 1.4

-0.25 1.8

-0.05 2.2

0.07 2.1

0.15 1.6

0.3 1.5

0.65 1.1

1.1 0.8
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1.25 0.3

1.8 -0.1

2.5 0.2

To fit the data to a Gaussian, we indeed assume a Gaussian function of the form

f(x) = A exp(−Bx2) . (3.3.3)

Following the procedure to minimize the least-square error leads to a set of
nonlinear equations for the coefficients A and B. In general, solving a nonlinear
set of equations can be a difficult task. A solution is not guaranteed to exist.
And in fact, there may be many solutions to the problem. Thus the nonlinear
problem should be handled with care.

To generate a solution, the least-square error must be minimized. In partic-
ular, the sum

E2 =

n∑

k=0

|f(xk) − yk|2 (3.3.4)

must be minimized. The command fmins in MATLAB minimizes a function of
several variables. In this case, we minimize (3.3.4) with respect to the variables
A and B. Thus the minimum of

E2 =
n∑

k=0

|A exp(−Bx2
k) − yk|2 (3.3.5)

must be found with respect to A and B. The fmins algorithm requires a
function call to the quantity to minimized along with an initial guess for the
parameters which are being used for minimization, i.e. A and B.

coeff=fmins(’gafit’,[1 1]);

This command structure uses as initial guesses A = 1 and B = 1 when calling
the file gafit.m. After minimizing, it returns the vector coeff which contains
the appropriate values of A and B which minimize the least-square error. The
function called is then constructed as follows:

gafit.m

function E=gafit(x0)

load gaussfit.dat

x=gaussfit(:,1);

y=gaussfit(:,2);

E=sum( ( x0(1)*exp(-x0(2)*x.^2)-y ).^2 )
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The vector x0 accepts the initial guesses for A and B and is updated as A and
B are modified through an iteration procedure to converge to the least-square
values. Note that the sum is simply a statement of the quantity to minimized,
namely (3.3.5). The results of this calculation can be illustrated with MATLAB
figure 7

xga=-3:0.1:3;

a=coeff(1); b=coeff(2)

yga=a*exp(-b*xga.^2);

figure(7), plot(x2,y2,’O’,xga,yga,’m’)

Note that for this case, the initial guess is extremely important. For any given
problem where this technique is used, an educated guess for the values of param-
eters like A and B can determine if the technique will work at all. The results
should also be checked carefully since there is no guarantee that a minimization
near the desired fit can be found.

4 Numerical Differentiation and Integration

Differentiation and integration form the backbone of the mathematical tech-
niques required to describe and analyze physical systems. These two mathe-
matical concepts describe how certain quantities of interest change with respect
to either space and time or both. Understanding how to evaluate these quan-
tities numerically is essential to understanding systems beyond the scope of
analytic methods.

4.1 Numerical Differentiation

Given a set of data or a function, it may be useful to differentiate the quantity
considered in order to determine a physically relevant property. For instance,
given a set of data which represents the position of a particle as a function of
time, then the derivative and second derivative give the velocity and acceleration
respectively. From calculus, the definition of the derivative is given by

df(t)

dt
= lim

∆t→0

f(t+ ∆t) − f(t)

∆t
(4.1.1)

Since the derivative is the slope, the formula on the right is nothing more than
a rise-over-run formula for the slope. The general idea of calculus is that as
∆t→ 0, then the rise-over-run gives the instantaneous slope. Numerically, this
means that if we take ∆t sufficiently small, than the approximation should be
fairly accurate. To quantify and control the error associated with approximating
the derivative, we make use of Taylor series expansions.
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To see how the Taylor expansions are useful, consider the following two
Taylor series:

f(t+ ∆t) = f(t) + ∆t
df(t)

dt
+

∆t2

2!

d2f(t)

dt2
+

∆t3

3!

d3f(c1)

dt3
(4.1.2a)

f(t− ∆t) = f(t) − ∆t
df(t)

dt
+

∆t2

2!

d2f(t)

dt2
− ∆t3

3!

d3f(c2)

dt3
(4.1.2b)

where ci ∈ [a, b]. Subtracting these two expressions gives

f(t+ ∆t) − f(t− ∆t) = 2∆t
df(t)

dt
+

∆t3

3!

(
d3f(c1)

dt3
+
d3f(c2)

dt3

)
. (4.1.3)

By using the mean-value theorem of calculus, we find f ′′′(c) = (f ′′′(c1) +
f ′′′(c2))/2. Upon dividing the above expression by 2∆t and rearranging, we
find the following expression for the first derivative:

df(t)

dt
=
f(t+ ∆t) − f(t− ∆t)

2∆t
− ∆t2

6

d3f(c)

dt3
(4.1.4)

where the last term is the truncation error associated with the approximation
of the first derivative using this particular Taylor series generated expression.
Note that the truncation error in this case is O(∆t2).

We could improve on this by continuing our Taylor expansion and truncat-
ing it at higher orders in ∆t. This would lead to higher accuracy schemes.
Specifically, by truncating at O(∆t5), we would have

f(t+ ∆t) = f(t) + ∆t
df(t)

dt
+

∆t2

2!

d2f(t)

dt2

+
∆t3

3!

d3f(t)

dt3
+

∆t4

4!

d4f(t)

dt4
+

∆t5

5!

d5f(c1)

dt5
(4.1.5a)

f(t− ∆t) = f(t) − ∆t
df(t)

dt
+

∆t2

2!

d2f(t)

dt2

−∆t3

3!

d3f(t)

dt3
+

∆t4

4!

d4f(t)

dt4
− ∆t5

5!

d5f(c2)

dt5
(4.1.5b)

where ci ∈ [a, b]. Again subtracting these two expressions gives

f(t+∆t)−f(t−∆t) = 2∆t
df(t)

dt
+

2∆t3

3!

d3f(t)

dt3
+

∆t5

5!

(
d5f(c1)

dt5
+
d5f(c2)

dt5

)
.

(4.1.6)
In this approximation, there is third derivative term left over which needs to
be removed. By using two additional points to approximate the derivative, this
term can be removed. Thus we use the two additional points f(t + 2∆t) and
f(t− 2∆t). Upon replacing ∆t by 2∆t in (4.1.6), we find

f(t+2∆t)−f(t−2∆t) = 4∆t
df(t)

dt
+

16∆t3

3!

d3f(t)

dt3
+

32∆t5

5!

(
d5f(c3)

dt5
+
d5f(c4)

dt5

)
.

(4.1.7)
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O(∆t2) center-difference schemes

f ′(t) = [f(t+ ∆t) − f(t− ∆t)]/2∆t
f ′′(t) = [f(t+ ∆t) − 2f(t) + f(t− ∆t)]/∆t2

f ′′′(t) = [f(t+ 2∆t) − 2f(t+ ∆t) + 2f(t− ∆t) − f(t− 2∆t)]/2∆t3

f ′′′′(t) = [f(t+ 2∆t) − 4f(t+ ∆t) + 6f(t) − 4f(t− ∆t) + f(t− 2∆t)]/∆t4

Table 4: Second-order accurate center-difference formulas.

By multiplying (4.1.6) by eight and subtracting (4.1.7) and using the mean-value
theorem on the truncation terms twice, we find the expression:

df(t)

dt
=

−f(t+ 2∆t) + 8f(t+ ∆t) − 8f(t− ∆t) + f(t− 2∆t)

12∆t
+

∆t4

30
f (5)(c)

(4.1.8)
where f (5) is the fifth derivative and the truncation is of O(∆t4).

Approximating higher derivatives works in a similar fashion. By starting
with the pair of equations (4.1.2) and adding, this gives the result

f(t+∆t)+f(t−∆t) = 2f(t)+∆t2
d2f(t)

dt2
+

∆t4

4!

(
d4f(c1)

dt4
+
d4f(c2)

dt4

)
. (4.1.9)

By rearranging and solving for the second derivative, the O(∆t2) accurate ex-
pression is derived

d2f(t)

dt2
=
f(t+ ∆t) − 2f(t) + f(t− ∆t)

∆t2
+O(∆t2) (4.1.10)

where the truncation error is of O(∆t2) and is found again by the mean-value
theorem to be −(∆t2/12)f ′′′′(c). This process can be continued to find any
arbitrary derivative. Thus, we could also approximate the third, fourth, and
higher derivatives using this technique. It is also possible to generate backward
and forward difference schemes by using points only behind or in front of the
current point respectively. Tables 4-6 summarize the second-order and fourth-
order central difference schemes along with the forward- and backward-difference
formulas which are accurate to second-order.

A final remark is in order concerning these differentiation schemes. The
central difference schemes are an excellent method for generating the values of
the derivative in the interior points of a data set. However, at the end points,
forward and backward difference methods must be used since they do not have
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O(∆t4) center-difference schemes

f ′(t) = [−f(t+ 2∆t) + 8f(t+ ∆t) − 8f(t− ∆t) + f(t− 2∆t)]/12∆t
f ′′(t) = [−f(t+ 2∆t) + 16f(t+ ∆t) − 30f(t)

+16f(t− ∆t) − f(t− 2∆t)]/12∆t2

f ′′′(t) = [−f(t+ 3∆t) + 8f(t+ 2∆t) − 13f(t+ ∆t)
+13f(t− ∆t) − 8f(t− 2∆t) + f(t− 3∆t)]/8∆t3

f ′′′′(t) = [−f(t+ 3∆t) + 12f(t+ 2∆t) − 39f(t+ ∆t) + 56f(t)
−39f(t− ∆t) + 12f(t− 2∆t) − f(t− 3∆t)]/6∆t4

Table 5: Fourth-order accurate center-difference formulas.

O(∆t2) forward- and backward-difference schemes

f ′(t) = [−3f(t) + 4f(t+ ∆t) − f(t+ 2∆t)]/2∆t
f ′(t) = [3f(t) − 4f(t− ∆t) + f(t− 2∆t)]/2∆t
f ′′(t) = [2f(t) − 5f(t+ ∆t) + 4f(t+ 2∆t) − f(t+ 3∆t)]/∆t3

f ′′(t) = [2f(t) − 5f(t− ∆t) + 4f(t− 2∆t) − f(t− 3∆t)]/∆t3

Table 6: Second-order accurate forward- and backward-difference formulas.

neighboring points to the left and right respectively. Thus special care must be
taken at the end points of any computational domain.

It may be tempting to deduce from the difference formulas that as ∆t → 0,
the accuracy only improves in these computational methods. However, this
line of reasoning completely neglects the second source of error in evaluating
derivatives: numerical round-off.

Round-off and optimal step-size

An unavoidable consequence of working with numerical computations is round-
off error. When working with most computations, double precision numbers
are used. This allows for 16-digit accuracy in the representation of a given
number. This round-off has significant impact upon numerical computations
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and the issue of time-stepping.
As an example of the impact of round-off, we consider the approximation to

the derivative
dy

dt
≈ y(t+ ∆t) − y(t)

∆t
+ ε(y(t),∆t) (4.1.11)

where ε(y(t),∆t) measures the truncation error. Upon evaluating this expression
in the computer, round-off error occurs so that

y(t) = Y (t) + e(t) , (4.1.12)

where Y (t) is the approximated value given by the computer and e(t) measures
the error from the true value y(t). Thus the combined error between the round-
off and truncation gives the following expression for the derivative:

dy

dt
=
y(t+ ∆t) − y(t)

∆t
+ E(y(t),∆t) (4.1.13)

where the total error, E, is the combination of round-off and truncation such
that

E = Eround + Etrunc =
e(t+ ∆t) − e(t)

∆t
− ∆t2

2

d2y(c)

dt2
. (4.1.14)

We now determine the maximum size of the error. In particular, we can bound
the maximum value of round-off and the derivate to be

|e(t+ ∆t)| ≤ er (4.1.15a)

| − e(t)| ≤ er (4.1.15b)

M = max
c∈[tn,tn+1]

{∣∣∣∣
d2y(c)

dt2

∣∣∣∣
}
. (4.1.15c)

This then gives the maximum error to be

|E| ≤ er + er

∆t
+

∆t2

2
M =

2er

∆t
+

∆t2M

2
. (4.1.16)

Note that as ∆t gets large, the error grows quadratically due to the truncation
error. However, as ∆t decreases to zero, the error is dominated by round-off
which grows like 1/∆t.

To minimize the error, we require that ∂|E|/∂(∆t) = 0. Calculating this
derivative gives

∂|E|
∂(∆t)

= − 2er

∆t2
+M∆t = 0 , (4.1.17)

so that

∆t =

(
2er

M

)1/3

. (4.1.18)
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This gives the step size resulting in a minimum error. Thus the smallest step-size
is not necessarily the most accurate. Rather, a balance between round-off error
and truncation error is achieved to obtain the optimal step-size. For er ≈ 10−16,
the optimal ∆t ≈ 10−5. Below this value of ∆t, numerical round-off begins to
dominate the error

A similar procedure can be carried out for evaluating the optimal step size
associated with the O(∆t4) accurate scheme for the first derivative. In this case

dy

dt
=

−f(t+ 2∆t) + 8f(t+ ∆t) − 8f(t− ∆t) + f(t− 2∆t)

12∆t
+ E(y(t),∆t)

(4.1.19)
where the total error, E, is the combination of round-off and truncation such
that

E =
−e(t+ 2∆t) + 8e(t+ ∆t) − 8e(t− ∆t) + e(t− 2∆t)

12∆t
+

∆t4

30

d5y(c)

dt5
.

(4.1.20)
We now determine the maximum size of the error. In particular, we can bound
the maximum value of round-off to e as before and set M = max {|y′′′′′(c)|} .
This then gives the maximum error to be

|E| =
3er

2∆t
+

∆t4M

30
. (4.1.21)

Note that as ∆t gets large, the error grows like a quartic due to the truncation
error. However, as ∆t decreases to zero, the error is again dominated by round-
off which grows like 1/∆t.

To minimize the error, we require that ∂|E|/∂(∆t) = 0. Calculating this
derivative gives

∆t =

(
45er

4M

)1/5

. (4.1.22)

Thus in this case, the optimal step ∆t ≈ 10−3. This shows that the error can
be quickly dominated by numerical round-off if one is not careful to take this
significant effect into account.

4.2 Numerical Integration

Numerical integration simply calculates the area under a given curve. The basic
ideas for performing such an operation come from the definition of integration

∫ b

a

f(x)dx = lim
h→0

N∑

j=0

f(xj)h (4.2.1)

where b−a = Nh. Thus the area under the curve, from the calculus standpoint,
is thought of as a limiting process of summing up an ever-increasing number
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of rectangles. This process is known as numerical quadrature. Specifically, any
sum can be represented as follows

Q[f ] =

N∑

j=0

wkf(xk) = w0f(x0) + w1f(x1) + · · · + wNf(xN ) (4.2.2)

where a = x0 < x1 < x2 < · · · < xN = b. Thus the integral is evaluated as

∫ b

a

f(x)dx = Q[f ] + E[f ] (4.2.3)

where the term E[f ] is the error in approximating the integral by the quadrature
sum (4.2.2). Typically, the error E[f ] is due to truncation error. To integrate,
use will be made of polynomial fits to the y-values f(xj). Thus we assume the
function f(x) can be approximated by a polynomial

Pn(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0 (4.2.4)

where the truncation error in this case is proportional to the (n+1)th derivative
E[f ] = Af (n+1)(c) and A is a constant. This process of polynomial fitting the
data gives the Newton-Cotes Formulas.

Newton-Cotes Formulas

The following integration approximations result from using a polynomial fit
through the data to be differentiated. It is assumed that

xk = x0 + hk fk = f(xk) . (4.2.5)

This gives the following integration algorithms:

Trapezoid Rule

∫ x1

x0

f(x)dx =
h

2
(f0 + f1) −

h3

12
f ′′(c) (4.2.6a)

Simpson’s Rule

∫ x2

x0

f(x)dx =
h

3
(f0 + 4f1 + f2) −

h5

90
f ′′′′(c) (4.2.6b)

Simpson’s 3/8 Rule

∫ x3

x0

f(x)dx=
3h

8
(f0+3f1+3f2+f3) −

3h5

80
f ′′′′(c)(4.2.6c)

Boole’s Rule

∫ x4

x0

f(x)dx=
2h

45
(7f0+32f1+12f2+32f3+7f4)−

8h7

945
f (6)(c)(4.2.6d)

These algorithms have varying degrees of accuracy. Specifically, they are O(h2),
O(h4), O(h4) and O(h6) accurate schemes respectively. The accuracy condition
is determined from the truncation terms of the polynomial fit. Note that the
Trapezoid rule uses a sum of simple trapezoids to approximate the integral.
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Simpson’s rule fits a quadratic curve through three points and calculates the
area under the quadratic curve. Simpson’s 3/8 rule uses four points and a cubic
polynomial to evaluate the area, while Boole’s rule uses five points and a quintic
polynomial fit to generate an evaluation of the integral.

The derivation of these integration rules follows from simple polynomial
fits through a specified number of data points. To derive the Simpson’s rule,
consider a second degree polynomial through the three points (x0, f0), (x1, f2),
and (x2, f2):

p2(x) = f0
(x− x1)(x − x2)

(x0 − x1)(x0 − x2)
+ f1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+ f2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
.

(4.2.7)
This quadratic fit is derived by using Lagrange coefficients. The truncation error
could also be included, but we neglect it for the present purposes. By plugging
in (4.2.7) into the integral

∫ x2

x0

f(x)dx ≈
∫ x2

x0

p2(x)dx =
h

3
(f0 + 4f1 + f2) . (4.2.8)

The integral calculation is easily performed since it only involves integrating
powers of x2 or less. Evaluating at the limits then causes many terms to cancel
and drop out. Thus the Simpson’s rule is recovered. The trapezoid rule, Simp-
son’s 3/8 rule, and Boole’s rule are all derived in a similar fashion. To make
connection with the quadrature rule (4.2.2), Q = w0f0+w1f1+w2f2, Simpson’s
rule gives w0 = h/3, w1 = 4h/3, and w2 = h/3 as weighting factors.

Composite Rules

The integration methods (4.2.6) give values for the integrals over only a small
part of the integration domain. Trapezoid rule, for instance, only gives a value
for x ∈ [x0, x1]. However, our fundamental aim is to evaluate the integral over
the entire domain x ∈ [a, b]. Assuming once again that our interval is divided
as a = x0 < x1 < x2 < · · · < xN = b, then the trapezoid rule applied over the
interval gives the total integral

∫ b

a

f(x)dx ≈ Q[f ] =

N−1∑

j=1

h

2
(fj + fj+1) . (4.2.9)

Writing out this sum gives

N−1∑

j=1

h

2
(fj + fj+1) =

h

2
(f0 + f1) +

h

2
(f1 + f2) + · · · + h

2
(fN−1 + fN )

=
h

2
(f0 + 2f1 + 2f2 + · · · + 2fN−1 + fN) (4.2.10)
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=
h

2


f0 + fN + 2

N−1∑

j=1

fj




The final expression no longer double counts the values of the points between
f0 and fN . Instead, the final sum only counts the intermediate values once,
thus making the algorithm about twice as fast as the previous sum expression.
These are computational savings which should always be exploited if possible.

Recursive Improvement of Accuracy

Given an integration procedure and a value of h, a function or data set can be
integrated to a prescribed accuracy. However, it may be desirable to improve the
accuracy without having to disregard previous approximations to the integral.
To see how this might work, consider the trapezoidal rule for a step size of 2h.
Thus, the even data points are the only ones of interest and we have the basic
one-step integral

∫ x2

x0

f(x)dx =
2h

2
(f0 + f2) = h(f0 + f2) . (4.2.11)

The composite rule associated with this is then

∫ b

a

f(x)dx ≈ Q[f ] =

N/2−1∑

j=0

h (f2j + f2j+2) . (4.2.12)

Writing out this sum gives

N/2−1∑

j=0

h (f2j + f2j+2) = h(f0 + f2) + h(f2 + f4) + · · · + h(fN−2 + fN )

= h(f0 + 2f2 + 2f4 + · · · + 2fN−2 + fN) (4.2.13)

= h


f0 + fN + 2

N/2−1∑

j=1

f2j


 .

Comparing the middle expressions in (4.2.10) and (4.2.13) gives a great deal
of insight into how recursive schemes for improving accuracy work. Specifically,
we note that the more accurate scheme with step size h contains all the terms
in the integral approximation using step size 2h. Quantifying this gives

Qh =
1

2
Q2h + h(f1 + f3 + · · · + fN−1) , (4.2.14)

where Qh and Q2h are the quadrature approximations to the integral with step
size h and 2h respectively. This then allows us to half the value of h and
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improve accuracy without jettisoning the work required to approximate the
solution with the accuracy given by a step size of 2h. This recursive procedure
can be continued so as to give higher accuracy results. Further, this type of
procedure holds for Simpson’s rule as well as any of the integration schemes
developed here. This recursive routine is used in MATLAB in order to generate
results to a prescribed accuracy.

4.3 Implementation of Differentiation and Integration

This lecture focuses on the implementation of differentiation and integration
methods. Since they form the backbone of calculus, accurate methods to ap-
proximate these calculations are essential. To begin, we consider a specific
function to be differentiated, namely a hyperbolic secant. Part of the reason for
considering this function is that the exact value of its derivative is known. This
allows us to make a comparison of our approximate methods with the actual
solution. Thus, we consider

u = sech(x) (4.3.1)

whose derivative is
du

dx
= −sech(x) tanh(x) . (4.3.2)

Differentiation

To begin the calculations, we define a spatial interval. For this example we take
the interval x ∈ [−10, 10]. In MATLAB, the spatial discritization, ∆x, must
also be defined. This gives

dx=0.1; % spatial discritization

x=-10:dx:10; % spatial domain

Once the spatial domain has been defined, the function to be differentiated must
be evaluated

u=sech(x);

ux_exact=-sech(x)*tanh(x);

figure(1), plot(x,u,x,ux_exact)

MATLAB figure 1 produces the function and its derivative.
To calculate the derivative numerically, we use the center-, forward-, and

backward-difference formulas derived for differentiation. Specifically, we will
make use of the following four first-derivative approximations:

center − difference O(h2) :
yn+1 − yn−1

2h
(4.3.3a)

center − difference O(h4) :
−yn+2 + 8yn+1 − 8yn−1 + yn−2

12h
(4.3.3b)
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forward− difference O(h2) :
−3yn + 4yn+1 − yn+2

2h
(4.3.3c)

backward− difference O(h2) :
3yn − 4yn−1 + yn−2

2h
. (4.3.3d)

Here we have used h = ∆x and yn = y(xn).

Second-order accurate derivative

To calculate the second order accurate derivative, we use the first, third and
fourth equations of (4.3.3). In the interior of the domain, we use the center-
difference scheme. However, at the left and right boundaries, there are no left
and right neighboring points respectively to calculate the derivative with. Thus
we require the use of forward- and backward-difference schemes respectively.
This gives the basic algorithm

n=length(x)

% 2nd order accurate

ux(1)=(-3*u(1)+4*u(2)-u(3))/(2*dx);

for j=2:n-1

ux(j)=(u(j+1)-u(j-1))/(2*dx);

end

ux(n)=(3*u(n)-4*u(n-1)+u(n-2))/(2*dx);

The values of ux(1) and ux(n) are evaluated with the forward- and backward-
difference schemes.

Fourth-order accurate derivative

A higher degree of accuracy can be achieved by using a fourth-order scheme.
A fourth-order center-difference scheme such as the second equation of (4.3.3)
relied on two neighboring points. Thus the first two and last two points of the
computational domain must be handled separately. In what follows, we use a
second-order scheme at the boundary points, and a fourth-order scheme for the
interior. This gives the algorithm

% 4th order accurate

ux2(1)=(-3*u(1)+4*u(2)-u(3))/(2*dx);

ux2(2)=(-3*u(2)+4*u(3)-u(4))/(2*dx);

for j=3:n-2

ux2(j)=(-u(j+2)+8*u(j+1)-8*u(j-1)+u(j-2))/(12*dx);

end

ux2(n-1)=(3*u(n-1)-4*u(n-2)+u(n-3))/(2*dx);

ux2(n)=(3*u(n)-4*u(n-1)+u(n-2))/(2*dx);
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For the dx = 0.1 considered here, the second-order and fourth-order schemes
result in errors of 10−2 and 10−4 respectively. To view the accuracy, the results
are plotted together with the analytic solution for the derivative

figure(2), plot(x,ux_exact,’o’,x,ux,’c’,x,ux2,’m’)

To the naked eye, these results all look to be exactly on the exact solution.
However, by zooming in on a particular point, it quickly becomes clear that the
errors for the two schemes are indeed 10−2 and 10−4 respectively. The failure
of accuracy can also be observed by taking large values of dx. For instance,
dx = 0.5 and dx = 1 illustrate how the derivatives fail to be properly determined
with large dx values.

As a final note, if you are given a set of data to differentiate. It is always
recommended that you first run a spline through the data with an appropri-
ately small dx and then differentiate the spline. This will help to give smooth
differentiated data. Otherwise, the data will tend to be highly inaccurate and
choppy.

Integration

There are a large number of integration routines built into MATLAB. So unlike
the differentiation routines presented here, we will simply make use of the built
in MATLAB functions. The most straight-forward integration routine is the
trapezoidal rule. Given a set of data, the trapz command can be used to
implement this integration rule. For the x and y data defined previously for the
hyperbolic secant, the command structure gives

int_sech=trapz(x,y.^2);

where we have integrated sech2(x). The value of this integral is exactly two.
The trapz command gives a value that is within 10−7 of the true value. To
generate the cumulative values, the cumtrapz command is used.

int_sech2=cumtrapz(x,y.^2);

figure(3), plot(x,int_sech2)

MATLAB figure 3 gives the value of the integral as a function of x.
Alternatively, a function can be specified for integration over a given domain.

The quad command is implemented by specifying a function and the range of
integration. This will give a value of the integral using a recursive Simpson’s
rule that is accurate to within 10−6. The command structure for this evaluation
is as follows

int_quad=quad(inline(’sech(x).^2’),-10,10)
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Here the inline command allows us to circumvent a traditional function call.
The quad command can, however, be used with a function call. This command
executes the integration of sech2(x) over x ∈ [−10, 10].

Double and triple integrals over two-dimensional rectangles and three-dimensional
boxes can be performed with the dbequad and triplequad commands. Note
that no version of the quad command exists that produces cumulative integra-
tion values. However, this can be easily handled in a for loop.

5 Differential Equations

Our ultimate goal is to solve very general nonlinear partial differential equa-
tions of elliptic, hyperbolic, parabolic, or mixed type. However, a variety of
basic techniques are required from the solutions of ordinary differential equa-
tions. By understanding the basic ideas for computationally solving initial and
boundary value problems for differential equations, we can solve more com-
plicated partial differential equations. The development of numerical solution
techniques for initial and boundary value problems originates from the simple
concept of the Taylor expansion. Thus the building blocks for scientific comput-
ing are rooted in concepts from freshman calculus. Implementation, however,
often requires ingenuity, insight, and clever application of the basic principles.
In some sense, our numerical solution techniques reverse our understanding of
calculus. Whereas calculus teaches us to take a limit in order to define a deriva-
tive or integral, in numerical computations we take the derivative or integral of
the governing equation and go backwards to define it as the difference.

5.1 Initial value problems: Euler, Runge-Kutta and Adams
methods

The solutions of general partial differential equations rely heavily on the tech-
niques developed for ordinary differential equations. Thus we begin by consid-
ering systems of differential equations of the form

dy

dt
= f(y, t) (5.1.1)

where y represents a vector and the initial conditions are given by

y(0) = y0 (5.1.2)

with t ∈ [0, T ]. Although very simple in appearance, this equation cannot be
solved analytically in general. Of course, there are certain cases for which the
problem can be solved analytically, but it will generally be important to rely
on numerical solutions for insight. For an overview of analytic techniques, see
Boyce and DiPrima [1].
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The simplest algorithm for solving this system of differential equations is
known as the Euler method. The Euler method is derived by making use of the
definition of the derivative:

dy

dt
= lim

∆t→0

∆y

∆t
. (5.1.3)

Thus over a time span ∆t = tn+1−tn we can approximate the original differential
equation by

dy

dt
= f(y, t) ⇒ yn+1 − yn

∆t
≈ f(yn, tn) . (5.1.4)

The approximation can easily be rearranged to give

yn+1 = yn + ∆t · f(yn, tn) . (5.1.5)

Thus the Euler method gives an iterative scheme by which the future values
of the solution can be determined. Generally, the algorithm structure is of the
form

y(tn+1) = F (y(tn)) (5.1.6)

where F (y(tn)) = y(tn) + ∆t · f(y(tn), tn) The graphical representation of this
iterative process is illustrated in Fig. 1 where the slope (derivative) of the func-
tion is responsible for generating each subsequent approximation to the solution
y(t). Note that the Euler method is exact as the step size descreases to zero:
∆t→ 0.

The Euler method can be generalized to the following iterative scheme:

yn+1 = yn + ∆t · φ . (5.1.7)

where the function φ is chosen to reduce the error over a single time step ∆t and
yn = y(tn). The function φ is no longer constrained, as in the Euler scheme,
to make use of the derivative at the left end point of the computational step.
Rather, the derivative at the mid-point of the time-step and at the right end of
the time-step may also be used to possibly improve accuracy. In particular, by
generalizing to include the slope at the left and right ends of the time-step ∆t,
we can generate an iteration scheme of the following form:

y(t+ ∆t) = y(t) + ∆t [Af(t,y(t)) +Bf(t+ P · ∆t,y(t) +Q∆t · f(t,y(t)))]
(5.1.8)

where A,B, P and Q are arbitrary constants. Upon Taylor expanding the last
term, we find

f(t+ P · ∆t,y(t) +Q∆t · f(t,y(t))) =

f(t,y(t)) + P∆t · ft(t,y(t)) +Q∆t · fy(t,y(t)) · f(t,y(t)) +O(∆t2) (5.1.9)

where ft and fy denote differentiation with respect to t and y respectively, use
has been made of (5.1.1), and O(∆t2) denotes all terms that are of size ∆t2 and
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Figure 1: Graphical description of the iteration process used in the Euler
method. Note that each subsequent approximation is generated from the slope
of the previous point. This graphical illustration suggests that smaller steps ∆t
should be more accurate.

smaller. Plugging in this last result into the original iteration scheme (5.1.8)
results in the following:

y(t+ ∆t) = y(t) + ∆t(A+B)f(t,y(t))

+PB∆t2 · ft(t,y(t)) +BQ∆t2 · fy(t,y(t)) · f(t,y(t)) +O(∆t3) (5.1.10)

which is valid up to O(∆t2).
To proceed further, we simply note that the Taylor expansion for y(t+ ∆t)

gives:

y(t+ ∆t) = y(t) + ∆t · f(t,y(t)) +
1

2
∆t2 · ft(t,y(t))

+
1

2
∆t2 · fy(t,y(t))f(t,y(t)) +O(∆t3) . (5.1.11)

Comparing this Taylor expansion with (5.1.10) gives the following relations:

A+B = 1 (5.1.12a)

PB =
1

2
(5.1.12b)

BQ =
1

2
(5.1.12c)
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Figure 2: Graphical description of the initial, intermediate, and final slopes used
in the 4th order Runke-Kutta iteration scheme over a time ∆t.

which yields three equations for the four unknows A,B, P and Q. Thus one
degree of freedom is granted, and a wide variety of schemes can be implemented.
Two of the more commonly used schemes are known as Heun’s method and
Modified Euler-Cauchy (second order Runge-Kutta). These schemes assume
A = 1/2 and A = 0 respectively, and are given by:

y(t+ ∆t) = y(t) +
∆t

2
[f(t,y(t)) + f(t+ ∆t,y(t) + ∆t · f(t,y(t)))] (5.1.13a)

y(t+ ∆t) = y(t) + ∆t · f
(
t+

∆t

2
,y(t) +

∆t

2
· f(t,y(t))

)
. (5.1.13b)

Generally speaking, these methods for iterating forward in time given a single
initial point are known as Runge-Kutta methods. By generalizing the assumption
(5.1.8), we can construct stepping schemes which have arbitrary accuracy. Of
course, the level of algebraic difficulty in deriving these higher accuracy schemes
also increases significantly from Heun’s method and Modified Euler-Cauchy.

4th-order Runge-Kutta

Perhaps the most popular general stepping scheme used in practice is known
as the 4th order Runge-Kutta method. The term “4th order” refers to the fact
that the Taylor series local truncation error is pushed to O(∆t5). The total
cumulative (global) error is then O(∆t4) and is responsible for the scheme name
of “4th order”. The scheme is as follows:

yn+1 = yn +
∆t

6
[f1 + 2f2 + 2f3 + f4] (5.1.14)

where

f1 = f(tn,yn) (5.1.15a)
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f2 = f

(
tn +

∆t

2
,yn +

∆t

2
f1

)
(5.1.15b)

f3 = f

(
tn +

∆t

2
,yn +

∆t

2
f2

)
(5.1.15c)

f4 = f (tn + ∆t,yn + ∆t · f3) . (5.1.15d)

This scheme gives a local truncation error which is O(∆t5). The cumulative
(global) error in this case case is fourth order so that for t ∼ O(1) then the error
is O(∆t4). The key to this method, as well as any of the other Runge-Kutta
schemes, is the use of intermediate time-steps to improve accuracy. For the
4th order scheme presented here, a graphical representation of this derivative
sampling at intermediate time-steps is shown in Fig. 2.

Adams method: multi-stepping techniques

The development of the Runge-Kutta schemes rely on the definition of the
derivative and Taylor expansions. Another approach to solving (5.1.1) is to start
with the fundamental theorem of calculus [2]. Thus the differential equation can
be integrated over a time-step ∆t to give

dy

dt
= f(y, t) ⇒ y(t + ∆t) − y(t) =

∫ t+∆t

t

f(t, y)dt . (5.1.16)

And once again using our iteration notation we find

yn+1 = yn +

∫ tn+1

tn

f(t, y)dt . (5.1.17)

This iteration relation is simply a restatement of (5.1.7) with ∆t·φ =
∫ tn+1

tn
f(t, y)dt.

However, at this point, no approximations have been made and (5.1.17) is exact.
The numerical solution will be found by approximating f(t, y) ≈ p(t, y) where
p(t, y) is a polynomial. Thus the iteration scheme in this instance will be given
by

yn+1 ≈ yn +

∫ tn+1

tn

p(t, y)dt . (5.1.18)

It only remains to determine the form of the polynomial to be used in the
approximation.

The Adams-Bashforth suite of computational methods uses the current point
and a determined number of past points to evaluate the future solution. As
with the Runge-Kutta schemes, the order of accuracy is determined by the
choice of φ. In the Adams-Bashforth case, this relates directly to the choice
of the polynomial approximation p(t, y). A first-order scheme can easily be
constructed by allowing

p1(t) = constant = f(tn,yn) , (5.1.19)



AMATH 301 ( c©J. N. Kutz) 55

where the present point and no past points are used to determine the value of
the polynomial. Inserting this first-order approximation into (5.1.18) results in
the previously found Euler scheme

yn+1 = yn + ∆t · f(tn,yn) . (5.1.20)

Alternatively, we could assume that the polynomial used both the current point
and the previous point so that a second-order scheme resulted. The linear
polynomial which passes through these two points is given by

p2(t) = fn−1 +
fn − fn−1

∆t
(t− tn) . (5.1.21)

When inserted into (5.1.18), this linear polynomial yields

yn+1 = yn +

∫ tn+1

tn

(
fn−1 +

fn − fn−1

∆t
(t− tn)

)
dt . (5.1.22)

Upon integration and evaluation at the upper and lower limits, we find the
following 2nd order Adams-Bashforth scheme

yn+1 = yn +
∆t

2
[3f(tn,yn) − f(tn−1,yn−1)] . (5.1.23)

In contrast to the Runge-Kutta method, this is a two-step algorithm which re-
quires two initial conditions. This technique can be easily generalized to include
more past points and thus higher accuracy. However, as accuracy is increased,
so are the number of initial conditions required to step forward one time-step
∆t. Aside from the first-order accurate scheme, any implementation of Adams-
Bashforth will require a boot strap to generate a second “initial condition” for
the solution iteration process.

The Adams-Bashforth scheme uses current and past points to approximate
the polymial p(t, y) in (5.1.18). If instead a future point, the present, and the
past is used, then the scheme is known as an Adams-Moulton method. As before,
a first-order scheme can easily be constructed by allowing

p1(t) = constant = f(tn+1,yn+1) , (5.1.24)

where the future point and no past and present points are used to determine the
value of the polynomial. Inserting this first-order approximation into (5.1.18)
results in the backward Euler scheme

yn+1 = yn + ∆t · f(tn+1,yn+1) . (5.1.25)

Alternatively, we could assume that the polynomial used both the future point
and the current point so that a second-order scheme resulted. The linear poly-
nomial which passes through these two points is given by

p2(t) = fn +
fn+1 − fn

∆t
(t− tn) . (5.1.26)
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Inserted into (5.1.18), this linear polynomial yields

yn+1 = yn +

∫ tn+1

tn

(
fn +

fn+1 − fn

∆t
(t− tn)

)
dt . (5.1.27)

Upon integration and evaluation at the upper and lower limits, we find the
following 2nd order Adams-Moulton scheme

yn+1 = yn +
∆t

2
[f(tn+1,yn+1) + f(tn,yn)] . (5.1.28)

Once again this is a two-step algorithm. However, it is categorically differ-
ent than the Adams-Bashforth methods since it results in an implicit scheme,
i.e. the unknown value yn+1 is specified through a nonlinear equation (5.1.28).
The solution of this nonlinear system can be very difficult, thus making ex-
plicit schemes such as Runge-Kutta and Adams-Bashforth, which are simple
iterations, more easily handled. However, implicit schemes can have advantages
when considering stability issues related to time-stepping. This is explored fur-
ther in the notes.

One way to circumvent the difficulties of the implicit stepping method while
still making use of its power is to use a Predictor-Corrector method. This scheme
draws on the power of both the Adams-Bashforth and Adams-Moulton schemes.
In particular, the second order implicit scheme given by (5.1.28) requires the
value of f(tn+1,yn+1) in the right hand side. If we can predict (approximate)
this value, then we can use this predicted value to solve (5.1.28) explicitly. Thus
we begin with a predictor step to estimate yn+1 so that f(tn+1,yn+1) can be
evaluated. We then insert this value into the right hand side of (5.1.28) and
explicitly find the corrected value of yn+1. The second-order predictor-corrector
steps are then as follows:

predictor (Adams-Bashforth): yP
n+1 =yn +

∆t

2
[3fn − fn−1] (5.1.29a)

corrector (Adams-Moulton): yn+1 =yn+
∆t

2
[f(tn+1,y

P
n+1)+f(tn,yn)]. (5.1.29b)

Thus the scheme utilizes both explicit and implicit time-stepping schemes with-
out having to solve a system of nonlinear equations.

Higher order differential equations

Thus far, we have considered systems of first order equations. Higher order dif-
ferential equations can be put into this form and the methods outlined here can
be applied. For example, consider the third-order, nonhomogeneous, differential
equation

d3u

dt3
+ u2 du

dt
+ cos t · u = g(t) . (5.1.30)
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By defining

y1 = u (5.1.31a)

y2 =
du

dt
(5.1.31b)

y3 =
d2u

dt2
, (5.1.31c)

we find that dy3/dt = d3u/dt3. Using the original equation along with the
definitions of yi we find that

dy1
dt

= y2 (5.1.32a)

dy2
dt

= y3 (5.1.32b)

dy3
dt

=
d3u

dt3
= −u2du

dt
− cos t · u+ g(t) = −y2

1y2 − cos t · y1 + g(t) (5.1.32c)

which results in the original differential equation (5.1.1) considered previously

dy

dt
=

d

dt




y1
y2
y3


 =




y2
y3

−y2
1y2 − cos t · y1 + g(t)


 = f(y, t) . (5.1.33)

At this point, all the time-stepping techniques developed thus far can be applied
to the problem. It is imperative to write any differential equation as a first-order
system before solving it numerically with the time-stepping schemes developed
here.

MATLAB commands

The time-stepping schemes considered here are all available in the MATLAB
suite of differential equation solvers. The following are a few of the most common
solvers:

• ode23: second-order Runge-Kutta routine

• ode45: fourth-order Runge-Kutta routine

• ode113: variable order predictor-corrector routine

• ode15s: variable order Gear method for stiff problems [3, 4]

5.2 Error analysis for time-stepping routines

Accuracy and stability are fundamental to numerical analysis and are the key fac-
tors in evaluating any numerical integration technique. Therefore, it is essential
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to evaluate the accuracy and stability of the time-stepping schemes developed.
Rarely does it occur that both accuracy and stability work in concert. In fact,
they often are offsetting and work directly against each other. Thus a highly
accurate scheme may compromise stability, whereas a low accuracy scheme may
have excellent stability properties.

We begin by exploring accuracy. In the context of time-stepping schemes,
the natural place to begin is with Taylor expansions. Thus we consider the
expansion

y(t+ ∆t) = y(t) + ∆t · dy(t)

dt
+

∆t2

2
· d

2y(c)

dt2
(5.2.1)

where c ∈ [t, t+∆t]. Since we are considering dy/dt = f(t, y), the above formula
reduces to the Euler iteration scheme

yn+1 = yn + ∆t · f(tn,yn) +O(∆t2) . (5.2.2)

It is clear from this that the truncation error is O(∆t2). Specifically, the trun-
cation error is given by ∆t2/2 · d2y(c)/dt2.

Of importance is how this truncation error contributes to the overall error
in the numerical solution. Two types of error are important to identify: local
and global error. Each is significant in its own right. However, in practice we
are only concerned with the global (cumulative) error. The global discretization
error is given by

Ek = y(tk) − yk (5.2.3)

where y(tk) is the exact solution and yk is the numerical solution. The local
discretization error is given by

εk+1 = y(tk+1) − (y(tk) + ∆t · φ) (5.2.4)

where y(tk+1) is the exact solution and y(tk)+∆t·φ is a one-step approximation
over the time interval t ∈ [tn, tn+1].

For the Euler method, we can calculate both the local and global error.
Given a time-step ∆t and a specified time interval t ∈ [a, b], we have after K
steps that ∆t ·K = b− a. Thus we find

local: εk =
∆t2

2

d2y(ck)

dt2
∼ O(∆t2) (5.2.5a)

global: Ek =
K∑

j=1

∆t2

2

d2y(cj)

dt2
≈ ∆t2

2

d2y(c)

dt2
·K

=
∆t2

2

d2y(c)

dt2
· b− a

∆t
=
b− a

2
∆t · d

2y(c)

dt2
∼ O(∆t) (5.2.5b)

which gives a local error for the Euler scheme which is O(∆t2) and a global
error which is O(∆t). Thus the cumulative error is poor for the Euler scheme,
i.e. it is not very accurate.
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scheme local error εk global error Ek

Euler O(∆t2) O(∆t)
2nd order Runge-Kutta O(∆t3) O(∆t2)
4th order Runge-Kutta O(∆t5) O(∆t4)
2nd order Adams-Bashforth O(∆t3) O(∆t2)

Table 7: Local and global discretization errors associated with various time-
stepping schemes.

A similar procedure can be carried out for all the schemes discussed thus
far, including the multi-step Adams schemes. Table 7 illustrates various schemes
and their associated local and global errors. The error analysis suggests that the
error will always decrease in some power of ∆t. Thus it is tempting to conclude
that higher accuracy is easily achieved by taking smaller time steps ∆t. This
would be true if not for round-off error in the computer.

Round-off and step-size

An unavoidable consequence of working with numerical computations is round-
off error. When working with most computations, double precision numbers
are used. This allows for 16-digit accuracy in the representation of a given
number. This round-off has significant impact upon numerical computations
and the issue of time-stepping.

As an example of the impact of round-off, we consider the Euler approxima-
tion to the derivative

dy

dt
≈ yn+1 − yn

∆t
+ ε(yn,∆t) (5.2.6)

where ε(yn,∆t) measures the truncation error. Upon evaluating this expression
in the computer, round-off error occurs so that

yn+1 = Yn+1 + en+1 . (5.2.7)

Thus the combined error between the round-off and truncation gives the follow-
ing expression for the derivative:

dy

dt
=

Yn+1 − Yn

∆t
+ En(yn,∆t) (5.2.8)

where the total error, En, is the combination of round-off and truncation such
that

En = Eround + Etrunc =
en+1 − en

∆t
− ∆t2

2

d2y(c)

dt2
. (5.2.9)
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We now determine the maximum size of the error. In particular, we can bound
the maximum value of round-off and the derivate to be

|en+1| ≤ er (5.2.10a)

| − en| ≤ er (5.2.10b)

M = max
c∈[tn,tn+1]

{∣∣∣∣
d2y(c)

dt2

∣∣∣∣
}
. (5.2.10c)

This then gives the maximum error to be

|En| ≤
er + er

∆t
+

∆t2

2
M =

2er

∆t
+

∆t2M

2
. (5.2.11)

To minimize the error, we require that ∂|En|/∂(∆t) = 0. Calculating this
derivative gives

∂|En|
∂(∆t)

= − 2er

∆t2
+M∆t = 0 , (5.2.12)

so that

∆t =

(
2er

M

)1/3

. (5.2.13)

This gives the step size resulting in a minimum error. Thus the smallest step-
size is not necessarily the most accurate. Rather, a balance between round-off
error and truncation error is achieved to obtain the optimal step-size.

Stability

The accuracy of any scheme is certainly important. However, it is meaningless
if the scheme is not stable numerically. The essense of a stable scheme: the
numerical solutions do not blow up to infinity. As an example, consider the
simple differential equation

dy

dt
= λy (5.2.14)

with
y(0) = y0 . (5.2.15)

The analytic solution is easily calculated to be y(t) = y0 exp(λt). However, if
we solve this problem numerically with a forward Euler method we find

yn+1 = yn + ∆t · λyn = (1 + λ∆t)yn . (5.2.16)

After N steps, we find this iteration scheme yields

yN = (1 + λ∆t)Ny0 . (5.2.17)
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Given that we have a certain amount of round off error, the numerical solution
would then be given by

yN = (1 + λ∆t)N (y0 + e) . (5.2.18)

The error then associated with this scheme is given by

E = (1 + λ∆t)Ne . (5.2.19)

At this point, the following observations can be made. For λ > 0, the solution
yN → ∞ in Eq. (5.2.18) as N → ∞. So although the error also grows, it may
not be significant in comparison to the size of the numerical solution.

In contrast, Eq. (5.2.18) for λ < 0 is markedly different. For this case,
yN → 0 in Eq. (5.2.18) as N → ∞. The error, however, can dominate in
this case. In particular, we have the two following cases for the error given by
(5.2.19):

I: |1 + λ∆t| < 1 then E → 0 (5.2.20a)

II: |1 + λ∆t| > 1 then E → ∞ . (5.2.20b)

In case I, the scheme would be considered stable. However, case II holds and is
unstable provided ∆t > −2/λ.

A general theory of stability can be developed for any one-step time-stepping
scheme. Consider the one-step recursion relation for an M ×M system

yn+1 = Ayn . (5.2.21)

After N steps, the algorithm yields the solution

yN = ANy0 , (5.2.22)

where y0 is the initial vector. A well known result from linear algebra is that

AN = S−1ΛNS (5.2.23)

where S is the matrix whose columns are the eigenvectors of A, and

Λ =




λ1 0 · · · 0
0 λ2 0 · · ·
...

. . .
...

0 · · · 0 λM


 → ΛN =




λN
1 0 · · · 0
0 λN

2 0 · · ·
...

. . .
...

0 · · · 0 λN
M


 (5.2.24)

is a diagnonal matrix whose entries are the eigenvalues of A. Thus upon calcu-
lating ΛN , we are only concerned with the eigenvalues. In particular, instability
occurs if <{λi} > 1 for i = 1, 2, ...,M . This method can be easily generalized
to two-step schemes (Adams methods) by considering yn+1 = Ayn + Byn−1.
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Figure 3: Regions for stable stepping for the forward Euler and backward Euler
schemes.

Lending further significance to this stability analysis is its connection with
practical implementation. We contrast the difference in stability between the
forward and backward Euler schemes. The forward Euler scheme has already
been considered in (5.2.16)-(5.2.19). The backward Euler displays significant
differences in stability. If we again consider (5.2.14) with (5.2.15), the backward
Euler method gives the iteration scheme

yn+1 = yn + ∆t · λyn+1 , (5.2.25)

which after N steps leads to

yN =

(
1

1 − λ∆t

)N

y0 . (5.2.26)

The round-off error associated with this scheme is given by

E =

(
1

1 − λ∆t

)N

e . (5.2.27)

By letting z = λ∆t be a complex number, we find the following criteria to yield
unstable behavior based upon (5.2.19) and (5.2.27)

forward Euler: |1 + z| > 1 (5.2.28a)

backward Euler:

∣∣∣∣
1

1 − z

∣∣∣∣ > 1 . (5.2.28b)

Figure 3 shows the regions of stable and unstable behavior as a function of z.
It is observed that the forward Euler scheme has a very small range of stability
whereas the backward Euler scheme has a large range of stability. This large
stability region is part of what makes implicit methods so attractive. Thus
stability regions can be calculated. However, control of the accuracy is also
essential.
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5.3 Boundary value problems: the shooting method

To this point, we have only considered the solutions of differential equations for
which the initial conditions are known. However, many physical applications
do not have specified initial conditions, but rather some given boundary (con-
straint) conditions. A simple example of such a problem is the second-order
boundary value problem

d2y

dt2
= f

(
t, y,

dy

dt

)
(5.3.1)

on t ∈ [a, b] with the general boundary conditions

α1y(a) + β1
dy(a)

dt
= γ1 (5.3.2a)

α2y(b) + β2
dy(b)

dt
= γ2 . (5.3.2b)

Thus the solution is defined over a specific interval and must satisfy the relations
(5.3.2) at the end points of the interval. Figure 4 gives a graphical representa-
tion of a generic boundary value problem solution. We discuss the algorithm
necessary to make use of the time-stepping schemes in order to solve such a
problem.

The Shooting Method

The boundary value problems constructed here require information at the present
time (t = a) and a future time (t = b). However, the time-stepping schemes de-
veloped previously only require information about the starting time t = a. Some
effort is then needed to reconcile the time-stepping schemes with the boundary
value problems presented here.

We begin by reconsidering the generic boundary value problem

d2y

dt2
= f

(
t, y,

dy

dt

)
(5.3.3)

on t ∈ [a, b] with the boundary conditions

y(a) = α (5.3.4a)

y(b) = β . (5.3.4b)

The stepping schemes considered thus far for second order differential equations
involve a choice of the initial conditions y(a) and y′(a). We can still approach
the boundary value problem from this framework by choosing the “initial” con-
ditions

y(a) = α (5.3.5a)

dy(a)

dt
= A , (5.3.5b)
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y(t)

a
t

b

y(b)

y(a)

y’’=f(t,y,y’)

Figure 4: Graphical depiction of the structure of a typical solution to a boundary
value problem with constraints at t = a and t = b.

where the constant A is chosen so that as we advance the solution to t = b we
find y(b) = β. The shooting method gives an iterative procedure with which we
can determine this constant A. Figure 5 illustrates the solution of the boundary
value problem given two distinct values of A. In this case, the value of A = A1

gives a value for the initial slope which is too low to satisfy the boundary
conditions (5.3.4), whereas the value of A = A2 is too large to satisfy (5.3.4).

Computational Algorithm

The above example demonstrates that adjusting the value of A in (5.3.5b) can
lead to a solution which satisfies (5.3.4b). We can solve this using a self-
consistent algorithm to search for the appropriate value of A which satisfies
the original problem. The basic algorithm is as follows:

1. Solve the differential equation using a time-stepping scheme with the ini-
tial conditions y(a) = α and y′(a) = A.

2. Evaluate the solution y(b) at t = b and compare this value with the target
value of y(b) = β.

3. Adjust the value of A (either bigger or smaller) until a desired level of
tolerance and accuracy is achieved. A bisection method for determining
values of A, for instance, may be appropriate.

4. Once the specified accuracy has been achieved, the numerical solution
is complete and is accurate to the level of the tolerance chosen and the
discretization scheme used in the time-stepping.
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b

y(b)

y(a)

t

y’’=f(t,y,y’)

y(t)

target

α

β

a

<β

>β

y’’=f(t,y,y’)

y(b)

y(b) =β

A=A

A=A

1

2

Figure 5: Solutions to the boundary value problem with y(a) = α and y′(a) = A.
Here, two values of A are used to illustrate the solution behavior and its lack
of matching the correct boundary value y(b) = β. However, the two solutions
suggest that a bisection scheme could be used to find the correct solution and
value of A.

We illustrate graphically a bisection process in Fig. 6 and show the con-
vergence of the method to the numerical solution which satisfies the original
boundary conditions y(a) = α and y(b) = β. This process can occur quickly so
that convergence is achieved in a relatively low amount of iterations provided
the differential equation is well behaved.

Implementing MATLAB time-stepping schemes

Up to this point in our discussions of differential equations, our solution tech-
niques have relied on solving initial value problems with some appropriate it-
eration procedure. To implement one of these solution schemes in MATLAB
requires information about the equation, the time or spatial range to solve for,
and the initial conditions.

To build on a specific example, consider the third-order, nonhomogeneous,
differential equation

d3u

dt3
+ u2 du

dt
+ cos t · u = A sin2 t . (5.3.6)
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2

A <A <A1 3 2

b

y(a)

t

y(t)

A=A

α
3

β

a

y(b) =β

A=A 1

y’’=f(t,y,y’)

target

A=A 3

5

4
A=A

A=A

A <A <A1 4 3

A <A <A4 5

Figure 6: Graphical illustration of the shooting process which uses a bisection
scheme to converge to the appropriate value of A for which y(b) = β.

By defining

y1 = u (5.3.7a)

y2 =
du

dt
(5.3.7b)

y3 =
d2u

dt2
, (5.3.7c)

we find that dy3/dt = d3u/dt3. Using the original equation along with the
definitions of yi we find that

dy1
dt

= y2 (5.3.8a)

dy2
dt

= y3 (5.3.8b)

dy3
dt

=
d3u

dt3
=−u2 du

dt
−cos t·u+A sin2 t=−y2

1y2 − cos t · y1 +A sin2 t (5.3.8c)

which results in the first-order system (5.1.1) considered previously

dy

dt
=

d

dt




y1
y2
y3


 =




y2
y3

−y2
1y2 − cos t · y1 +A sin2 t


 = f(y, t) . (5.3.9)
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At this point, all the time-stepping techniques developed thus far can be applied
to the problem. It is imperative to write any differential equation as a first-order
system before solving it numerically with the time-stepping schemes developed
here.

Before solving the equation, the initial conditions and time span must be
defined. The initial conditions in this case specify y1(t0), y2(t0) and y3(t0), or
equivalently u(t0), ut(t0) and utt(t0). The time span specifies the beginning and
end times for solving the equations. Thus t ∈ [t0, tf ], where t0 is the initial time
and tf the final time. For this example, let’s consider solving the equations
with initial conditions y1(0) = 1, y2(0) = 0 and y3(0) = 0 over the interval
t ∈ [t0, tf ] = [0, 30] with A = 2. In MATLAB this would be accomplished with

y0=[1 0 0]; % initial conditions

tspan=[0 30]; % time interval

A=2; % parameter value

These can now be used in calling the differential equation solver.
The basic command structure and function call to solve this equation is given

as follows:

[t,y]=ode45(’rhs’,tspan,y0,[],A)

This piece of code calls a function rhs.m which contains information about the
differential equations. It sends to this function the time span for the solution,
the initial conditions, and the parameter value ofA. The brackets are placed in a
position for specifying accuracy and tolerance options. By placing the brackets
with nothing inside, the default accuracy will be used by ode45. To access
other methods, simply ode45 with ode23, ode113, or ode15s as needed.

The function rhs.m contains all the information about the differential equa-
tion. Specifically, the right hand side of (5.3.9) is of primary importance. This
right hand side function looks as follows:

function rhs=rhs(t,y,dummy,A) % function call setup

rhs=[y(1);

y(2);

-(y(1)^2)*y(2)-cos(t)*y(1)+A*sin(t)]; % rhs vector

This function imports the variable t which takes on values between those given
by tspan. Thus t starts at t = 0 and ends at t = 30 in this case. In between
these points, t gives the current value of time. The variable y stores the solu-
tion. Initially, it takes on the value of y0. The dummy slot is for sending in
information about the tolerances and the last slot with A allows you to send in
any parameters necessary in the right hand side.

Note that the output of ode45 are the vectors t and y. The vector t gives all
the points between tspan for which the solution was calculated. The solution
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at these time points is given as the columns of matrix y. The first column
corresponds to the solution y1, the second column contains y2 as a function of
time, and the third column gives y3. To plot the solution u = y1 as a function
of time, we would plot the vector t versus the first column of y:

figure(1), plot(t,y(:,1)) % plot solution u

figure(2), plot(t,y(:,2)) % plot derivative du/dt

A couple of important points and options. The inline command could also
be used in place of the function call. Also, it may desirable to have the solution
evaluated at specified time points. For instance, if we wanted the solution
evaluated from t = 0 to t = 30 in steps of 0.5, then choose

tspan=0:0.5:30 % evaluate the solution every dt=0.5

Note that MATLAB still determines the step sizes necessary to maintain a given
tolerance. It simply interpolates to generate the values at the desired locations.

5.4 Implementation of the shooting method

The implementation of the shooting scheme relies on the effective use of a time-
stepping algorithm along with a root finding method for choosing the appro-
priate initial conditions which solve the boundary value problem. Boundary
value problems often arise as eigenvalue systems for which the eigenvalue and
eigenfunction must both be determined. As an example of such a problem, we
consider the Schrödinger equation from quantum mechanics which is a second
order differential equation

d2ψn

dx2
+ [n(x) − βn]ψn = 0 (5.4.1)

with the boundary conditions ψ(±1) = 0.
Rewriting the differential equation into a coupled first order system gives

x′ =

(
0 1

βn − n(x) 0

)
x (5.4.2)

where x = (x1 x2)
T = (ψn dψn/dx)

T . The boundary conditions are

x = 1 : ψn(1) = x1(1) = 0 (5.4.3a)

x = −1 : ψn(−1) = x1(−1) = 0 . (5.4.3b)

At this stage, we will also assume that n(x) = n0 for simplicity.
With the problem thus defined, we turn our attention to the key aspects in

the computational implementation of the boundary value problem solver. These
are
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• FOR loops

• IF statements

• time-stepping algorithms: ode23, ode45, ode113, ode15s

• step-size control

• code development and flow

Every code will be controlled by a set of FOR loops and IF statements. It is
imperative to have proper placement of these control statements in order for
the code to operate successfully.

Flow Control

In order to begin coding, it is always prudent to construct the basic structure
of the algorithm. In particular, it is good to determine the number of FOR
loops and IF statements which may be required for the computations. What
is especially important is determining the hierarchy structure for the loops. To
solve the boundary value problem proposed here, we require two FOR loops
and one IF statement block. The outermost FOR loop of the code should
determine the number of eigenvalues and eigenmodes to be searched for. Within
this FOR loop exists a second FOR loop which iterates the shooting method
so that the solution converges to the correct boundary value solution. This
second FOR loop has a logical IF statement which needs to check whether
the solution has indeed converged to the boundary value solution, or whether
adjustment of the value of βn is necessary and the iteration procedure needs
to be continued. Figure 7 illustrates the backbone of the numerical code for
solving the boundary value problem. It includes the two FOR loops and logical
IF statement block as the core of its algorithmic structure. For a nonlinear
problem, a third FOR loop would be required for A in order to achieve the
normalization of the eigenfunctions to unity.

The various pieces of the code are constructed here using the MATLAB pro-
gramming language. We begin with the initialization of the parameters.

Initialization

clear all; % clear all previously defined variables

close all; % clear all previously defined figures

tol=10^(-4); % define a tolerance level to be achieved

% by the shooting algorithm

col=[’r’,’b’,’g’,’c’,’m’,’k’]; % eigenfunction colors

n0=100; % define the parameter n0
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Figure 7: Basic algorithm structure for solving the boundary value problem.
Two FOR loops are required to step through the values of βn and A along with
a single IF statement block to check for convergence of the solution

A=1; % define the initial slope at x=-1

x0=[0 A]; % initial conditions: x1(-1)=0, x1’(-1)=A

xp=[-1 1]; % define the span of the computational domain

Upon completion of the initialization process for the parameters which are not
involved in the main loop of the code, we move into the main FOR loop which
searches out a specified number of eigenmodes. Embedded in this FOR loop
is a second FOR loop which attemps different values of βn until the correct
eigenvalue is found. An IF statement is used to check the convergence of values
of βn to the appropriate value.

Main Program

beta_start=n0; % beginning value of beta

for modes=1:5 % begin mode loop
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beta=beta_start; % initial value of eigenvalue beta

dbeta=n0/100; % default step size in beta

for j=1:1000 % begin convergence loop for beta

[t,y]=ode45(’shoot2’,xp,x0,[],n0,beta); % solve ODEs

if abs(y(end,1)-0) < tol % check for convergence

beta % write out eigenvalue

break % get out of convergence loop

end

if (-1)^(modes+1)*y(end,1)>0 % this IF statement block

beta=beta-dbeta; % checks to see if beta

else % needs to be higher or lower

beta=beta+dbeta/2; % and uses bisection to

dbeta=dbeta/2; % converge to the solution

end %

end % end convergence loop

beta_start=beta-0.1; % after finding eigenvalue, pick

% new starting value for next mode

norm=trapz(t,y(:,1).*y(:,1)) % calculate the normalization

plot(t,y(:,1)/sqrt(norm),col(modes)); hold on % plot modes

end % end mode loop

The code uses ode45, which is a fourth-order Runge-Kutta method, to solve
the differential equation and advance the solution. The function shoot2.m is
called in this routine. For the differential equation considered here, the function
shoot2.m would be the following:

shoot2.m

function rhs=shoot2(xspan,x,dummy,n0,beta)

rhs=[ x(2)

(beta-n0)*x(1) ];

This code will find the first five eigenvalues and plot their corresponding
normalized eigenfunctions. The bisection method implemented to adjust the
values of βn to find the boundary value solution is based upon observations of
the structure of the even and odd eigenmodes. In general, it is always a good
idea to first explore the behavior of the solutions of the boundary value problem
before writing the shooting routine. This will give important insights into the
behavior of the solutions and will allow for a proper construction of an accurate
and efficient bisection method. Figure 8 illustrates several characteristic features
of this boundary value problem. In Fig. 8(a) and 8(b), the behavior of the
solution near the first even and first odd solution is exhibited. From Fig. 8(a)
it is seen that for the even modes increasing values of β bring the solution
from ψn(1) > 0 to ψn(1) < 0. In contrast, odd modes go from ψn(1) < 0 to
ψn(1) > 0 as β is increased. This observation forms the basis for the bisection
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Figure 8: In (a) and (b) the behavior of the solution near the first even and
first odd solution is depicted. Note that for the even modes increasing values of
β bring the solution from ψn(1) > 0 to ψn(1) < 0. In contrast, odd modes go
from ψn(1) < 0 to ψn(1) > 0 as β is increased. In (c) the first four normalized
eigenmodes along with their corresponding eigenvalues are illustrated for n0 =
100.

method developed in the code. Figure 8(c) illustrates the first four normalized
eigenmodes along with their corresponding eigenvalues.

5.5 Boundary value problems: direct solve and relaxation

The shooting method is not the only method for solving boundary value prob-
lems. The direct method of solution relies on Taylor expanding the differential
equation itself. For linear problems, this results in a matrix problem of the
form Ax = b. For nonlinear problems, a nonlinear system of equations must be
solved using a relaxation scheme, i.e. a Newton or Secant method. The proto-
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typical example of such a problem is the second-order boundary value problem

d2y

dt2
= f

(
t, y,

dy

dt

)
(5.5.1)

on t ∈ [a, b] with the general boundary conditions

α1y(a) + β1
dy(a)

dt
= γ1 (5.5.2a)

α2y(b) + β2
dy(b)

dt
= γ2 . (5.5.2b)

Thus the solution is defined over a specific interval and must satisfy the relations
(5.5.2) at the end points of the interval.

Before considering the general case, we simplify the method by considering
the linear boundary value problem

d2y

dt2
= p(t)

dy

dt
+ q(t)y + r(t) (5.5.3)

on t ∈ [a, b] with the simplified boundary conditions

y(a) = α (5.5.4a)

y(b) = β . (5.5.4b)

Taylor expanding the differential equation and boundary conditions will gen-
erate the linear system of equations which solve the boundary value problem.
Tables 4-6 (Sec. 4.1) summarize the second-order and fourth-order central differ-
ence schemes along with the forward- and backward-difference formulas which
are accurate to second-order.

To solve the simplified linear boundary value problem above which is accu-
rate to second order, we use table 4 for the second and first derivatives. The
boundary value problem then becomes

y(t+∆t)−2y(t)+y(t−∆t)

∆t2
= p(t)

y(t+∆t)−y(t−∆t)

2∆t
+q(t)y(t)+r(t) (5.5.5)

with the boundary conditions y(a) = α and y(b) = β. We can rearrange this
expression to read
[
1 − ∆t

2
p(t)

]
y(t+ ∆t) −

[
2 + ∆t2q(t)

]
y(t) +

[
1 +

∆t

2

]
y(t− ∆t) = ∆t2r(t) .

(5.5.6)
We discretize the computational domain and denote t0 = a to be the left bound-
ary point and tN = b to be the right boundary point. This gives the boundary
conditions

y(t0) = y(a) = α (5.5.7a)

y(tN ) = y(b) = β . (5.5.7b)
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The remaining N − 1 points can be recast as a matrix problem Ax = b where

A=




2+∆t2q(t1) −1+ ∆t
2

p(t1) 0 · · · 0

−1−
∆t
2

p(t2) 2+∆t2q(t2) −1+ ∆t
2

p(t2) 0 · · ·

.

.

.

0

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
0

.

.

.

.
.
.

.
.
.

−1+ ∆t
2

p(tN−2)

0 · · · 0 −1−
∆t
2

p(tN−1) 2+∆t2q(tN−1)




(5.5.8)
and

x=




y(t1)
y(t2)

...
y(tN−2)
y(tN−1)




b=




−∆t2r(t1) + (1 + ∆tp(t1)/2)y(t0)
−∆t2r(t2)
...
−∆t2r(tN−2)
−∆t2r(tN−1) + (1 − ∆tp(tN−1)/2)y(tN)



.

(5.5.9)
Thus the solution can be found by a direct solve of the linear system of equations.

Nonlinear Systems

A similar solution procedure can be carried out for nonlinear systems. However,
difficulties arise from solving the resulting set of nonlinear algebraic equations.
We can once again consider the general differential equation and expand with
second-order accurate schemes:

y′′=f(t, y, y′) → y(t+∆t)−2y(t)+y(t−∆t)

∆t2
=f

(
t, y(t),

y(t+∆t)−y(t−∆t)

2∆t

)
.

(5.5.10)
We discretize the computational domain and denote t0 = a to be the left bound-
ary point and tN = b to be the right boundary point. Considering again the
simplified boundary conditions y(t0) = y(a) = α and y(tN ) = y(b) = β gives
the following nonlinear system for the remaining N − 1 points.

2y1 − y2 − α+ ∆t2f(t1, y1, (y2 − α)/2∆t) = 0

−y1 + 2y2 − y3 + ∆t2f(t2, y2, (y3 − y1)/2∆t) = 0

...

−yN−3+2yN−2−yN−1+∆t2f(tN−2, yN−2, (yN−1−yN−3)/2∆t) = 0

−yN−2 + 2yN−1 − β + ∆t2f(tN−1, yN−1, (β − yN−2)/2∆t) = 0.

This (N − 1) × (N − 1) nonlinear system of equations can be very difficult to
solve and imposes a severe constraint on the usefulness of the scheme. However,
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there may be no other way of solving the problem and a solution to these system
of equations must be computed. Further complicating the issue is the fact that
for nonlinear systems such as these, there are no guarantees about the existence
or uniqueness of solutions. The best approach is to use a relaxation scheme
which is based upon Newton or Secant method iterations.

Solving Nonlinear Systems: Newton-Raphson Iteration

The only built-in MATLAB command which solves nonlinear system of equa-
tions is FSOLVE. However, this command is now packaged within the opti-
mization toolbox. Most users of MATLAB do not have access to this toolbox
and alternatives must be sought. We therefore develop the basic ideas of the
Newton-Raphson Iteration method, commonly known as a Newton’s method.
We begin by considering a single nonlinear equation

f(xr) = 0 (5.5.12)

where xr is the root to the equation and the value being sought. We would like to
develop a scheme which systematically determines the value of xr. The Newton-
Raphson method is an iterative scheme which relies on an initial guess, x0, for
the value of the root. From this guess, subsequent guesses are determined until
the scheme either converges to the root xr or the scheme diverges and another
initial guess is used. The sequence of guesses (x0, x1, x2, ...) is generated from
the slope of the function f(x). The graphical procedure is illustrated in Fig. 9.
In essence, everything relies on the slope formula as illustrated in Fig. 9(a):

slope =
df(xn)

dx
=

rise

run
=

0 − f(xn)

xn+1 − xn
. (5.5.13)

Rearranging this gives the Newton-Raphson iterative relation

xn+1 = xn − f(xn)

f ′(xn)
. (5.5.14)

A graphical example of how the iteration procedure works is given in Fig. 9(b)
where a sequence of iterations is demonstrated. Note that the scheme fails if
f ′(xn) = 0 since then the slope line never intersects y = 0. Further, for certain
guesses the iterations may diverge. Provided the initial guess is sufficiently close,
the scheme usually will converge. Conditions for convergence can be found in
Burden and Faires [5].

The Newton method can be generalized for system of nonlinear equations.
The details will not be discussed here, but the Newton iteration scheme is similar
to that developed for the single function case. Given a system:

F(xn) =




f1(x1, x2, x3, ..., xN )
f2(x1, x2, x3, ..., xN )

...
fN(x1, x2, x3, ..., xN )


 = 0 , (5.5.15)
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Figure 9: Construction and implementation of the Newton-Raphson iteration
formula. In (a), the slope is the determining factor in deriving the Newton-
Raphson formula. In (b), a graphical representation of the iteration scheme is
given.

the iteration scheme is
xn+1 = xn + ∆xn (5.5.16)

where
J(xn)∆xn = −F(xn) (5.5.17)

and J(xn) is the Jacobian matrix

J(xn) =




f1x1
f1x2

· · · f1xN

f2x1
f2x2

· · · f2xN

...
...

...
fNx1

fNx2
· · · fNxN


 (5.5.18)

This algorithm relies on initially guessing values for x1, x2, ..., xN . As before,
there is no guarantee that the algorithm will converge. Thus a good initial guess
is critical to its success. Further, the determinant of the Jacobian cannot equal
zero, detJ(xn) 6= 0, in order for the algorithm to work.

5.6 Implementing the direct solve method

To see how the finite difference discretization technique is applied, we consider
the same example problem considered with the shooting method. Specifically,
the boundary value problem gives rise to an eigenvalue system for which the
eigenvalue and eigenfunction must both be determined. The example considered
is the Schrödinger equation from quantum mechanics which is a second order
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differential equation
d2ψ

dx2
+ [n(x) − β]ψ = 0 (5.6.1)

with the boundary conditions ψ(±1) = 0. As before, we will consider n(x) =
n0 = 100. Unlike the shooting method, there is no need to rewrite the equation
as a coupled system of first order equations.

To discretize, we first divide the spatial domain x ∈ [−1, 1] into a specified
number of equally spaced points. At each point, let

ψ(xn) = ψn . (5.6.2)

Upon discretizing, the governing equation becomes

ψn+1 − 2ψn + ψn−1

∆x2
+ (n0 − β)ψn = 0 n = 1, 2, 3, ..N − 1 . (5.6.3)

Multiplying through by ∆x2 and collecting terms gives

ψn+1 +
(
−2 + ∆x2n0

)
ψn + ψn−1 = ∆x2βψn n = 1, 2, 3, ..N − 1 . (5.6.4)

Note that the term on the right hand side is placed there because the values of
β are unknown. Thus part of the problem is to determine what these values are
as well as all the values of ψn.

Defining λ = ∆x2β gives the eigenvalue problem

A~ψ = λ~ψ (5.6.5)

where

A=




−2+∆x2n0 1 0 · · · 0

1 −2+∆x2n0 1 0 · · ·
...

0
. . .

. . .
. . .

...
...
0

...
. . .

. . . 1
0 · · · 0 1 −2+∆x2n0




(5.6.6)

and

~ψ=




ψ(x1)
ψ(x2)

...
ψ(xN−2)
ψ(xN−1)



. (5.6.7)

Thus the solution can be found by an eigenvalue solve of the linear system of
equations. Note that we already know the boundary conditions ψ(−1) = ψ0 = 0
and ψ(1) = ψN = 0. Thus we are left with and N−1×N−1 eigenvalue problem
for which we can use the eig command.
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numerical implementation

To implement this solution, we begin with the preliminaries of the problem

clear all; close all;

n=200; % number of points

x=linespace(-1,1,n); % linear space of points

dx=x(2)-x(1); % delta x values

With these defined, we turn to building the matrix A. It is a sparse matrix
which only has three diagonals of consequence.

n0=100; % value of n_0

m=n-2; % size of A matrix (mXm)

% DIAGONALS

for j=1:m

A(j,j)=-2+dx^2*n0;

end

% OFF DIAGONALS

for j=1:m-1

A(j,j+1)=1;

A(j+1,j)=1;

end

Note that the size of the matrix ism = n−2 since we already know the boundary
conditions ψ(−1) = ψ0 = 0 and ψ(1) = ψN = 0..

To solve this problem, we simply use the eig command

[V,D]=eig(A) % get the eigenvectors (V), eigenvalues (D)

The matrix V is an m×m matrix which contains as columns the eigenvectors
of the matrix A. The matrix D is an m ×m matrix whose diagonal elements
are the eigenvalues corresponding to the eigenvectors V. The eig command
automatically sorts the eigenvalues puts them in the order of smallest to biggest
as you move across the columns of V. In this particular case, we are actually
looking for the largest five values of β, thus we need to look at the last five
columns of V for our eigenvectors and last five diagonals of D for the eigenvalues.

col=[’r’,’b’,’g’,’c’,’m’,’k’]; % eigenfunction colors

for j=1:5

eig(1)=0; % left boundary condition

eig(2:m+1)=V(:,end+1-j); % interior points

eig(n)=0 % right boundary condition

norm=trapz(x,eig.^2); % normalization

plot(x,eig/sqrt(norm),col(j)); hold on % plot

beta=D(end+1-j,end+1-j)/dx/dx % write out eigenvalues

end

This plots out the normalized eigenvector solutions and their eigenvalues.
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6 Fourier Transforms

Fourier transforms are one of the most powerful and efficient techniques for
solving a wide variety of problems. The key idea of the Fourier transform
is to represent functions and their derivatives as sums of cosines and sines.
This operation can be done with the Fast-Fourier transform (FFT) which is
an O(N logN) operation. Thus the FFT is faster than most linear solvers of
O(N2). The basic properties and implementation of the FFT will be considered
here.

6.1 Basics of the Fourier Transform

Other techniques exist for solving many computational problems which are not
based upon the standard Taylor series discretization. An alternative to standard
discretization is to use the Fast-Fourier Transform (FFT). The FFT is an inte-
gral transform defined over the entire line x ∈ [−∞,∞]. Given computational
practicalities, however, we transform over a finite domain x ∈ [−L,L] and as-
sume periodic boundary conditions due to the oscillatory behavior of the kernel
of the Fourier transform. The Fourier transform and its inverse are defined as

F (k) =
1√
2π

∫ ∞

−∞

eikxf(x)dx (6.1.1a)

f(x) =
1√
2π

∫ ∞

−∞

e−ikxF (k)dk . (6.1.1b)

There are other equivalent definitions. However, this definition will serve to
illustrate the power and functionality of the Fourier transform method. We
again note that formally, the transform is over the entire real line x ∈ [−∞,∞]
whereas our computational domain is only over a finite domain x ∈ [−L,L].
Further, the Kernel of the transform, exp(±ikx), describes oscillatory behavior.
Thus the Fourier transform is essentially an eigenfunction expansion over all
continuous wavenumbers k. And once we are on a finite domain x ∈ [−L,L],
the continuous eigenfunction expansion becomes a discrete sum of eigenfunctions
and associated wavenumbers (eigenvalues).

Derivative Relations

The critical property in the usage of Fourier transforms concerns derivative
relations. To see how these properties are generated, we begin by considering
the Fourier transform of f ′(x). We denote the Fourier transform of f(x) as

f̂(x). Thus we find

f̂ ′(x) =
1√
2π

∫ ∞

−∞

eikxf ′(x)dx = f(x)eikx|∞−∞ − ik√
2π

∫ ∞

−∞

eikxf(x)dx . (6.1.2)
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Assuming that f(x) → 0 as x→ ±∞ results in

f̂ ′(x) = − ik√
2π

∫ ∞

−∞

eikxf(x)dx = −ikf̂(x) . (6.1.3)

Thus the basic relation f̂ ′ = −ikf̂ is established. It is easy to generalize this
argument to an arbitrary number of derivatives. The final result is the following
relation between Fourier transforms of the derivative and the Fourier transform
itself

f̂ (n) = (−ik)nf̂ . (6.1.4)

This property is what makes Fourier transforms so useful and practical.
As an example of the Fourier transform, consider the following differential

equation
y′′ − ω2y = −f(x) x ∈ [−∞,∞] . (6.1.5)

We can solve this by applying the Fourier transform to both sides. This gives
the following reduction

ŷ′′ − ω2ŷ = −f̂
−k2ŷ − ω2ŷ = −f̂
(k2 + ω2)ŷ = f̂

ŷ =
f̂

k2 + ω2
. (6.1.6)

To find the solution y(x), we invert the last expression above to yield

y(x) =
1√
2π

∫ ∞

−∞

e−ikx f̂

k2 + ω2
dk . (6.1.7)

This gives the solution in terms of an integral which can be evaluated analyti-
cally or numerically.

The Fast Fourier Transform

The Fast Fourier transform routine was developed specifically to perform the
forward and backward Fourier transforms. In the mid 1960s, Cooley and Tukey
developed what is now commonly known as the FFT algorithm [7]. Their al-
gorithm was named one of the top ten algorithms of the 20th century for one
reason: the operation count for solving a system dropped to O(N logN). For
N large, this operation count grows almost linearly like N . Thus it represents a
great leap forward from Gaussian elimination and LU decomposition. The key
features of the FFT routine are as follows:

1. It has a low operation count: O(N logN).
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2. It finds the transform on an interval x ∈ [−L,L]. Since the integration
Kernel exp(ikx) is oscillatory, it implies that the solutions on this finite
interval have periodic boundary conditions.

3. The key to lowering the operation count to O(N logN) is in discretizing
the range x ∈ [−L,L] into 2n points, i.e. the number of points should be
2, 4, 8, 16, 32, 64, 128, 256, · · ·.

4. The FFT has excellent accuracy properties, typically well beyond that of
standard discretization schemes.

We will consider the underlying FFT algorithm in detail at a later time. For
more information at the present, see [7] for a broader overview.

The practical implementation of the mathematical tools available in MAT-
LAB is crucial. This lecture will focus on the use of some of the more sophis-
ticated routines in MATLAB which are cornerstones to scientific computing.
Included in this section will be a discussion of the Fast Fourier Transform rou-
tines (fft, ifft, fftshift, ifftshift, fft2, ifft2), sparse matrix construction (spdiag,
spy), and high end iterative techniques for solving Ax = b (bicgstab, gmres).
These routines should be studied carefully since they are the building blocks of
any serious scientific computing code.

Fast Fourier Transform: FFT, IFFT, FFTSHIFT, IFFTSHIFT2

The Fast Fourier Transform will be the first subject discussed. Its implemen-
tation is straightforward. Given a function which has been discretized with 2n

points and represented by a vector x, the FFT is found with the command
fft(x). Aside from transforming the function, the algorithm associated with the
FFT does three major things: it shifts the data so that x ∈ [0, L] → [−L, 0]
and x ∈ [−L, 0] → [0, L], additionally it multiplies every other mode by −1, and
it assumes you are working on a 2π periodic domain. These properties are a
consequence of the FFT algorithm discussed in detail at a later time.

To see the practical implications of the FFT, we consider the transform of
a Gaussian function. The transform can be calculated analytically so that we
have the exact relations:

f(x) = exp(−αx2) → f̂(k) =
1√
2α

exp

(
− k2

4α

)
. (6.1.8)

A simple MATLAB code to verify this with α = 1 is as follows

clear all; close all; % clear all variables and figures

L=20; % define the computational domain [-L/2,L/2]

n=128; % define the number of Fourier modes 2^n
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x2=linspace(-L/2,L/2,n+1); % define the domain discretization

x=x2(1:n); % consider only the first n points: periodicity

u=exp(-x.*x); % function to take a derivative of

ut=fft(u); % FFT the function

utshift=fftshift(ut); % shift FFT

figure(1), plot(x,u) % plot initial gaussian

figure(2), plot(abs(ut)) % plot unshifted transform

figure(3), plot(abs(utshift)) % plot shifted transform

The second figure generated by this script shows how the pulse is shifted. By
using the command fftshift, we can shift the transformed function back to its
mathematically correct positions as shown in the third figure generated. How-
ever, before inverting the transformation, it is crucial that the transform is
shifted back to the form of the second figure. The command ifftshift does this.
In general, unless you need to plot the spectrum, it is better not to deal with
the fftshift and ifftshift commands. A graphical representation of the fft pro-
cedure and its shifting properties is illustrated in Fig. 10 where a Gaussian is
transformed and shifted by the fft routine.

To take a derivative, we need to calculate the k values associated with the
transformation. The following example does this. Recall that the FFT assumes
a 2π periodic domain which gets shifted. Thus the calculation of the k values
needs to shift and rescale to the 2π domain. The following example differentiates
the function f(x) = sech(x) three times. The first derivative is compared with
the analytic value of f ′(x) = −sech(x) tanh(x).

clear all; close all; % clear all variables and figures

L=20; % define the computational domain [-L/2,L/2]

n=128; % define the number of Fourier modes 2^n

x2=linspace(-L/2,L/2,n+1); % define the domain discretization

x=x2(1:n); % consider only the first n points: periodicity

u=sech(x); % function to take a derivative of

ut=fft(u); % FFT the function

k=(2*pi/L)*[0:(n/2-1) (-n/2):-1]; % k rescaled to 2pi domain

ut1=i*k.*ut; % first derivative

ut2=-k.*k.*ut; % second derivative

ut3=-i*k.*k.*k.*ut; % third derivative

u1=ifft(ut1); u2=ifft(ut2); u3=ifft(ut3); % inverse transform

u1exact=-sech(x).*tanh(x); % analytic first derivative
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Figure 10: Fast Fourier Transform of Gaussian data illustrating the shifting
properties of the FFT routine. Note that the fftshift command restores the
transform to its mathematically correct, unshifted state.

figure(1)

plot(x,u,’r’,x,u1,’g’,x,u1exact,’go’,x,u2,’b’,x,u3,’c’) % plot

The routine accounts for the periodic boundaries, the correct k values, and
differentiation. Note that no shifting was necessary since we constructed the k
values in the shifted space.

For transforming in higher dimensions, a couple of choices in MATLAB are
possible. For 2D transformations, it is recommended to use the commands
fft2 and ifft2. These will transform a matrix A, which represents data in the
x and y direction respectively, along the rows and then columns. For higher
dimensions, the fft command can be modified to fft(x,[],N) where N is the
number of dimensions.
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6.2 Spectral Analysis

Although our primary use of the FFT will be related to differentiation and
solving ordinary and partial differential equations, it should be understood that
the impact of the FFT is far greater than this. In particular, FFTs and other
related frequency transforms have revolutionized the field of digital signal pro-
cessing and imaging. The key concept in any of these applications is to use the
FFT to analyze and manipulate data in the frequency domain.

This lecture will discuss a very basic concept and manipulation procedure to
be performed in the frequency domain: noise attenuation via frequency (band-
pass) filtering. This filtering process is fairly common in electronics and signal
detection. To begin we consider a ideal signal generated in the time-domain.

clear all; close all;

T=20; % Total time slot to transform

n=128; % number of Fourier modes 2^7

t2=linspace(-T/2,T/2,n+1); t=t2(1:n); % time values

k=(2*pi/L)*[0:(n/2-1) -n/2:-1]; % frequency components of FFT

u=sech(t); % ideal signal in the time domain

figure(1), plot(t,u,’k’), hold on

This will generate an ideal hyperbolic secant shape in the time domain.
In most applications, the signals as generated above are not ideal. Rather,

they have a large amount of noise on top of them. Usually this noise is what is
called white noise, i.e. a noise which effects all frequencies the same. We can
add white noise to this signal by considering the pulse in the frequency domain.

noise=10;

ut=fft(u);

utn=ut+noise*(rand(1,n)+i*rand(1,n));

These three lines of code generate the Fourier transform of the function along
with the vector utn which is the spectrum with a complex and Gaussian dis-
tributed (mean zero, unit variance) noise source term added in.

6.3 Applications of the FFT

Spectral methods are one of the most powerful solution techniques for ordinary
and partial differential equations. The best known example of a spectral method
is the Fourier transform. We have already made use of the Fourier transform
using FFT routines. Other spectral techniques exist which render a variety of
problems easily tractable and often at significant computational savings.
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Discrete Cosine and Sine Transforms

When considering a computational domain, the solution can only be found on
a finite length domain. Thus the definition of the Fourier transform needs to be
modified in order to account for the finite sized computational domain. Instead
of expanding in terms of a continuous integral for values of wavenumber k and
cosines and sines (exp(ikx)), we expand in a Fourier series

F (k) =

N∑

n=1

f(n) exp

[
−i2π(k − 1)

N
(n− 1)

]
1 ≤ k ≤ N (6.3.1a)

f(n) =
1

N

N∑

k=1

F (k) exp

[
i
2π(k − 1)

N
(n− 1)

]
1 ≤ n ≤ N . (6.3.1b)

Thus the Fourier transform is nothing but an expansion in a basis of cosine and
sine functions. If we define the fundamental oscillatory piece as

wnk =exp

(
2iπ(k−1)(n−1)

N

)
=cos

(
2π(k−1)(n−1)

N

)
+ i sin

(
2π(k−1)(n−1)

N

)
,

(6.3.2)
then the Fourier transform results in the expression

Fn =

N−1∑

k=0

wnkfk 0 ≤ n ≤ N − 1 . (6.3.3)

Thus the calculation of the Fourier transform involves a double sum and an
O(N2) operation. Thus at first it would appear that the Fourier transform
method is the same operation count as LU decomposition. The basis functions
used for the Fourier transform, sine transform and cosine transform are depicted
in Fig. 11. The process of solving a differential or partial differential equation
involves evaluating the coefficient of each of the modes. Note that this expan-
sion, unlike the finite difference method, is a global expansion in that every basis
function is evaluated on the entire domain.

The Fourier, sine, and cosine transforms behave very differently at the
boundaries. Specifically, the Fourier transform assumes periodic boundary con-
ditions whereas the sine and cosine transforms assume pinned and no-flux bound-
aries respectively. The cosine and sine transform are often chosen for their
boundary properties. Thus for a given problem, an evaluation must be made
of the type of transform to be used based upon the boundary conditions need-
ing to be satisfied. Table 8 illustrates the three different expansions and their
associated boundary conditions. The appropriate MATLAB command is also
given.
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Figure 11: Basis functions used for a Fourier mode expansion (top), a sine
expansion (middle), and a cosine expansion (bottom).

Fast-Poisson Solvers

The FFT algorithm provides a fast and efficient method for solving the Poisson
equation

∇2ψ = ω (6.3.4)

given the function ω. In two dimensions, this equation is equivalent to

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω . (6.3.5)

By discretizing in both the x and y directions, this forces us to solve an as-
sociated linear problem Ax = b. At best, we can use a factorization scheme
to solve this problem in O(N2) operations. Although iteration schemes have
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command expansion boundary conditions

fft Fk =
∑2N−1

j=0 fj exp(iπjk/N) periodic: f(0) = f(L)

dst Fk =
∑N−1

j=1 fj sin(πjk/N) pinned: f(0) = f(L) = 0

dct Fk =
∑N−2

j=0 fj cos(πjk/2N) no-flux: f ′(0) = f ′(L) = 0

Table 8: MATLAB functions for Fourier, sine, and cosine transforms and their
associated boundary conditions. To invert the expansions, the MATLAB com-
mands are ifft, idst, and idct repectively.

the possibility of outperforming this, it is not guaranteed. Fourier transform
methods allow us to solve the problem in O(N logN).

Denoting the Fourier transform in x as f̂(x) and the Fourier transform in y

as g̃(y), we transform the equation. We begin by transforming in x:

∂̂2ψ

∂x2
+
∂̂2ψ

∂y2
= ω̂ → −k2

xψ̂ +
∂2ψ̂

∂y2
= ω̂ , (6.3.6)

where kx are the wavenumbers in the x direction. Transforming now in the y
direction gives

−k2
x
˜̂
ψ +

∂̃2ψ̂

∂y2
= ˜̂ω → −k2

x
˜̂
ψ + −k2

y
˜̂
ψ = ˜̂ω . (6.3.7)

This can be rearranged to obtain the final result

˜̂
ψ = −

˜̂ω
k2

x + k2
y

. (6.3.8)

The remaining step is to inverse transform in x and y to get back to the solution
ψ(x, y).

The algorithm to solve this is surprisingly simple. Before generating the
solution, the spatial domain, Fourier wavenumber vectors, and two-dimensional
function ω(x, y) are defined.

Lx=20; Ly=20, nx=128; ny=128; % domains and Fourier modes

x2=linspace(-Lx/2,Lx/2,nx+1); x=x2(1:nx); % x-values

y2=linspace(-Ly/2,Ly/2,ny+1); y=y2(1:nx); % y-values

[X,Y]=meshgrid(x,y); % generate 2-D grid

omega=exp(-X.^2-Y.^2); % generate 2-D Gaussian

After defining the preliminaries, the wavenumbers are generated and the equa-
tion is solved
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kx=(2*pi/Lx)*[0:nx/2-1 -nx/2:-1]; % x-wavenumbers

ky=(2*pi/Ly)*[0:ny/2-1 -ny/2:-1]; % y-wavenumbers

kx(1)=10^(-6); ky(1)=10^(-6); % fix divide by zero

[KX,KY]=meshgrid(kx,ky); % generate 2-D wavenumbers

psi=real( ifft2( -fft2(omega)./(KX.^2+KY.^2) ) ); % solution

Note that the real part of the inverse 2-D FFT is taken since numerical round-off
generates imaginary parts to the solution ψ(x, y).

An observation concerning (6.3.8) is that there will be a divide by zero when
kx = ky = 0 at the zero mode. Two options are commonly used to overcome
this problem. The first is to modify (6.3.8) so that

˜̂
ψ = −

˜̂ω
k2

x + k2
y + eps

(6.3.9)

where eps is the command for generating a machine precision number which is
on the order of O(10−15). It essentially adds a round-off to the denominator
which removes the divide by zero problem. A second option, which is more
highly recommended, is to redefine the kx and ky vectors associated with the
wavenumbers in the x and y directions. Specifically, after defining the kx and
ky, we could simply add the command line

kx(1)=10^(-6);

ky(1)=10^(-6);

The values of kx(1) = ky(1) = 0 by default. This would make the values small
but finite so that the divide by zero problem is effectively removed with only a
small amount of error added to the problem.

There is a second mathematical difficulty which must be addressed. The
function ψ(x, y) with periodic boundary conditions does not have a unique so-
lution. Thus if ψ0(x, y) is a solution, so is ψ0(x, y) + c where c is an arbitrary
constant. When solving this problem with FFTs, the FFT will arbitrarily add
a constant to the solution. Fundamentally, we are only interested in deriva-
tives of the streamfunction. Therefore, this constant is inconsequential. When
solving with direct methods for Ax = b, the non-uniqueness gives a singular
matrix A. Thus solving with Gaussian elimination, LU decomposition or it-
erative methods is problematic. Often in applications the arbitrary constant
does not matter. Specifically, most applications only are concerned with the
derivative of the function ψ(x, y). Thus we can simply pin the value of ψ(x, y)
to some prescribed value on our computational domain. This will fix the con-
stant c and give a unique solution to Ax = b. For instance, we could impose
the following constraint condition ψ(−L,−L, t) = 0. Such a condition pins the
value of ψ(x, y, t) at the left hand corner of the computational domain and fixes
c.
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7 Partial Differential Equations

With the Fourier transform and discretization in hand, we can turn towards the
solution of partial differential equations whose solutions need to be advanced
forward in time. Thus, in addition to spatial discretization, we will need to
discretize in time in a self-consistent way so as to advance the solution to a
desired future time. Issues of stability and accuracy are, of course, at the heart
of a discussion on time and space stepping schemes.

7.1 Basic time- and space-stepping schemes

Basic time-stepping schemes involve discretization in both space and time. Is-
sues of numerical stability as the solution is propagated in time and accuracy
from the space-time discretization are of greatest concern for any implementa-
tion. To begin this study, we will consider very simple and well known examples
from partial differential equations. The first equation we consider is the heat
(diffusion) equation

∂u

∂t
= κ

∂2u

∂x2
(7.1.1)

with the periodic boundary conditions u(−L) = u(L). We discretize the spatial
derivative with a second-order scheme (see Table 4) so that

∂u

∂t
=

κ

∆x2
[u(x+ ∆x) − 2u(x) + u(x− ∆x)] . (7.1.2)

This approximation reduces the partial differential equation to a system of or-
dinary differential equations. We have already considered a variety of time-
stepping schemes for differential equations and we can apply them directly to
this resulting system.

The ODE System

To define the system of ODEs, we discretize and define the values of the vector
u in the following way.

u(−L) = u1

u(−L+ ∆x) = u2

...

u(L− 2∆x) = un−1

u(L− ∆x) = un

u(L) = un+1 .



AMATH 301 ( c©J. N. Kutz) 90

Recall from periodicity that u1 = un+1. Thus our system of differential equa-
tions solves for the vector

u =




u1

u2

...
un


 . (7.1.3)

The governing equation (7.1.2) is then reformulated as the differential equations
system

du

dt
=

κ

∆x2
Au , (7.1.4)

where A is given by the sparse matrix

A=




−2 1 0 · · · 0 1
1 −2 1 0 · · · 0

0
. . .

. . .
. . .

...
...
0

... · · · 0 1 −2 1
1 0 · · · 0 1 −2




, (7.1.5)

and the values of one on the upper right and lower left of the matrix result from
the periodic boundary conditions.

MATLAB implementation

The system of differential equations can now be easily solved with a standard
time-stepping algorithm such as ode23 or ode45. The basic algorithm would be
as follows

1. Build the sparse matrix A.

e1=ones(n,1); % build a vector of ones

A=spdiags([e1 -2*e1 e1],[-1 0 1],n,n); % diagonals

A(1,n)=1; A(n,1)=1; % periodic boundaries

2. Generate the desired initial condition vector u = u0.

3. Call an ODE solver from the MATLAB suite. The matrix A, the diffusion
constant κ and spatial step ∆x need to be passed into this routine.

[t,y]=ode45(’rhs’,tspan,u0,[],k,dx,A);
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The function rhs.m should be of the following form

function rhs=rhs(tspan,u,dummy,k,dx,A)

rhs=(k/dx^2)*A*u;

4. Plot the results as a function of time and space.

The algorithm is thus fairly routine and requires very little effort in programming
since we can make use of the standard time-stepping algorithms already available
in MATLAB.

2D MATLAB implementation

In the case of two dimensions, the calculation becomes slightly more difficult
since the 2D data is represented by a matrix and the ODE solvers require a
vector input for the initial data. For this case, the governing equation is

∂u

∂t
= κ

(
∂2u

∂x2
+
∂2u

∂y2

)
(7.1.6)

where we discretize in x and y. Provided ∆x = ∆y = δ are the same, the system
can be reduced to the linear system

du

dt
=

κ

δ2
Bu , (7.1.7)

where we have arranged the vector u so that

u =




u11

u12

...
u1n

u21

u22

...
un(n−1)

unn




, (7.1.8)

where we have defined ujk = u(xj , yk). The matrix B is a nine diagonal matrix.
The kron command can be used to generate it from its 1D version.

Again, the system of differential equations can now be easily solved with a
standard time-stepping algorithm such as ode23 or ode45. The basic algorithm
follows the same course as the 1D case, but extra care is taken in arranging the
2D data into a vector.
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1. Build the sparse matrix B. Here the matrix B can be built by using the
fact that we know the differentiation matrix in one dimension, i.e. the
matrix A of the previous example.

n=100; % number of discretization points in x and y

I=eye(n); % idendity matrix of size nXn

B=kron(I,A)+kron(A,I); % 2-D differentiation matrix

2. Generate the desired initial condition matrix U = U0 and reshape it to a
vector u = u0. This example considers the case of a simple Gaussian as
the initial condition. The reshape and meshgrid commands are important
for computational implementation.

Lx=20; Ly=20; % spatial domain of x and y

nx=100; ny=100; % discretization points in x and y

N=nx*ny; % elements in reshaped initial condition

x2=linspace(-Lx/2,Lx/2,nx+1); % account for periodicity

x=x2(1:nx); % x-vector

y2=linspace(-Ly/2,Ly/2,ny+1); % account for periodicity

y=y2(1:ny); % y-vector

[X,Y]=meshgrid(x,y); % set up for 2D initial conditions

U=exp(-X.^2-Y.^2); % generate a Gaussian matrix

u=reshape(U,N,1); % reshape into a vector

3. Call an ODE solver from the MATLAB suite. The matrix A, the diffusion
constant κ and spatial step ∆x = ∆y = dx need to be passed into this
routine.

[t,y]=ode45(’rhs’,tspan,u0,[],k,dx,A);

The function rhs.m should be of the following form

function rhs=rhs(tspan,u,dummy,k,dx,A)

rhs=(k/dx^2)*A*u;

4. Plot the results as a function of time and space.

The algorithm is again fairly routine and requires very little effort in program-
ming since we can make use of the standard time-stepping algorithms.
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Figure 12: Graphical representation of the progression of the numerical solu-
tion using the method of lines. Here a second order discretization scheme is
considered which couples each spatial point with its nearest neighbor.

Method of Lines

Fundamentally, these methods use the data at a single slice of time to generate
a solution ∆t in the future. This is then used to generate a solution 2∆t into
the future. The process continues until the desired future time is achieved.
This process of solving a partial differential equation is known as the method of
lines. Each line is the value of the solution at a given time slice. The lines are
used to update the solution to a new timeline and progressively generate future
solutions. Figure 12 depicts the process involved in the method of lines for the
1D case.

7.2 Time-stepping schemes: explicit and implicit methods

Now that several technical and computational details have been addressed, we
continue to develop methods for time-stepping the solution into the future.
Some of the more common schemes will be considered along with a graphical
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Figure 13: Four-point stencil for second-order spatial discretization and Euler
time-stepping of the one-wave wave equation.

representation of the scheme. Every scheme eventually leads to an iteration
procedure which the computer can use to advance the solution in time.

We will begin by considering the most simple partial differential equations.
Often, it is difficult to do much analysis with complicated equations. Therefore,
considering simple equations is not merely an excersize, but rather they are
typically the only equations we can make analytical progress with.

As an example, we consider the one-way wave equation

∂u

∂t
= c

∂u

∂x
. (7.2.1)

The simplest discretization of this equation is to first central difference in the x
direction. This yields

∂u

∂t
=

c

2∆x
(un+1 − un−1) , (7.2.2)

where un = u(xn, t). We can then step forward with an Euler time-stepping

method. Denoting u
(m)
n = u(xn, tm), and applying the method of lines iteration

scheme gives

u(m+1)
n = u(m)

n +
c∆t

2∆x

(
u

(m)
n+1 − u

(m)
n−1

)
. (7.2.3)

This simple scheme has the four-point stencil shown in Fig. 13. To illustrate
more clearly the iteration procedure, we rewrite the discretized equation in the
form

u(m+1)
n = u(m)

n +
λ

2

(
u

(m)
n+1 − u

(m)
n−1

)
(7.2.4)

where

λ =
c∆t

∆x
(7.2.5)

is known as the CFL (Courant, Friedrichs, and Levy) condition. The iteration
procedure assumes that the solution does not change significantly from one time-

step to the next, i.e. u
(m)
n ≈ u

(m+1)
n . The accuracy and stability of this scheme
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is controlled almost exclusively by the CFL number λ. This parameter relates
the spatial and time discretization schemes in (7.2.5). Note that decreasing ∆x
without decreasing ∆t leads to an increase in λ which can result in instabilities.
Smaller values of ∆t suggest smaller values of λ and improved numerical stability
properties. In practice, you want to take ∆x and ∆t as large as possible for
computational speed and efficiency without generating instabilities.

There are practical considerations to keep in mind relating to the CFL num-
ber. First, given a spatial discretization step-size ∆x, you should choose the
time discretization so that the CFL number is kept in check. Often a given
scheme will only work for CFL conditions below a certain value, thus the im-
portance of choosing a small enough time-step. Second, if indeed you choose to
work with very small ∆t, then although stability properties are improved with
a lower CFL number, the code will also slow down accordingly. Thus achieving
good stability results is often counter-productive to fast numerical solutions.

Central Differencing in Time

We can discretize the time-step in a similar fashion to the spatial discretiza-
tion. Instead of the Euler time-stepping scheme used above, we could central
difference in time using Table 4. Thus after spatial discretization we have

∂u

∂t
=

c

2∆x
(un+1 − un−1) , (7.2.6)

as before. And using a central difference scheme in time now yields

u
(m+1)
n − u

(m−1)
n

2∆t
=

c

2∆x

(
u

(m)
n+1 − u

(m)
n−1

)
. (7.2.7)

This last expression can be rearranged to give

u(m+1)
n = u(m−1)

n + λ
(
u

(m)
n+1 − u

(m)
n−1

)
. (7.2.8)

This iterative scheme is called leap-frog (2,2) since it is O(∆t2) accurate in time
and O(∆x2) accurate in space. It uses a four point stencil as shown in Fig. 14.
Note that the solution utilizes two time slices to leap-frog to the next time slice.
Thus the scheme is not self-starting since only one time slice (initial condition)
is given.

Improved Accuracy

We can improve the accuracy of any of the above schemes by using higher order
central differencing methods. The fourth-order accurate scheme from Table 5
gives

∂u

∂x
=

−u(x+ 2∆x) + 8u(x+ ∆x) − 8u(x− ∆x) + u(x− 2∆x)

12∆x
. (7.2.9)
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Figure 14: Four-point stencil for second-order spatial discretization and central-
difference time-stepping of the one-wave wave equation.

Combining this fourth-order spatial scheme with second-order central differenc-
ing in time gives the iterative scheme

u(m+1)
n = u(m−1)

n + λ

[
4

3

(
u

(m)
n+1 − u

(m)
n−1

)
− 1

6

(
u

(m)
n+2 − u

(m)
n−2

)]
. (7.2.10)

This scheme, which is based upon a six point stencil, is called leap frog (2,4). It
is typical that for (2,4) schemes, the maximum CFL number for stable compu-
tations is reduced from the basic (2,2) scheme.

Lax-Wendroff

Another alternative to discretizing in time and space involves a clever use of the
Taylor expansion

u(x, t+ ∆t) = u(x, t) + ∆t
∂u(x, t)

∂t
+

∆t2

2!

∂2u(x, t)

∂t2
+O(∆t3) . (7.2.11)

But we note from the governing one-way wave equation

∂u

∂t
= c

∂u

∂x
≈ c

2∆x
(un+1 − un−1) . (7.2.12a)

Taking the derivative of the equation results in the relation

∂2u

∂t2
= c

∂2u

∂x2
≈ c

∆x2
(un+1 − 2un + un−1) . (7.2.13a)

These two expressions for ∂u/∂t and ∂2u/∂t2 can be substituted into the Taylor
series expression to yield the iterative scheme

u(m+1)
n = u(m)

n +
λ

2

(
u

(m)
n+1 − u

(m)
n−1

)
+
λ2

2

(
u

(m)
n+1 − 2u(m)

n + u
(m)
n−1

)
. (7.2.14)
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Scheme Stability

Forward Euler unstable for all λ
Backward Euler stable for all λ
Leap Frog (2,2) stable for λ ≤ 1
Leap Frog (2,4) stable for λ ≤ 0.707

Table 9: Stability of time-stepping schemes as a function of the CFL number.

This iterative scheme is similar to the Euler method. However, it introduces an
important stabilizing diffusion term which is proportional to λ2. This is known
as the Lax-Wendroff scheme. Although useful for this example, it is difficult to
implement in practice for variable coefficient problems. It illustrates, however,
the variety and creativity in developing iteration schemes for advancing the
solution in time and space.

Backward Euler: Implicit Scheme

The backward Euler method uses the future time for discretizing the spatial
domain. Thus upon discretizing in space and time we arrive at the iteration
scheme

u(m+1)
n = u(m)

n +
λ

2

(
u

(m+1)
n+1 − u

(m+1)
n−1

)
. (7.2.15)

This gives the tridiagonal system

u(m)
n = −λ

2
u

(m+1)
n+1 + u(m+1)

n +
λ

2
u

(m+1)
n−1 , (7.2.16)

which can be written in matrix form as

Au(m+1) = u(m) (7.2.17)

where

A =
1

2




2 −λ · · · 0
λ 2 −λ · · ·
...

. . .
...

0 · · · λ 2


 . (7.2.18)

Thus before stepping forward in time, we must solve a matrix problem. This
can severely affect the computational time of a given scheme. The only thing
which may make this method viable is if the CFL condition is such that much
larger time-steps are allowed, thus overcoming the limitations imposed by the
matrix solve.
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MacCormack Scheme

In the MacCormack Scheme, the variable coefficient problem of the Lax-Wendroff
scheme and the matrix solve associated with the backward Euler are circum-
vented by using a predictor-corrector method. The computation thus occurs in
two pieces:

u(P )
n = u(m)

n + λ
(
u

(m)
n+1 − u

(m)
n−1

)
(7.2.19a)

u(m+1)
n =

1

2

[
u(m)

n + u(P )
n + λ

(
u

(P )
n+1 − u

(P )
n−1

)]
. (7.2.19b)

This method essentially combines forward and backward Euler schemes so that
we avoid the matrix solve and the variable coefficient problem.

The CFL condition will be discussed in detail in the next section. For now,
the basic stability properties of many of the schemes considered here are given
in Table 9. The stability of the various schemes hold only for the one-way
wave equation considered here as a prototypical example. Each partial differ-
ential equation needs to be considered and classified individually with regards
to stability.

7.3 Implementing Time- and Space-Stepping Schemes

Computational performance is always crucial in choosing a numerical scheme.
Speed, accuracy and stability all play key roles in determining the appropriate
choice of method for solving. We will consider three prototypical equations:

∂u
∂t = ∂u

∂x one-way wave equation (7.3.1a)

∂u
∂t = ∂2u

∂x2 diffusion equation (7.3.1b)

i∂u
∂t = 1

2
∂2u
∂x2 + |u|2u nonlinear Schrödinger equation . (7.3.1c)

Periodic boundary conditions will be assumed in each case. The purpose of this
section is to build a numerical routine which will solve these problems using the
iteration procedures outlined in the previous two sections. Of specific interest
will be the setting of the CFL number and the consequences of violating the
stability criteria associated with it.

The equations are considered in one dimension such that the first and second



AMATH 301 ( c©J. N. Kutz) 99

derivative are given by

∂u

∂x
→ 1

2∆x




0 1 0 · · · 0 −1
−1 0 1 0 · · · 0

0
. . .

. . .
. . .

...
...
0

... · · · 0 −1 0 1
1 0 · · · 0 −1 0







u1

u2

...
un


 (7.3.2)

and

∂2u

∂x2
→ 1

∆x2




−2 1 0 · · · 0 1
1 −2 1 0 · · · 0

0
. . .

. . .
. . .

...
...
0

... · · · 0 1 −2 1
1 0 · · · 0 1 −2







u1

u2

...
un


 . (7.3.3)

From the previous lectures, we have the following discretization schemes for
the one-way wave equation (7.3.1):

Euler (unstable): u(m+1)
n =u(m)

n +
λ

2

(
u

(m)
n+1−u

(m)
n−1

)
(7.3.4a)

leap-frog (2,2) (stable for λ ≤ 1): u(m+1)
n =u(m−1)

n +λ
(
u

(m)
n+1−u

(m)
n−1

)
(7.3.4b)

where the CFL number is given by λ = ∆t/∆x. Similarly for the diffusion
equation (7.3.1)

Euler (stable for λ ≤ 1/2): u(m+1)
n =u(m)

n +λ
(
u

(m)
n+1−2u(m)

n +u
(m)
n−1

)
(7.3.5a)

leap-frog (2,2) (unstable): u(m+1)
n =u(m−1)

n +2λ
(
u

(m)
n+1−2u(m)

n +u
(m)
n−1

)
(7.3.5b)

where now the CFL number is given by λ = ∆t/∆x2. The nonlinear Schrödinger
equation discretizes to the following form:

∂u
(m)
n

∂t
= − i

2∆x2

(
u

(m)
n+1 − 2u(m)

n + u
(m)
n−1

)
− i|u(m)

n |2u(m)
n . (7.3.6)

The Euler and leap-frog (2,2) time-stepping schemes will be explored with this
equation.
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Figure 15: Evolution of the one-way wave equation with the leap-frog (2,2)
scheme and with CFL=0.5. The stable traveling wave solution is propagated in
this case to the left.

One-Way Wave Equation

We first consider the leap-frog (2,2) scheme applied to the one-way wave equa-
tion. Figure 15 depicts the evolution of an initial Gaussian pulse. For this case,
the CFL=0.5 so that stable evolution is analytically predicted. The solution
propagates to the left as expected from the exact solution. The leap-frog (2,2)
scheme becomes unstable for λ ≥ 1 and the system is always unstable for the
Euler time-stepping scheme. Figure 16 depicts the unstable evolution of the
leap-frog (2,2) scheme with CFL=2 and the Euler time-stepping scheme. The
initial conditions used are identical to that in Fig. 15. Since we have predicted
that the leap-frog numerical scheme is only stable provided λ < 1, it is not sur-
prising that the figure on the left goes unstable. Likewise, the figure on the right
shows the numerical instability generated in the Euler scheme. Note that both
of these unstable evolutions develop high frequency oscillations which eventually
blow up. The MATLAB code used to generate the leap-frog and Euler iterative
solutions is given by

clear all; close all; % clear previous figures and values
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Figure 16: Evolution of the one-way wave equation using the leap-frog (2,2)
scheme with CFL=2 (left) along with the Euler time-stepping scheme (right).
The analysis predicts stable evolution of leap-frog provided the CFL≤ 1. Thus
the onset of numerical instability near t ≈ 3 for the CFL=2 case is not surprising.
Likewise, the Euler scheme is expected to be unstable for all CFL.

% initialize grid size, time, and CFL number

Time=4;

L=20;

n=200;

x2=linspace(-L/2,L/2,n+1);

x=x2(1:n);

dx=x(2)-x(1);

dt=0.2;

CFL=dt/dx

time_steps=Time/dt;

t=0:dt:Time;

% initial conditions

u0=exp(-x.^2)’;

u1=exp(-(x+dt).^2)’;

usol(:,1)=u0;

usol(:,2)=u1;

% sparse matrix for derivative term

e1=ones(n,1);

A=spdiags([-e1 e1],[-1 1],n,n);

A(1,n)=-1; A(n,1)=1;

% leap frog (2,2) or euler iteration scheme

for j=1:time_steps-1
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% u2 = u0 + CFL*A*u1; % leap frog (2,2)

% u0 = u1; u1 = u2; % leap frog (2,2)

u2 = u1 + 0.5*CFL*A*u1; % euler

u1 = u2; % euler

usol(:,j+2)=u2;

end

% plot the data

waterfall(x,t,usol’);

map=[0 0 0];

colormap(map);

% set x and y limits and fontsize

set(gca,’Xlim’,[-L/2 L/2],’Xtick’,[-L/2 0 L/2],’FontSize’,[20]);

set(gca,’Ylim’,[0 Time],’ytick’,[0 Time/2 Time],’FontSize’,[20]);

view(25,40)

% set axis labels and fonts

xl=xlabel(’x’); yl=ylabel(’t’); zl=zlabel(’u’);

set(xl,’FontSize’,[20]);set(yl,’FontSize’,[20]);set(zl,’FontSize’,[20]);

print -djpeg -r0 fig.jpg % print jpeg at screen resolution

Heat Equation

In a similar fashion, we investigate the evolution of the diffusion equation when
the space-time discretization is given by the leap-frog (2,2) scheme or Euler
stepping. Figure 17 shows the expected diffusion behavior for the stable Euler
scheme (λ ≤ 0.5). In contrast, Fig. 18 shows the numerical instabilities which are
generated from violating the CFL constraint for the Euler scheme or using the
always unstable leap-frog (2,2) scheme for the diffusion equation. The numerical
code used to generate these solutions follows that given previously for the one-
way wave equation. However, the sparse matrix is now given by

% sparse matrix for second derivative term

e1=ones(n,1);

A=spdiags([e1 -2*e1 e1],[-1 0 1],n,n);

A(1,n)=1; A(n,1)=1;

Further, the iterative process is now

% leap frog (2,2) or euler iteration scheme

for j=1:time_steps-1

u2 = u0 + 2*CFL*A*u1; % leap frog (2,2)
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Figure 17: Stable evolution of the heat equation with the Euler scheme with
CFL=0.5. The initial Gaussian is diffused in this case.

u0 = u1; u1 = u2; % leap frog (2,2)

% u2 = u1 + CFL*A*u1; % euler

% u1 = u2; % euler

usol(:,j+2)=u2;

end

where we recall that the CFL condition is now given by λ = ∆t/∆x2, i.e.

CFL=dt/dx/dx

This solves the one-dimensional heat equation with periodic boundary condi-
tions.

Nonlinear Schrödinger Equation

The nonlinear Schrödinger equation can easily be discretized by the above tech-
niques. However, as with most nonlinear equations, it is a bit more difficult to
perform a von Neumann analysis. Therefore, we explore the behavior for this
system for two different discretization schemes: Euler and leap-frog (2,2). The
CFL number will be the same with both schemes (λ = 0.05) and the stability
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Figure 18: Evolution of the heat equation with the Euler time-stepping scheme
(left) and leap-frog (2,2) scheme (right) with CFL=1. The analysis predicts
that both these schemes are unstable. Thus the onset of numerical instability
is observed.

Figure 19: Evolution of the nonlinear Schrödinger equation with the Euler time-
stepping scheme (left) and leap-frog (2,2) scheme (right) with CFL=0.05.

will be investigated through numerical computations. Figure 19 shows the evo-
lution of the exact one-soliton solution of the nonlinear Schrödinger equation
(u(x, 0) = sech(x)) over six units of time. The Euler scheme is observed to
lead to numerical instability whereas the leap-frog (2,2) scheme is stable. In
general, the leap-frog schemes work well for wave propagation problems while
Euler methods are better for problems of a diffusive nature.

The MATLAB code modifications necessary to solve the nonlinear Schrödinger
equation are trivial. Specifically, the iteration scheme requires change. For the
stable leap-frog scheme, the following command structure is required

u2 = u0 + -i*CFL*A*u1- i*2*dt*(conj(u1).*u1).*u1;

u0 = u1; u1 = u2;
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Note that i is automatically defined in MATLAB as i =
√
−1. Thus it is

imperative that you do not use the variable i as a counter in your FOR loops.
You will solve a very different equation if not careful with this definition.

References

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and
Boundary Value Problems, 7th Ed. (Wiley, 2001).

[2] See, for instance, R. Finney, F. Giordano, G. Thomas, and M. Weir, Cal-
culus and Analytic Geometry, 10th Ed. (Prentice Hall, 2000).

[3] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations, (Prentice Hall, 1971).

[4] J. D. Lambert, Computational Methods in Ordinary Differential Equations,
(Wiley, 1973)

[5] R. L. Burden and J. D. Faires, Numerical Analysis, (Brooks/Cole, 1997).

[6] A. Greenbaum, Iterative Methods for Solving Linear Systems, (SIAM,
1997).

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipes, 2nd Ed. (Cambridge, 1992).

[8] R. Courant, K. O. Friedrichs, and H. Lewy, “Über die partiellen differen-
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