
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON EDUCATION 1

Game-Themed Programming Assignment Modules:
A Pathway for Gradual Integration of Gaming

Context Into Existing Introductory
Programming Courses

Kelvin Sung, Cinnamon Hillyard, Robin Lynn Angotti, Michael W. Panitz, David S. Goldstein, and
John Nordlinger

Abstract—Despite the proven success of using computer video
games as a context for teaching introductory programming
(CS1/2) courses, barriers including the lack of adoptable mate-
rials, required background expertise (in graphics/games), and
institutional acceptance still prevent interested faculty members
from experimenting with this approach. Game-themed program-
ming assignment (GTA) modules are designed specifically for
these faculty members. The GTA modules are independent, and
each is a self-contained game-like programming assignment that
challenges students on concepts pertaining to a specific curriculum
topic area. A faculty member can selectively pick and choose a
subset of GTA modules to experiment with and gradually adopt
the materials in his or her own classes. Each GTA module also in-
cludes a step-by-step tutorial guide that supports and encourages
interested faculty to develop their own expertise and game-themed
materials. This paper begins with a survey of previous results.
Based on this survey, the paper summarizes the important con-
siderations when designing materials for selective adoption. The
paper then describes the design, implementation, and assessment
of the GTA modules. The results from ongoing GTA workshops for
CS1/2 faculty members and from a yearlong project in adopting
the GTA modules in classes are then presented. In this case,
the collected results verified that introductory programming
concepts can be examined, practiced, and learned by means of
GTA modules when neither the faculty nor the students involved
have backgrounds in graphics or games. More importantly, these
results demonstrated that it is straightforward to blend the GTA
modules into existing classes with minimum alterations. In these
ways, the GTA modules are excellent catalysts enabling faculty to
begin exploring and developing their own expertise and materials
to teach with games.

Index Terms—Adaptation, assessment, assignments, CS1/2,
games.

Manuscript received November 02, 2009; revised May 03, 2010; accepted
July 12, 2010. This work is supported in part by Microsoft External Research
under the Computer Gaming Curriculum in Computer Science RFP, Awards
15871 and 16531.

K. Sung is with the Department of Computing and Software Systems, Univer-
sity of Washington Bothell, Bothell, WA 98011 USA (e-mail: ksung@uwb.edu).

C. Hillyard is with the Department of Interdisciplinary Arts and Sci-
ences, University of Washington Bothell, Bothell, WA 98011 USA (e-mail:
chillyard@uwb.edu).

R. L. Angotti is with the Department of Education, University of Washington
Bothell, Bothell, WA 98011 USA (e-mail: rrider@uwb.edu).

M. W. Panitz is with the Software Programming Department, Cascadia Com-
munity College, Bothell, WA 98011 USA (e-mail: mpanitz@cascadia.ctc.edu).

D. S. Goldstein is with the Teaching and Learning Center, University of Wash-
ington Bothell, Bothell, WA 98011 USA (e-mail: dgoldstein@uwb.edu).

J. Nordlinger is with Microsoft External Research, Redmond, WA 98052
USA (e-mail: johnnord@microsoft.com).

Digital Object Identifier 10.1109/TE.2010.2064315

I. INTRODUCTION

T EACHING computer science (CS) concepts based on pro-
gramming interactive graphical games motivates and en-

gages students while accomplishing desired student learning
outcomes [1], [2]. When properly integrated in introductory CS
courses (CS1/2), these approaches build excitement and enthu-
siasm for the discipline and attract a bright new generation of
students early in their academic careers (e.g., [3] and [4]). How-
ever, as a new approach, interested faculty need support to ex-
plore and experiment with teaching CS1/2 courses based on in-
teractive graphical games. When designing support for these
faculty members, there are two important areas of considera-
tion: faculty background and institutional oversight.

As discussed in the next section, most of the existing re-
sults in integrating computer gaming in CS courses involve ex-
ploratory projects by faculty members with expertise in com-
puter graphics and gaming. With few exceptions, these projects
are often student-centric, where the main goals of study are stu-
dent engagement and various student learning outcomes. Adapt-
ability and general applicability of the resulting materials are
usually not main concerns. For faculty members without com-
puter graphics or gaming backgrounds, it can be especially chal-
lenging to take advantage of these results.

When considering experimentation with CS1/2 courses, it is
important to be mindful of institutional oversight procedures.
Though becoming less controversial in recent years, many CS
educators continue to be unsure about integrating gaming in
formal educational settings (e.g., [5] and [6]). It is a challenge
for departmental committees to arrive at a consensus for signifi-
cant modifications to CS1/2 courses, especially if the modifica-
tions involve computer games.

The CS1/2 game-themed programming assignment (GTA)
modules are targeted specifically for adoption in existing intro-
ductory programming classes.1 These assignment modules are
self-contained so that faculty with no background in graphics/
gaming can select a subset of the modules to combine with ex-
isting assignments in current classes. The assignment modules
are limited in curriculum scope to facilitate selective experi-
mentation by individuals. Finally, the assignment modules in-
clude detailed implementation tutorials to assist interested fac-

1All modules and related materials are freely available from the GTA project
Web site: http://depts.washington.edu/cmmr/Research/XNA_Games.

0018-9359/$26.00 © 2010 IEEE

IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON EDUCATION

ulty in developing game-themed programming assignments. In
this way, as the GTA modules are being adopted, faculty develop
expertise and can collect and demonstrate results to assist the
decision-making process of institutional oversight committees.

This paper presents the results from the entire GTA project:
the design and implementation of the modules [7], the assess-
ment of the academic merits of the materials [8], [9], and finally
the encouraging results from the ongoing GTA workshops for
CS1/2 faculty and a yearlong study of classroom adoptions [10].
In the next section, the paper begins with a survey of related
work done in the area. It is important to note that there is nothing
magical about teaching with games. As highlighted by Bayliss
[11], faculty buy-in and experience are some of the most impor-
tant factors in realizing the potential student engagement of a
game-themed teaching approach. GTA modules were designed
to help faculty members develop expertise in the area. The ob-
jective of this pilot study was to verify that GTA modules could
be adopted with minimal extra effort by faculty members with
no background in graphics and games and with little change to
a course syllabus. The primary goal was to verify that the GTA
modules “do no harm” to student learning while faculty mem-
bers incrementally experiment with, and develop experience and
expertise in, game-themed context.

The GTA modules are simple “real-time interactive graphics
programs.” Strictly speaking, these programs do not qualify as
“games” because they have unknown entertainment value. How-
ever, in the current implementation, since the programs run on
both PCs and the XBox 360 gaming platform, the term “game-
theme” is used. In this paper, “console-based” or “console as-
signments” are used to refer to conventional programming as-
signments that are designed around keyboard and (ASCII) char-
acter-driven console monitors.

II. BACKGROUND

The GTA modules are designed for students to learn
abstract CS concepts by programming and/or examining
“real-world, game-like” applications. Relating abstract prin-
ciples to real-world experience has become increasingly
prominent in mathematics, science, and technology education.
For example, the “Calculus Reform” movement of the 1990s
[12] included both pedagogical changes and foci on real-world
problems, while the Carl Wieman Science Education Initiative
at the University of British Columbia, Vancouver, Canada, has
redesigned its freshmen introductory physics course to present
standard introductory materials in connection with real-world
situations [13]. In the CS education arena, the Media Computa-
tion of the Georgia Institute of Technology, Atlanta, [14] is an
excellent example where foundational programming concepts
are presented in the context of popular digital multimedia
applications. This Contextualized Computing Education [15]
is an ongoing effort, and “interactive games,” being one of the
most familiar application areas for students, is a context favored
by many CS educators.

There are many types of “games” that are suitable for teaching
CS subjects, including many noncomputer games [16] or games
that are based on dedicated devices (e.g., LEGO robots [17]).
The focus of this work is on interactive graphical computer

games. As discussed by Sung [18], recent work in this area can
be classified into game development [19], [20] where students
learn about building games, game programming [1] where stu-
dents study algorithms related to games, and game client [21],
[22] where students learn about CS concepts via games. Inte-
grating games into CS1/2 classes belongs to the game client
category because the objective for students in these classes is
to understand abstract programming concepts and not to learn
about building games.

Existing work on presenting CS1/2 concepts in the context
of computer games can be broadly categorized into three
approaches [18]: 1) little or no games programming [23], [24]
where students learn by playing custom games; 2) per-as-
signment games development [3], [7], [25] where individual
programming assignments are computer games designed
around technical topics being studied; 3) extensive game devel-
opment where faculty and students work with custom games
engines [26], [27], specialized programming language [28],
environments [29], or specific curricula [4], and so on. All
three approaches reported resounding success with drastically
increased enrollments and student success [3], [4], [28]. Based
on these results, it is well recognized that integrating computer
gaming into introductory computer science (CS1/2) courses
is a promising strategy for recruiting and retaining potential
students.

As discussed by Levy and Ben-Ari [30] and Ni [31], issues
that faculty consider when examining new and innovative
teaching materials for adoption include preparation time,
material contents, departmental oversight committee, and
compatibility of programming languages. Adopting/adapting
results from an extensive games development approach requires
a significant investment of time, which includes the need for
faculty to understand a game engine or significantly rework an
existing curriculum. This work-intensive adoption/adaptation is
not suitable for limited-scope investigation. Projects and results
from the per-assignment games development approach are typ-
ically from faculty members with expertise in graphics/games
and are “student-centric,” where the main goals of study are
student engagement and various learning outcomes. Most
instructors of CS1/2 courses do not have the time or expertise
to adapt and/or implement these projects in their courses.

The GTA modules are “student-centric” because they are as-
signments that allow students to practice CS concepts in context.
More importantly, these modules are “faculty-centric” because
they are the stepping stones for faculty to begin experimenting
with a promising new approach to teaching CS1/2 courses.

III. IMPLEMENTATION CONSIDERATIONS AND DETAILS

The above survey implies that in order to facilitate selective
adoption and limited curriculum scope (e.g., per-assignment)
experimentations by faculty members with no relevant back-
ground, the GTA modules must include all relevant materials
and be self-contained. The assignments must be simple interac-
tive graphical applications that assist students to practice rele-
vant programming concepts. At the same time, the GTA mod-
ules should be interchangeable with those from typical CS1/2
courses.

IE
EE

Pr
oo

f

SUNG et al.: GAME-THEMED PROGRAMMING ASSIGNMENT MODULES 3

A. Choice of Technical Topic Areas

It is important to differentiate technical topic areas (e.g.,
linked lists) from individual assignments. For example, one
can design a console-based assignment to manipulate a linked
list of numbers, or one can design a game-themed assignment
where the in-game logic is based on linked lists. With careful
design, both assignments would challenge students in imple-
menting the basic linked list functionality. In this way, the
two assignments can be technically equivalent, and yet one
is a traditional console-based assignment while the other is a
game-themed assignment.

The topics for GTA modules were chosen using a “reverse
adoption” strategy; the technical topics for the game-themed
assignments were adopted based on the console-based assign-
ments in existing CS1/2 courses [32]. There are several advan-
tages to this approach.

1) Existing CS1/2 courses are well established with many
successful alumni in advanced CS courses and in industry.
This success justifies the selected technical topic areas.

2) Assignments with identical technical topic areas imply
they can be interchanged. This offers a vehicle for the
subsequent phase of this project, where corresponding
assignments can be replaced and the effects studied.

3) The console-based assignments are included as part of the
assignment modules. In this way, each assignment module
addresses a well-defined technical topic area and has two
versions: a console-based version and a game-themed ver-
sion. The console-based version of the assignment is con-
ventional and does not necessarily include interactivity.
This version serves as an excellent and familiar reference
for faculty members unfamiliar with game programming.

Seven GTA modules have been implemented. In the subsequent
phase of this study, these modules replaced the corresponding
console assignments in existing CS1/2 courses. As will be
detailed in next section, the current seven GTA modules cover
topic areas that include integer division and the modulus op-
erator, random number generation, single-dimensional arrays
of object references, 2-D arrays, class hierarchy/inheritance,
linked lists and queues, and binary search trees. Section IV
describes the assessment procedure that ensures that the con-
sole-based and game-themed versions of the assignment are
technically equivalent.

B. Contents of an Assignment Module

Each assignment module is designed to be self-contained and
consists of materials for both the faculty and the students.

For the faculty, each module includes:
• a summary page describing the assignment, including pre-

requisite knowledge, and a list of expected student learning
outcomes;

• a sample pre- and post-test;
• a sample solution for both the console-based and game-

theme versions;
• a sample grading rubric for each version;
• a list of frequently asked questions;
• an implementation tutorial.

Fig. 1. Simple Pong game.

The implementation tutorial is a step-by-step guide that explains
the implementation of the game-themed assignment. This tuto-
rial is intended to help interested faculty better understand how
to create their own game-themed assignment using the library
that was developed to support this project.

For the students, each module includes:
• a description of the assignment;
• a skeleton starter project for both the console-based and

game-themed versions.
The game-themed starter project is a game-like application
where all necessary graphics and user interactions functionality
are provided. Students work with the starter project to fill in
the relevant core CS concepts to complete each assignment,
without having to know anything about computer graphics and
games.

C. Implementation Platform

There has been work done to integrate the concepts and tools
involved in building interactive graphical computer games into
introductory programming courses, including event handling
[33], graphical user interfaces (GUIs) [34], and graphical appli-
cation programming interfaces (APIs) [35]. To support faculty
without a computer graphics and games background, these
aspects of game programming were hidden. This provided a
platform that transparently integrated all of the above tools
so that faculty and students did not need to be aware of their
existence.

The C# programming language and the Microsoft XNA
framework [36] were chosen for this platform. This choice
was governed primarily by the fact that the C#, XNA, and
Microsoft’s Game Studio Express combination is the only
freely available solution that provides seamless integration of
the development environment, programming language, GUI
API, and graphics API.

D. Simple Game-Themed Example: A Pong Game

This section uses a simple “Pong game” example to illustrate
game-themed application development. In this application, the
Ball travels with a random velocity and bounces within the ap-
plication bounds, and the players control the vertical positions
of the LeftPaddle and RightPaddle to collide with and bounce
the Ball (see Fig. 1). Fig. 2 is the implementation for this simple

IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON EDUCATION

Fig. 2. Simple Pong game with XGCS1 library.

application based on XGCS1, a simple 2-D library designed
specifically to support GTA modules.

Label A in Fig. 2 explains that all XGCS1 applications must
be subclasses of the XNACS1Base class. It is this class that ab-
stracts the Model-View-Controller architecture into the Initial-
izeWorld() and UpdateWorld() two-function protocol. The Ini-
tializeWorld() function at Label B is called once at the begin-
ning of the application and, in this case, defines the Pong game
dimension and instantiates the ball and paddles defined at A1
and A2. The XGCS1 library automatically draws all geometries
and moves the Ball object in the application window. The Up-
dateWorld() function at Label C is called periodically at a rate
of 40 times a second. In this case, each update allows the user
to control the -positions of the paddles (at C1), bound the ball
within the application window (at C2), and bounce the ball off
each paddle (at C3). This simple game-themed example demon-
strates the following with the XGCS1 support.

• Interactive, graphical, game-themed application can be
simple and intuitive as in, for example, the parallel be-
tween the descriptive narration of the application and the
actual logic control code at label positions C1, C2, and C3.

• The implementation is independent of details of drawing
in computer graphics and complex object interactions in
game development as in, for example, the absence of pro-
gramming code to draw, manipulate the Ball movements,
and computing spatial collisions between geometric
objects.

The fundamental programming logic flow is prominent in the
implementation. In Fig. 2, for example, the statements at C2 and
C3 can be used as interesting examples for demonstrating dif-
ferent constructs of conditional statements. Since this applica-
tion is game-themed, it is straightforward for students to change
the conditional constructs (e.g., replace the switch statement

with an if–then–else) and then interactively examine the effects
of their changes. In this simple example, a GTA module can be
defined around conditional constructs and, for example, chal-
lenge students to support the implementation of barrier blocks
between the two paddles or determine winning conditions.

IV. RESULTS: THE GTA MODULES

The GTA modules are simple “interactive graphics applica-
tions” where the main goal of the assignments is to reinforce
technical concepts rather than for students to enjoy the fun-ness
of the game. This section describes the developed modules fo-
cusing on the technical topic areas covered by each of the con-
sole-based and game-themed versions of the assignments. All
materials presented are available online at [37].

Assignment One: Integer Arithmetic. This assignment is de-
signed to be the first CS1 assignment. Fig. 3 shows the game-
themed version of the assignment. In this case, the user can con-
trol the horizontal position of the chameleon-circle. The color
bands in the background are vertical rectangles with repeating
colors. Given this skeleton application, students must program
proper integer arithmetic to control the color of the chameleon-
circle, such that as it is moved horizontally, its color always re-
flects that of the rectangle underneath it. The console-based ver-
sion of the assignment is a simple character-based flashcard quiz
program.

Assignment Two: Random Number Generation and Opera-
tors. Fig. 4 shows the game-themed version, where the user
controls the hero insect catcher to net randomly generated in-
sects. Supplied with all the graphics and interaction function-
ality, students must implement random number generation and
maintain proper accumulated results, success ratio, etc. The con-
sole-based version of this assignment is on Monte Carlo integra-

IE
EE

Pr
oo

f

SUNG et al.: GAME-THEMED PROGRAMMING ASSIGNMENT MODULES 5

Fig. 3. Traveling chameleon.

Fig. 4. Insects Garden game.

tion, where students must approximate the area of a circle based
on randomly generated sample positions.

Assignment Three: Single-Dimension Arrays of Object Ref-
erences. Fig. 5 shows the game-themed version, a variation of
the classic Snakes and Ladders game. In this case, the hero can
pick up gold nuggets, and the user can dynamically create addi-
tional snakes and ladders at run-time. The game board is imple-
mented as a single-dimensional array of game cells, where each
game cell can either be empty (i.e., null) or contain a nugget/
snake/ladder. Students’ code must properly access and allocate
new game cells for this single-dimensional array to support the
above functionality. In the console-based version, students com-
plete a program that maintains a partially filled periodic table of
elements. The periodic table is implemented as a single-dimen-
sional array that contains either null or a reference to an ele-
ment object. The student is responsible for filling in code that
creates new elements, edits existing elements, or prints out ele-
ment objects.

Assignment Four: Two-Dimensional Arrays. Fig. 6 shows
the game-themed version, the classic two-person Othello game.
In this case, an empty two-dimensional array representing the
game board is provided. The students’ code must work with
this array to enforce game play logic where the players are
only allowed to place new game pieces in valid locations, and
the color of relevant game pieces on the game board must be
flipped after each successful play. This is the only assignment
where the game-themed and console-based assignments are

Fig. 5. Snakes and Ladders game.

Fig. 6. Othello game.

Fig. 7. Burst a Bubble game.

basically identical. The only difference in the two is that, in the
console-based version, ASCII characters draw the game board
on a character-display window.

Assignment Five: Class Hierarchy and Inheritance. Fig. 7
shows the game-themed version where the user launches rocks
and fireworks from the lower left corner to burst bubbles that
are randomly distributed in the application window. In this as-
signment, students must understand the given Projectile class
and create a subclass to implement a Firework class. The con-
sole-based version is based on the same idea, except that the
program is limited to turn-by-turn processing, and feedback to
the user is in the form of ASCII text. Both the console-based and

IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON EDUCATION

Fig. 8. Catch a Toy game.

game-themed versions of this assignment expose the students to
the challenges of adding a new class to an existing, nontrivial
code base.

Assignment Six: Linked Lists and Queues. Fig. 8 shows the
game-themed version in which the player can insert either
high-priority toys (animals) or low-priority toys (tools) into
the overall queue located at the top of the window. The game
continuously dequeues and drops the oldest toy from the pri-
ority queue. The user moves the box to catch the dropping toy.
Students must implement the overall queue class, typically by
maintaining items in one of two different (linked list-based)
queue objects, based on each toy’s priority. The game interfaces
with the overall queue class and draws all the items in a single
row so it appears that the toys are all in a single queue, regard-
less of student implementation. The console-based version of
this assignment is a text-based “help desk” application. The
user can enter high- or low-priority requests to be enqueued
to the front/back of the queue, respectively. Similar to the
game-themed version, the retrieval of requests is a simple
dequeue operation on the queues. The skeleton starter projects
for both versions contain all necessary I/O functionality:
graphics/GUI for the game-themed version, and character I/O
for the console-based version. In both cases, students only need
to implement the linked list queue and the priority queue.

Assignment Seven: Binary Search Trees (BSTs). Fig. 9 shows
the game-themed version where, in a side-scrolling game, the
alphabet hero must leap to collect flying alphabet targets and
process the walking alphabet search requests. The students’
code must implement a BST to store the collected target let-
ters and search the BST upon encountering walking requests.
The drawing of the BST in the upper left is supported via an
abstract base class in the form of a dynamically linked library
(DLL) where the implementation details are hidden. The con-
sole-based version of the assignment is a character-driven BST
implementation test program where outputs are printed based
on simple commands (e.g., add, find).

V. ASSESSING THE GTA MODULES

The GTA modules are designed for students to practice and
learn fundamental concepts in programming. It is important to
evaluate independently the academic content of the materials.
Additionally, it is important to verify the technical equivalence

Fig. 9. Alphabet Hunt game.

between the console-based and game-themed assignments in
each module.

A. Independent Reviewer

Prof. Ruth Anderson is the independent external reviewer.
She is an experienced instructor who has taught CS1/2 courses
many times at multiple institutions and in a variety of program-
ming languages, has won multiple teaching awards,2 and is ac-
tive in CS education research (e.g., [38] and [39]). In addi-
tion to these excellent credentials, Prof. Anderson is perfectly
suited for evaluating the materials because she has never taught
a graphics or gaming course and has limited experience with
GUI programming. Before this project, Prof. Anderson did not
know anyone on the project team.

B. Procedure

During the project, in-person or verbal communications
were avoided both to maintain impartiality and to simulate the
sort of investigations that might be made by curious faculty.
The assessment of the assignments was conducted across the
project Web site [37], where newly released materials were
downloaded, examined, and tested by Prof. Anderson. Feed-
back was provided via a custom assignment evaluation form.

The assignment evaluation form is designed to collect both
formative feedback and quantitative scores [40]. Each assign-
ment module is assessed in two areas:

1) Quality of the assignment: assesses the merit, the technical
equivalence between the console-based and game-themed
assignments, and the supporting materials (e.g., pre/post-
test);

2) Potential for adoption: assesses the factors independent of
the quality of assignments that may prevent adoption (e.g.,
programming language used).

C. Assessment Results

Based on the review feedback, the assignments have been
well received overall. It is believed that because the assignments
were adopted based on existing CS1/2 classes, technical merits
were never an issue. Prof. Anderson agrees that the assignments
are appropriate for typical CS1/2 courses. Assignments with low

2ACM Faculty Award, voted best teacher by Department of Computer Science
students, University of Virginia, Charlottesville, 2004.

IE
EE

Pr
oo

f

SUNG et al.: GAME-THEMED PROGRAMMING ASSIGNMENT MODULES 7

Fig. 10. Games by faculty with no prior background.

quality of assignment scores were revised and reassessed. This
process continued until the formative comments were positive
and the numeric scores were above 4 (out of 5).

As expected, all of the low scores were caused by game-
themed assignments. This was typically due to the following.

1) Differences in difficulty: Initial attempts at game-themed
assignments often resulted in highly difficult, complex, or
intimidating programs. Based on feedback received, as-
signments have been adjusted accordingly.

2) Inappropriate use of concept: Designing assignments
around negative results from game play is a bad idea. For
example, a linked list structure might be used for tracking
when the player has been unsuccessful at a given task.
In this case, in order to test the linked list, students must
deliberately be unsuccessful at playing the game. This can
take the fun out of the assignment.

3) Deficiency in support: The development team often over-
looked important details. For example, in the beginning, a
specialized hardware controller was the only way to control
a game. Based on the feedback, this problem was remedied
with a keyboard-based software object simulation.

Because Java is the language of choice at Prof. Anderson’s insti-
tution, consistently lower scores for potential for adoption were
received. The developers are fully aware that the language issue
must be addressed for wide adoption of results. With experience
building these assignments, and understanding the important at-
tributes of the library, the developers are investigating possibil-
ities for porting the results to other environments.

VI. GTA WORKSHOPS FOR FACULTY

Outside of classrooms, GTA-related workshops have been
offered for interested faculty members at regional [41] and na-
tional [42] conferences and at institutions internationally [43],
[44].3 These workshops guided faculty to develop game-themed
applications based on tutorials from the GTA modules. The
images in Fig. 10 are screen shots of a “Worm-like” and a
“Pizza Delivery” game resulting from the second day of a mul-
tiday version of the workshops [43], [44]. Although relatively
simple, these games were designed and developed in a matter
of hours by CS1/2 faculty members with no prior background
in graphics/games.

The workshops have received overwhelmingly positive feed-
back from the participants. For example, written feedback on

3Refer to http://faculty.washington.edu/ksung for workshop lecture notes.

“the appropriateness of material difficulty” included: “I found
the materials challenging but able to comprehend,” and “good
balance of complexity and new materials.” The written feed-
back on “the presented materials will help me develop game-
themed applications” included: “For sure!” and “In this envi-
ronment [GTA], YES!” The results and feedback from these
workshops showed that although they found the GTA materials
to be nontrivial, faculty participants with no prior expertise in
graphics/games were able to comprehend and begin developing
game-like applications within a matter of hours.

VII. CLASSROOM ASSESSMENT TOOLS AND PROCEDURES

As catalysts for faculty development, it is important to verify
that the GTA modules “do no harm” to student learning. It is es-
sential for faculty members to have the reassurance of consistent
student learning outcomes when experimenting with this poten-
tially powerful approach. Instruments for understanding the ef-
fectiveness of new teaching materials include analyzing quan-
titative exam scores, qualitative evaluation of projects, student
opinion polls, and success rates [45], [46]. These instruments
are employed to assess student learning outcomes and percep-
tions when the GTA modules are adopted in existing classes.

Based on the positive feedback and promising outcomes from
the GTA workshops, in-classroom adoption of GTA modules
began. Because the modules are designed as catalysts for fac-
ulty development, faculty members needed to have the reas-
surance of consistent student learning outcomes when exper-
imenting this potentially powerful approach to teaching. This
project utilized exam scores, qualitative evaluation of projects,
a student attitude survey, and success rates [45], [46] to assess
student learning outcomes and perceptions when the GTA mod-
ules were adopted in existing classes.

For long-term effects, new teaching materials are tracked
over multiple semesters of the same course via course enroll-
ments [47] or continual student successes [3]. In the case of
GTA modules, one goal was to demonstrate the feasibility of
simple replacement of selective assignments in existing classes.
The same classes were followed over different semesters
where different GTA modules were adopted. The assessment
procedure was designed around existing console-based CS1/2
classes.4 These were well-established courses producing many
successful alumni in advanced CS courses and in the industry
[32].

4The involved instructor has no background in graphics/games.

IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON EDUCATION

TABLE I
[Table cannot run in middle of text. Provide

caption for table.]

This study was designed around the adoption of six of
the GTA modules: four for CS1, and two for CS2. The
game-themed versions of these assignments were integrated
into existing CS1/2 courses over three academic quarters. Two
existing CS1/2 courses were offered without modification and
served as control groups. In the experimental classes, two of the
four existing console assignments were replaced with GTAs.
Each GTA course consisted of a mixture of two existing console
assignments and two GTA modules, in combinations that varied
from class to class. This verified that a faculty member could
select and replace some or all existing assignments with GTAs.
To minimize variation between students in the classes, the
modifications to the courses were not advertised, so students
did not know they were registering for a class that would use
the GTAs.

VIII. CLASSROOM ADOPTION RESULTS AND ANALYSIS

Throughout the experiment, the instructor avoided any extra
effort when adopting the GTA modules. For example, no lec-
ture time was spent covering graphics or game aspects of the
GTAs. In all cases, the exact same assessment instruments were
administered under similar conditions for both GTA and con-
sole courses.

1) Success Rates: The success rates of these CS1/2 classes
have fluctuated between 65% to 85% historically. With this per-
spective in mind, analysis began by examining the overall suc-
cess rates of all the classes. The percentage passing in each
class is given in Table I. The percentages of GTA classes were
higher than the console classes. Caution should be used when
examining these figures since they are well within the historic
ranges. The analysis includes all of the students in the partici-
pating classes. Because of the small number of female students,
to ensure strictest anonymity, the results were not disaggregated
by gender.

2) Assignment Scores: Fig. 11 plots the average scores for
all of the six assignments.5 The left bar above each assignment
displays the results from GTA, while the right is from the
console assignment. The scores from GTA were consistently
better than the corresponding console version. From the written
feedback (detailed later), it was clear that students spent more
time playing with the GTA assignments, which resulted in their
having a smaller number of errors in their final submissions.
In addition, there were interesting observations of trend in the
score differences. At the very beginning of CS1 when the as-
signment was trivial (CS1-A, simple arithmetic), the difference
between GTA and console was small. By the end of CS1, the

5Note that each assignment has GTA and console versions. For example, the
GTA version of CS1-A was offered during Spring, while the corresponding con-
sole version was offered in the control course, Winter.

Fig. 11. Average assignment results.

Fig. 12. Self-reported time spent.

assignments became more challenging (CS1-D, 2-D array),
and the difference in scores also became more prominent
(89% versus 58%). As is widely recognized [48], interactive
graphical feedback encourages experimentation, and this trend
in assignment score differences reflected students’ further en-
gagement with the assignment. However, this increase in score
differences became less prominent by CS2 assignments (88%
versus 81% for CS2E, and 82% versus 77% for CS2F). As
observed by Guzdial [15], CS2 students are more experienced
and often prefer assignments without elaborate setups. Results
verified that as students became more proficient, the advantage
of interactive graphical feedback diminished.

3) Self-Reported Time Spent on Assignments: Fig. 12 shows
students’ self-reported time spent on the assignments. It was in-
teresting to note when examining the time spent on the four CS1
assignments that students reported more than twice the amount
of time spent on CS1-B, -C, and -D console assignments. From
the average scores and success rates, it was clear that students
were learning comparable material. These large discrepancies
seemed to suggest game-themed assignments were much more
efficient learning tools. While it may be true that visual feed-
back is an important learning tool, it was not found that it alone
could accomplish these results. From the written feedback (e.g.,
“counting only the time I actually ‘worked’ on and not ‘played’
with it”), it appeared that some students discounted the time they

IE
EE

Pr
oo

f

SUNG et al.: GAME-THEMED PROGRAMMING ASSIGNMENT MODULES 9

Fig. 13. Post-assignment surveys: (Left) CS1 and (Right) CS2.

Fig. 14. Pre- and post-course surveys: (Left) CS1 and (Right) CS2.

spent playing with the sample solution and starter project. Re-
searchers believe the correct numbers for GTA should be closer
to those from console assignments. In the case of CS2, the large
time difference between the first GTA (CS2-E) reflected the fact
that the assignment was more complicated and demanded time
for familiarization. The similar amount of time spent for the
second CS2 assignment (CS2-F) showed that students were able
to take advantage of their initial time investment.

4) Per-Assignment Survey: After students handed in their as-
signments and before they received their grades, the exact same
questions were asked of all students: to assess the clarity and
difficulty of the assignment and the amount they had learned
from the assignment, if completing the assignment made them
feel satisfied, and if the assignment was interesting.

Fig. 13 plots the average of all results from GTA and console
courses for all the CS1 (left) and CS2 (right) courses. Results on
the right of Fig. 13 showed CS2 students found the console as-
signments easier to understand, slightly more challenging, and,
contrary to intuition, they found that working on console as-
signments was more satisfying and that the console assignments
were more interesting.

Fortunately, written feedback from students helped explain
these observations. In both CS1 and CS2 GTA courses, students
complained that they had to spend extra time understanding the
given GTA starter project. However, in all cases, once they un-
derstood the given system, students reflected that completing the
assignment was not “as complicated as it first appears.” In CS2
assignments, many students expressed frustration at not being
able to improve on the assignments (e.g., “it was interesting to
have an end result you can play with, I wish I was able to im-
prove the boring game,” or “I did learn a lot about BST [Binary
Search Tree] doing this assignment. However the ‘game’ parts
were useless as we don’t actually get to do gaming.”).

The GTA modules were designed to be expertise-neutral to
prevent superfluous graphics user interaction programming and
inappropriate gaming contents (such as violence) [5], [6]. De-
velopers made a conscious decision to restrict students’ access
to such functionality [7]. This feedback showed that restricting
students’ access in such a way was successful. However, the
feedback also implied that the modules had literally taken the
“fun” out of game programming. The delicate balance between
allowing creativity and discouraging excessive graphics pro-
gramming is currently being investigated. For example, the fun
element in the developed games may be incorporated if scoring
and rewards are included for every right concept/code.

5) Pre- and Post-Course Survey: Course survey forms were
designed to elicit students’ background, self-perception, inter-
ests, and general attitudes toward the CS discipline. Students
completed these forms during first day of class (precourse) and
before the final exams (post-course). The tables of Fig. 14 show
the averages of all students from the GTA and Console classes
separately: The table on the left shows CS1, and the table on the
right shows CS2 classes.6

It is interesting that replacement of some assignments in the
featured CS1/2 classes was almost transparent. Because stu-
dent enrollment in particular sections of the class cannot be con-
trolled, some differences in items across classes at the onset are
expected. However, to assess the impact of the curriculum, the
change in attitudes from before and after each class section was
measured and analyzed for statistically significant changes over
time. Except for one case, the measured change from pre- to
post- in the items in tables of Fig. 14 was not statistically signif-
icant. This exception was the “Well prepared” question for CS1
students (left-hand table of Fig. 14). In this case, when students
were asked after the class was over, “In hindsight, how well did

6Students had the option to not participate in these surveys.

IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON EDUCATION

you think you were prepared for the class?” there was a signif-
icant improvement in self-confidence for GTA students. These
data, in combination with the better performance results from
GTA (e.g., CS1-C and -D in Fig. 11) and the little difference
in attitude seen from the left of Fig. 13, implied an interesting
and potentially important observation. CS1 students performed
better because the interactive graphical application supported
experimentation and visualization. Since the applications were
not really fun or flashy, they did not find the assignments es-
pecially interesting. However, after the class, they did become
more confident about their abilities. Together, these data sug-
gested that targeted “uninteresting” interactive graphical assign-
ments can be a good tool for teaching CS1 students.

6) Feedback From Faculty: After grading each assignment,
the instructor filled out a feedback form detailing his efforts spe-
cific to the assignments (e.g., lecture time, answer questions,
grading time) and impressions of student learning. As men-
tioned, the instructor did not have prior background in com-
puter graphics/games and purposely avoided allocating specific
lecture time and extra help for GTAs. As a direct result, his
feedback showed no significant difference in efforts between
the GTA and console assignments. However, he reported stu-
dents’ verbal comments on GTAs to be that they were more
work and more difficult.7 In the end, because the GTAs were
“dropped” into the classes without any dedicated lecture time,
the assignments had minimal effect on the class as a whole. It
is encouraging that as the instructor became more comfortable
with GTAs, he did begin experimenting with graphics/game pro-
gramming and developed a simple card-matching game based
on the provided tutorials. Currently, the instructor is experi-
menting with incorporating game-themed instructional modules
in his CS1 classes [49].

IX. CONCLUSION

The resulting games and survey feedback from GTA work-
shop participants indicated that it is straightforward for faculty
without graphics/games background to understand and begin
working with GTA modules and to develop their own game-like
applications. This classroom case study demonstrated that it
is possible for a CS faculty member with no background in
graphics/games to integrate GTA modules in an existing course
without adverse effects on student learning. These results
are exciting because they mean that interested faculty can
confidently begin limited curriculum scope experimentation
with selected GTA modules in their own courses. To further
support these faculty members, limited curriculum scope,
self-contained “game-themed instructional” (GTI) modules
for teaching individual programming concepts (e.g., linked
lists or arrays) have been developed [49]. Interested faculty
members will be able to experiment with selected GTA and
GTI modules in their existing classes, become comfortable with
the game-themed teaching approach, consult the tutorials pro-
vided with GTA and GTI modules, and begin to develop their
own game-themed materials. Ultimately, the success of any
new approach to teaching hinges on the instructor’s expertise
and enthusiasm. The true potential for engaging and exciting

7The instructor did not have access to any survey information during the
classes.

students can only be realized when the instructor becomes
proficient in, feels ownership of, and develops his or her own
game-themed instructional materials based on the needs and
strengths of their students.

Currently, a multilingual and API-independent platform to
support GTA/GTI modules in multiple programming languages
and APIs is being designed. In addition, results of this work are
being disseminated with colleagues from community colleges
and high schools, and workshops at national conferences (e.g.,
[50]) and at international institutions are continuing to be of-
fered (e.g., [51]).

ACKNOWLEDGMENT

The authors would like to thank all BIT 142 and 143 stu-
dents from Cascadia Community College for working with the
chaotic schedules and draft versions of the assignments, and
L. Dirks at Microsoft Research for his ongoing support of this
work. The reviewers’ excellent attention to details and com-
ments have greatly improved the quality of this paper. All opin-
ions, findings, conclusions, and recommendations in this work
are those of the authors and do not necessarily reflect the views
of Microsoft.

REFERENCES

[1] E. Sweedyk, M. deLaet, M. C. Slattery, and J. Kuffner, “Computer
games and CS education: Why and how,” in Proc. SIGCSE, 2005, pp.
256–257.

[2] U. Wolz, T. Barnes, I. Parberry, and M. Wick, “Digital gaming as a
vehicle for learning,” in Proc. SIGCSE, 2006, pp. 394–395.

[3] J. D. Bayliss, “The effects of games in CS1-3,” J. Game Dev., vol. 2,

no. 2, 2007[Pages?].
[4] S. Leutenegger and J. Edgington, “A games first approach to teaching

introductory programming,” in Proc. SIGCSE, 2007, pp. 115–118.
[5] H. M. Walker, “Do computer games have a role in the computing class-

room?,” SIGCSE Bull., vol. 35, no. 4, pp. 18–20, 2003.
[6] S. Haller, B. Ladd, S. Leutenegger, J. Nordlinger, J. Paul, H. Walker,

and C. Zander, “Games: Good/evil,” in Proc. SIGCSE, 2008, pp.
219–220.

[7] K. Sung, M. Panitz, S. Wallace, R. Anderson, and J. Nordlinger,
“Game-themed programming assignments: The faculty perspective,”
in Proc. SIGCSE, 2008, pp. 300–304.

[8] K. Sung, R. Rosenberg, M. Panitz, and R. Anderson, “Assessing game-
themed programming assignments for cs1/2 courses,” in Proc. GDCSE,
2008, pp. 51–55.

[9] K. Sung, M. Panitz, R. Reed-Rosenberg, and R. Anderson, “CS1/2
game-themed programming assignments for faculty,” J. Game Dev.,
vol. 3, pp. 27–47, Mar. 2008.

[10] C. Hillyard, R. Angotti, M. Panitz, K. Sung, J. Nordlinger, and D. Gold-
stein, “Game-themed programming assignments for faculty: A case
study,” in Proc. SIGCSE, 2010, pp. 270–274.

[11] J. D. Bayliss, “Using games in introductory courses: Tips from the
trenches,” in Proc. SIGCSE, 2009, pp. 337–341.

[12] D. A. Smith and L. C. Moore, Calculus: Modeling and Applications,
2nd ed. Boston, MA: Houghton Mifflin, 2007 [Online]. Available:
http://www.math.duke.edu/education/calculustext

[13] “The Carl Wieman Science Education Initiative (CWSEI),” Univ.
British Columbia, Vancouver, Canada, 2008 [Online]. Available:
http://www.cwsei.ubc.ca

[14] M. Guzdial and B. Ericson, Introduction to Computing and Program-
ming With Java, A Multimedia Approach. Englewood Cliffs, NJ:
Prentice-Hall, 2007.

[15] M. Guzdial, “Contextualized computing education,” Invited presenta-
tion, Microsoft Research Faculty Summit, Jul. 2008 [Online]. Avail-
able: http://home.cc.gatech.edu/guzdial/169

[16] P. Drake, Data Structures and Algorithms in Java. Upper Saddle
River, NJ: Prentice-Hall, 2006.

[17] M. McNally, M. Goldweber, B. Fagin, and F. Klassner, “Do LEGO
Mindstorms robots have a future in CS education?,” in Proc. SIGCSE,
2006, pp. 61–62.

IE
EE

Pr
oo

f

SUNG et al.: GAME-THEMED PROGRAMMING ASSIGNMENT MODULES 11

[18] K. Sung, “Computer games and traditional computer science courses,”
Commun. ACM, vol. 52, no. 12, pp. 74–78, Dec. 2009.

[19] D. Frost, “Ucigame, a Java library for games,” in Proc. SIGCSE, 2008,
pp. 310–314.

[20] J. Linhoff and A. Settle, “Motivating and evaluating game development
capstone projects,” in Proc. FDG, 2009, pp. 121–128.

[21] K. Sung, P. Shirley, and R. Reed-Rosenberg, “Experiencing aspects of
games programming in an introductory computer graphics class,” in
Proc. SIGCSE, 2007, pp. 249–253.

[22] S. M. Pulimood and U. Wolz, “Problem solving in community: A nec-
essary shift in cs pedagogy,” in Proc. SIGCSE, 2008, pp. 210–214.

[23] P. Haden, “The incredible rainbow spitting chicken: Teaching tradi-
tional programming skills through games programming,” in Proc. ACE,
2006, pp. 81–89.

[24] J. D. Bayliss and D. I. Schwartz, “Instructional design as game design,”
in Proc. FDG, 2009, pp. 10–17.

[25] A. Luxton-Reilly and P. Denny, “A simple framework for interactive
games in cs1,” in Proc. SIGCSE, 2009, pp. 216–220.

[26] K. Bierre, P. Ventura, A. Phelps, and C. Egert, “Motivating OOP by
blowing things up: An exercise in cooperation and competition in an
introductory Java programming course,” in Proc. SIGCSE, 2006, pp.
354–358.

[27] M. C. Lewis and B. Massingill, “Graphical game development in cs2:
A flexible infrastructure for a semester long project,” in Proc. SIGCSE,
2006, pp. 505–509.

[28] W. Dann, S. Cooper, and R. Pausch, Learning to Program with Alice.
Upper Saddle River, NJ: Prentice-Hall, 2006.

[29] M. Külling and P. Henriksen, “Game programming in introductory
courses with direct state manipulation,” in Proc. ITiCSE, 2005, pp.
59–63.

[30] R. B.-B. Levy and M. Ben-Ari, “We work so hard and they don’t use
it: Acceptance of software tools by teachers,” SIGCSE Bull., vol. 39,
no. 3, pp. 246–250, 2007.

[31] L. Ni, “What makes CS teachers change?: Factors influencing CS
teachers’ adoption of curriculum innovations,” in Proc. SIGCSE, 2009,
pp. 544–548.

[32] “BIT142/143: Intermediate programming and data structure,” Cas-
cadia Community College, Bothell, WA, 2008 [Online]. Available:
http://faculty.cascadia.edu/mpanitz/courses/2008Fa/BIT142/ [On-
line]. Available: http://faculty.cascadia.edu/mpanitz/courses/2008Sp/
BIT143/

[33] H. B. Christensen and M. E. Caspersen, “Frameworks in CS1: A dif-
ferent way of introducing event-driven programming,” in Proc. ITiCSE,
2002, pp. 75–79.

[34] V. K. Proulx, J. Raab, and R. Rasala, “Objects from the begin-
ning—With GUIs,” in Proc. ITiCSE, 2002, pp. 65–69.

[35] S. Matzko and T. A. Davis, “Teaching CS1 with graphics and C,” in
Proc. ITICSE, 2006, pp. 168–172.

[36] “XNA Game Studio,” Microsoft, Inc., 2007 [Online]. Available: http://
msdn2.microsoft.com/en-us/directx/Aa937794.aspx

[37] “Game-themed introductory programming project home page,”
Univ. Washington, Bothell, 2010 [Online]. Available: http://
depts.washington.edu/cmmr/Research/XNA_Games

[38] R. Anderson, R. Anderson, K. M. Davis, N. Linnell, C. Prince, and V.
Razmov, “Supporting active learning and example based instruction
with classroom technology,” SIGCSE Bull., vol. 39, no. 1, pp. 69–73,
2007.

[39] T. B. Horton, R. E. Anderson, and C. W. Milner, “Work in
progress—Reexamining closed laboratories in computer science,” in
Proc. 34th Annu. ASEE/IEEE Frontiers Educ. Conf., Oct. 2004, vol.
2, pp. F3C-15–F3C-16.

[40] J. Frechtling and L. Sharp, “User-friendly handbook for mixed method
evaluations,” Division of Research, Evaluation and Communication,
National Science Foundation: Directorate for Education and Human
Resources, Arlington, VA, 1997.

[41] M. Panitz and K. Sung, “Incrementally incorporating video games
into instruction using XNA game-themed assignments,” in Proc.

CCSC-NW, Oct. 2008[Pages?].
[42] K. Sung, “XNA game-themed applications for teaching introductory

programming courses,” in Proc. 4th Int. Conf. Found. Digital Games,

Orlando, FL, Apr. 2009[Pages?].
[43] K. Sung, “XNA game-themed applications for teaching introduc-

tory programming courses,” in Proc. Invited 3-Day Workshop,
Microsoft Mexico Digital Arts Univ., Guadalajara, Mexico, Feb.

2009[Pages?].

[44] K. Sung, “Developing game-themed applications for teaching intro-
ductory programming courses,” in Proc. Invited 2-Day Workshop, Bei-

jing Univ. Technol., Beijing, China, Jul. 2009[Pages?].
[45] J. Cromack and W. Savenye, “Learning about learning in com-

putational science and science, technology, engineering and
mathematics (STEM) education,” 2007 [Online]. Available:
http://research.microsoft.com/ur/us/AssessmentToolkit/

[46] M. Eagle and T. Barnes, “Experimental evaluation of an educational
game for improved learning in introductory computing,” in Proc.
SIGCSE, 2009, pp. 321–325.

[47] I. Parberry, T. Roden, and M. B. Kazemzadeh, “Experience with an
industry-driven capstone course on game programming: Extended ab-
stract,” in Proc. SIGCSE, 2005, pp. 91–95.

[48] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in intro-
ductory computer science,” in Proc. SIGCSE, 2003, pp. 191–195.

[49] R. Angotti, C. Hillyard, M. Panitz, K. Sung, and K. Marino,
“Game-themed instructional modules: A video case study,” in Proc.
FDG, 2010, pp. 9–16.

[50] M. Panitz, K. Sung, and J. Nordlinger, “Develop game-themed exam-
ples for CS1/2 without background in graphics or games,” in Proc.

SIGCSE, Mar. 2010[Pages?].
[51] K. Sung, “Developing game-themed applications with XNA,” in Proc.

Invited 3-Day Workshop, Serious Games Winter School 2010, Feb.
2010[Pages?].

Kelvin Sung received the B.E.E. degree from the University of Wisconsin-
Madison in 1986, and the M.S. and Ph.D. degrees in computer science from
the University of Illinois at Urbana-Champaign in 1990 and 1992, respectively.

He was an Assistant Professor with the School of Computing, National Uni-
versity of Singapore, Singapore, and a Software Architect with Alias—Wave-

front (now part of Autodesk)[City?], where he played a key role in de-
signing and implementing the first version of the Maya Renderer. Currently, he
is a faculty member with the Computing and Software Systems Department,
University of Washington Bothell, Bothell. His research interests include high-
quality image synthesis, video game development, serious games, and computer
science education.

Prof. Sung is a Member of the Association for Computing Machinery (ACM).

Cinnamon Hillyard received the Ph.D. degree in mathematics from Utah State

University, Logan.[Yr degree received?]
She is an Assistant Professor with the Interdisciplinary Arts and Sciences Pro-

gram, University of Washington Bothell, Bothell. She also completed a post-
doctorate position in mathematics with the University of Arizona, Tucson. Her
scholarship focuses on undergraduate mathematics and science education, es-
pecially in the assessment of learning outcomes.

Prof. Hillyard currently holds the position of Past-Chair of the Special In-
terest Group of the Mathematical Association of America on Quantitative Lit-
eracy (SIGMAA-QL) and is the Secretary/Treasurer for the National Numeracy
Network (NNN).

Robin Lynn Angotti received the B.S. degree (1988) in mathematics and

the M.A. degree[Subject area?] from East Carolina University,
Greenville, NC, in 1988 and 1990, respectively, and the Ph.D. degree in
mathematics education from North Carolina State University, Raleigh, in 2004.

She taught secondary mathematics at D. H. Conley High School, Greenville,
NC, and remedial mathematics at North Carolina State University. She was the
Assistant Director of the Center for Science, Mathematics and Technology Edu-
cation and an Assistant Professor with East Carolina University. In 2007, she be-
came an Assistant Professor with the University of Washington Bothell, Bothell.
She has published in Mathematics Teacher, The NCTM Yearbook on Data and
Chance, The AMTE Monograph, and the Statistics Education Research Journal.
Her fields of interest are mathematics, statistics, and technology education.

Dr. Angotti is a Member of the North American Chapter of the Psychology
of Mathematics Education, the National Council of Teachers of Mathematics,
and the Association of Mathematics Teacher Educators.

Michael W. Panitz received the B.A. and M.Eng. degrees in computer science
from Cornell University, Ithaca, NY, in 1998 and 1999, respectively.

IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON EDUCATION

He has worked with Microsoft in the .Net Common Language Runtime group
and is currently a Senior Founding Faculty Member with Cascadia Community
College, Bothell, WA. He is currently interested in using innovative technologies
and techniques to teach lower division computer programming and computer
science, and he has been interested in reliable distributed systems.

Mr. Panitz is a Member of the Association for Computing Machinery (ACM).

David S. Goldstein received the B.A. degree in English in 1984, the M.A.
degree in communication in 1985, the M.A. degree in American civilization

in 1988, and the Ph.D. degree in comparative culture in 1997.[From
which universities?]

He edited career-guidance books for engineers with Professional Publica-
tions, Inc., Belmont, CA, and was a Lecturer with the University of California,
Irvine; Shoreline Community College, Shoreline, WA; and the University of
Washington Bothell, Bothell, where he is now a Senior Lecturer and the Di-
rector of the Teaching and Learning Center. He has presented internationally on
the scholarship of teaching and learning and co-edited, with Audrey B. Thacker,
Complicating Constructions: Race, Ethnicity, and Hybridity in American Texts

(Univ. Washington Press, 2007). He serves on the Editorial Board of Ethnic
Studies and peer reviews for Ethnic Studies Review and Multi-Ethnic Literature
of the United States.

Dr. Goldstein is a founding member of the Research Committee of the Asso-
ciation for Authentic, Experiential and Evidence-Based Learning.

John Nordlinger is currently pursuing the Master’s degree in film production
at the University of Southern California, Los Angeles.

He joined Microsoft Research, Redmond, WA, in 2001, where he collaborated
with academic institutions in the northeast United States and India. After con-
vincing Microsoft Research to open a research lab in Bangalore, India, he then
focused on mitigating the decline in CS enrollments. Along with participating
on various panels, he coauthored two papers at SIGCSE 2008: one on teaching
with XNA GSE, and one on teaching CS with socially relevant themes. He also
co-edited the book World of Warcraft and Philosophy (Open Court, 2009) and
contributed to the tome Ethics and Game Design: Teaching Values Through Play
(Inf. Sci. Reference, 2010), by David Gibson and Karen Schrier. His first film,
The Allegory of the Game, has been selected for three film festivals.

