
Game-Themed Programming Assignments For Faculty:
A Case Study∗

Cinnamon Hillyard
U. of Washington, Bothell

chillyard@uwb.edu

Robin Angotti
U. of Washington, Bothell

rrider@uwb.edu

Michael Panitz
Cascadia Comm. College
mpanitz@cascadia.edu

Kelvin Sung
U. of Washington, Bothell

ksung@uwb.edu

John Nordlinger
Microsoft Research

johnnord@microsoft.com

David Goldstein
U. of Washington, Bothell

dgoldstein@uwb.edu

ABSTRACT
Despite the proven success of using computer video games
as a context for teaching introductory programming (CS1/2)
courses, barriers including the lack of adoptable materials,
required background expertise (in graphics/games), and in-
stitutional acceptance still prevent interested faculty mem-
bers from experimenting with this approach. The Game-
Themed programming Assignment (GTA) modules are de-
signed specifically for these faculty members such that they
can selectively pick and choose a subset to experiment with
and gradually adopt the materials in their own classes. The
design and academic merits of the GTA modules have been
verified and presented previously [24]. This paper begins by
describing results from GTA workshops for CS1/2 faculty
and goes on to detail the results of our year-long project in
adopting the GTA modules in classes. In this case, we have
demonstrated that introductory programming concepts can
be examined, practiced, and learned based on GTA mod-
ules when neither the faculty nor the students involved have
backgrounds in graphics or games. More importantly, our
results showed that it is straightforward to blend the GTA
modules into existing classes with minimum alterations. The
GTA modules are excellent catalysts enabling faculty to be-
gin exploring teaching with game-themed materials.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education – computer science education

General Terms
Design, Experimentation

Keywords
CS1/2, Assessment, Games, Assignments, Adaptation
∗
This work is supported in part by Microsoft External Research under the Com-

puter Gaming Curriculum in Computer Science RFP, Award Numbers 15871 and

16531.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

1. INTRODUCTION
Proper integration of interactive graphical games into in-
troductory programming (CS1/2) courses can motivate and
engage students and build excitement and enthusiasm for
the Computer Science (CS) discipline as well as accomplish
desired student learning outcomes (e.g., [19, 3]). Most of
the existing research in this area is based on pioneering
exploratory projects by faculty members with expertise in
computer graphics and games [20]. With few exceptions,
these projects are “student-centric” where the main goals
of study are student engagement and various learning out-
comes. Adaptability and generality of the resulting materi-
als are not primary concerns. For general faculty members
teaching CS1/2 courses, few of which have computer graph-
ics or games backgrounds, it can be challenging to take ad-
vantage of these results.

One way to support faculty members to explore teaching
CS1/2 courses in the context of interactive graphical games
is by building and freely disseminating game-themed edu-
cational modules that are limited in curriculum scope and
self-contained. Such modules would allow faculty members
to experiment and gain experience with game-themed mate-
rials in a well-defined sub-topic area as part of their normal
classes and to demonstrate results to assist the decision-
making process of institutional oversight committees [24].
The CS1/2 Game-Themed Assignment (GTA) modules are
limited in curriculum scope because each module is a pro-
gramming assignment designed around a core computer sci-
ence (CS) concept (e.g., binary search tree). In addition,
each GTA module is completely independent and is a self-
contained unit with extensive supporting materials includ-
ing a detailed implementation tutorial.1 In this way, faculty
members can choose to experiment with any subset of the
GTA modules to combine with their own assignments in
their classes.

In the first of our two-phase project we have successfully
designed, developed, and verified the academic merits of
the GTA modules [24, 23].2 This paper describes the en-

1Other materials include: a description of the assignment, pre-
requisite knowledge, and expected student learning outcomes;
sample pre- and post-tests; a technically equivalent traditional
console-based assignment; sample solutions for both the console-
based and game-themed versions; sample grading rubrics; fre-
quently asked questions; and sample student starter projects.
2All GTA modules are freely available at:
http://depts.washington.edu/cmmr/Research/XNA Games/ .

couraging outcomes from our on-going GTA workshops for
CS1/2 faculty and then presents the results from our year-
long adoption of the GTA modules. It is important to note
that there is nothing magical about teaching with games. As
highlighted by Bayliss [4], faculty buy-in and experience are
some of the most important factors in realizing the student
engagement potentials of game-themed teaching approach.
GTA modules are designed as catalysts for development of
faculty expertise in the area. For this reason, in our study
we do not anticipate evidence of overwhelming student en-
gagement. Instead, the goals of our study are to verify that
GTA modules can be adopted with minimal effort by a fac-
ulty member with no background in computer graphics or
games, and with minimal disturbance to an existing course.
We want to verify that the GTA modules “do no harm”
while faculty members experiment with and develop experi-
ence in game-themed contexts.

The GTA modules are simple “real-time interactive graph-
ics programs.” Strictly speaking, these programs do not
qualify as “games” because they have unknown entertain-
ment value. However, in our current implementation, since
the programs run on both PCs and the XBox 360 gaming
platform, we use the term, “game-themed.”

2. BACKGROUND
Existing work on presenting CS1/2 concepts in the con-
text of computer games can be broadly categorized into
three approaches [23]. First, little or no games program-
ming (e.g, [11]) where students learn by playing custom
games. Second, per-assignment games development (e.g., [3,
24, 17]) where individual programming assignments are com-
puter games designed around technical topics being stud-
ied. Third, extensive games development where faculty and
students work with custom games engines (e.g., [5, 16]),
specialized programming language (e.g., [8]), environments
(e.g., [13]), or specific curricula (e.g., [14]), etc.

As discussed by Levy and Ben-Ari [15] and Ni [18], issues
that faculty consider when examining new and innovative
teaching materials for adoption include: preparation time,
material contents, departmental oversight committee, and
compatibility of programming languages. Adopting/adapting
results from an extensive games development approach re-
quires a significant investment of time which includes faculty
understanding a game engine or significantly reworking ex-
isting curriculum. This work intensive adoption/adaptation
is not suitable for limited scope investigation, especially for
faculty members with no backgrounds in computer graph-
ics and games. Projects and results from the per-assignment
games development approach are typically from faculty mem-
bers with expertise in graphics/games and are“student-centric”
where the main goals of study are student engagement and
various learning outcomes. Most instructors of CS1/2 courses
do not have the time or expertise to adapt and/or implement
these projects in their courses.

The GTA modules are limited curriculum scope, self-contained
CS1/2 assignments, that require no existing knowledge of
games or graphics from the faculty and require minimum
changes to existing classes in order to be adopted. These
modules are “student-centric” because they allow students
to practice CS concepts in context. More importantly, these
modules are “faculty-centric” because they are the stepping
stones for faculty to begin experimenting with a promising
new approach to teaching CS1/2 courses.

Figure 1: Games by Faculty with no prior backgrounds.

3. GTA WORKSHOPS FOR FACULTY
Outside of classrooms, GTA-related workshops had been of-
fered for interested faculty members at regional and national
(e.g., [21]) conferences, and at institutions internationally
(e.g., [22]).3 These workshops guided faculty to develop
game-themed applications based on tutorials from the GTA
modules. Images in Figure 1 are screen shots of a “Worm-
like” and a “Pizza Delivery” games resulting from the sec-
ond day of multi-day version of the workshops (e.g., [22]).
Although relatively simple, these games were designed and
developed in a matter of hours by CS1/2 faculty members
with no prior background in graphics/games.

The workshops have received overwhelmingly positive feed-
back from the participants. For example, written feedback
on “the appropriateness of material difficulty,” included: “I
found the materials challenging but able to comprehend,” and
“good balance of complexity and new materials.” While the
written feedback on“the presented materials will help me de-
velop game-themed applications,” included: “For sure!” and
“In this environment [GTA], YES!.” The results and feed-
back from these workshops showed that, though they found
the GTA materials to be non-trivial, faculty participants
with no prior expertise in graphics/games were able to com-
prehend and begin developing game-like applications within
a matter of hours.

4. ASSESSMENT TOOLS AND PROCEDURES
Based on the positive feedback and promising outcomes from
the GTA workshops, we began in-classroom adoption of
GTA modules. Because the modules are designed as cat-
alysts for faculty development, faculty members needed to
have the reassurance of consistent student learning outcomes
when experimenting this potentially powerful approach to
teaching. This project utilized exam scores, qualitative eval-
uation of projects, student attitude survey, and success rates [7,
9] to assess student learning outcomes and perceptions when
the GTA modules were adopted in existing classes.

For long-term effects, new teaching materials are tracked
over multiple semesters of the same course via course enroll-
ments (e.g., [19]) or continual student successes (e.g., [3]).
In the case of GTA modules, one goal was to demonstrate
the feasibility of simple replacement of selective assignments
in existing classes. The same classes were followed over dif-
ferent semesters where different GTA modules were adopted.
The assessment procedure was designed around existing console-
based4CS1/2 classes.5 These were well established courses
producing many successful alumni in advanced CS courses

3Refer to http://faculty.washington.edu/ksung for workshop lec-
ture notes.
4Console-based” or “console assignments” refer to programming
assignments based on keyboard and character driven console mon-
itors. A“console course”is a course based on console assignments.
5The involved instructor has no background in graphics/games.

0 .00

10 .00

20 .00

30 .00

40 .00

50 .00

60 .00

70 .00

80 .00

90 .00

100 .00

CS1- A CS1- B CS1- C CS1- D* CS2- E CS2- F

ConsoleGTA

* P < 0.002

Figure 2: Average Assignment Results.

and in the industry [1].
Each GTA module included a non-game console assign-

ment and a game-themed assignment. To facilitate the as-
sessment procedure, in phase one of the GTA project the
console versions of the assignment was designed to be tech-
nically equivalent to the ones in existing CS1/2 courses6.
In this way, the GTA replaced corresponding assignments
without incurring any changes to the courses.

Of the six GTA modules developed thus far, four were tar-
geted for CS1, and the other two were designed for CS2. The
game-themed versions of these assignments were integrated
into existing CS1/2 courses over three academic quarters.
Two existing CS1/2 courses were offered without modifi-
cation and served as control groups. In the experimental
classes, two of the four existing console assignments were re-
placed with GTAs. Each GTA course consisted of a mixture
of two existing console and two GTA modules in combina-
tions which varied from class to class. This verified that a
faculty member could select and replace some or all exist-
ing assignments with GTAs. To minimize variation between
students in the classes, the modifications to the courses were
not advertised, thus students did not know they were regis-
tering for a class using the GTAs.

5. RESULTS AND ANALYSIS
Throughout the experiment the instructor avoided any ex-
tra effort when adopting the GTA modules. For example, no
lecture time was spent covering graphics or games aspects
of the GTAs. In all cases, the exact same assessment instru-
ments were administered under similar conditions for both
GTA and console courses.

Success Rates
The success rates of these CS1/2 classes have fluctuated be-
tween 65% to 85% historically. In addition, because we do
not offer CS2 in the Winter quarter, the Spring-CS2 class
always has a higher enrollment than the Fall offering. With
this historic perspective in mind, we began our analysis by
examining the overall success rates of all the classes:

6The technical equivalency of the game-themed and console ver-
sions of the assignments has been verified by an independent fac-
ulty evaluator [24]. In the rest of this paper, GTA refers to the
actual game-themed assignment, while GTA module refers to the
entire collection of materials. Each GTA module contains a game-
themed assignment (GTA) and a technically equivalent console
version of the assignment.

Pass Fail Drop
CS1-F(G) 13 (72%) 5 (28%) 3
CS1-S(G) 13 (76%) 4 (24%) 2

CS1-W(C) 13 (65%) 7 (35%) 4

CS2-S(G) 18 (86%) 3 (14%) 2
CS2-F(C) 11 (79%) 3 (21%) 2

In the above table, the left column indicated the class (CS1
or 2), academic quarter (e.g., F for Fall) and types of class
(“G” and “C” for GTA and console). The next columns
show number and percentage that passed, failed, or dropped.
The first three rows were results from the CS1 classes and
the bottom two were from the CS2 classes. If examined
closely, the Pass averages of GTA classes (72% and 76%
for CS1 and 86% for CS2) were higher than the console
classes (65% for CS1 and 79% for CS2). Caution should be
used when examining these figures since they are well within
the historic ranges. Because of the small number of female
students, to ensure strictest anonymity, we did not analyze
the results from the these students separately. The above
analysis includes all of the students in our classes.

Assignment Scores
Figure 2 plots the average scores on assignments for all of
the six assignments.7 The left bar above each assignment
displays the results from GTA while the right is from the
console assignment. The scores from GTA were consistently
better than the corresponding console version. From the
written feedback (to be detailed later), it was clear that stu-
dents spent more time playing with the GTA assignments
and thus resulted in smaller number of errors in their final
submissions. In addition, we observed an interesting trend
in the score differences. At the very beginning of CS1 when
the assignment was trivial (CS1-A, simple arithmetic), the
difference between GTA and console were small. By the end
of CS1, the assignments became more challenging (CS1-D,
2D array), and the difference in scores also became more
prominent (89% vs. 58%). As widely recognized (e.g., [6]),
interactive graphical feedback encourages experimentation
and this trend in assignment score differences reflected stu-
dents’ further engagement with the assignment. However,
this increase in score differences became less prominent by
CS2 assignments (88% vs. 81% for CS2E, and 82% vs. 77%
for CS2F). As observed by Guzdial [10], CS2 students are
more experienced and often prefer assignments without elab-
orate setups. Our results verified this observation that as
students became more proficient, the advantage of interac-
tive graphical feedback diminished.

Self-Reported Time Spent on Assignments
Figure 3 shows students self-reported time spent on the as-
signments. When we looked at the time spent on the four
CS1 assignments, it was interesting to note that students
reported more than twice the amount of time spent on CS1-
B, C and D console assignments. From the average scores
and success rates, we know students were learning compara-
ble materials. These large discrepancies seemed to suggest
game-themed assignments were much more efficient learning
tools. While it may be true that visual feedback is an im-
portant learning tool, we do not believe that alone it could

7Note that each assignment has a GTA and console versions. For
example, the GTA version of CS1-A was offered during Spring
while the corresponding console version was offered in the control
course, Winter.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

CS1-A CS1-B CS1-C CS1-D CS2-E CS2-F

H
o

u
rs

ConsoleGame-Themed

Figure 3: Self Reported Time Spent.

accomplish such impressive results. From the written feed-
back (e.g., “counting only the time I actually “worked” on
and not “played” with it”), it appeared that some students
discounted the time they spent playing with the sample solu-
tion and starter project. We believe the correct numbers for
GTA should be closer to those from console assignments.
In the case of CS2, the large time difference between the
first GTA (CS2-E) reflected the fact that the assignment
was more complicated and demanded time for familiariza-
tion. The similar amount of time spent for the second CS2
assignment (CS2-F) showed that students were able to take
advantage of their initial time investment.

Per-Assignment Survey
After students handed in their assignments and before they
received their grades, the exact same questions were asked to
all students: clarity and difficulty of the assignment, amount
they have learned from the assignment, if completing the
assignment made them feel satisfied, and if the assignment
was interesting.

Figures 4 and 5 represent the average of all results from
GTA and console courses for all the CS1 and CS2 courses,
respectively. Results in Figure 5 showed CS2 students found
the console assignments easier to understand, slightly more
challenging, and contrary to intuition, they found working
on console assignments more satisfying and that the console
assignments were more interesting.

Fortunately, written feedback from students helped ex-
plain the above observations. In both CS1 and CS2 GTA
courses, students complained that they had to spend extra
time understanding the given GTA starter project. How-
ever, in all cases, once they understood the given system,
students reflected that completing the assignment was not
“as complicated as it first appears.” In CS2 assignments,
many students expressed frustration at not able to improve
on the assignments (e.g.,“it was interesting to have an end
result you can play with, I wish I was able to improve the
boring game,” or “I did learn a lot about BST [Binary Search
Tree] doing this assignment. However the ‘game’ parts were
useless as we don’t actually get to do gaming.”).

The GTA modules were designed to be expertise neutral to
prevent superfluous graphics user interaction programming
and inappropriate gaming contents (e.g., violence) [25, 12].
We have made a conscious decision to restrict students’ ac-
cess to such functionality [24]. This feedback showed that
we were successful, however, the feedbacks also told us that
we had literally taken “the fun” out of games programming.
We are currently investigating the delicate balance between
allowing creativity and discouraging excessive graphics pro-
gramming.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Clearity Difficulty Learning Satisfying Interesting

ConsoleGTA

Figure 4: CS1 Post Assignment Survey.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Clearity Difficulty Learning Satisfying Interesting

ConsoleGTA

Figure 5: CS2 Post Assignment Survey.

Pre- and Post-Course Survey
We designed course survey forms to understand students’
background, self-perception, interests, and general attitudes
towards the CS discipline. Students completed these forms
during first day of class (pre-course) and before the final
exams (post-course). Tables 1 and 2 show the averages of
all students from the GTA and Console classes separately.8

It is interesting that replacement of some assignments in
our CS1/2 classes was almost transparent. The only excep-
tion was the “Well prepared” question for CS1 students. In
this case, after the class when asked about “in hindsight,
how well do you think you are prepared for the class,” there
was an obvious spike in self-confidence for GTA students.
These data, in combination with the better performance re-
sults from GTA (e.g., CS1-C and D in Figure 2) and the
indifference attitude from Figure 4, implied an interesting
and potentially important observation. CS1 students per-
formed better because the interactive graphical application
supported experimentation and visualization. Since the ap-
plications were not really fun or flashy they did not find the
assignments especially interesting. However, after the class,
they did become more confident about their abilities. To-
gether these data suggested that targeted“uninteresting” in-
teractive graphical assignments can be a good tool for teach-
ing CS1 students.

Feedback From Faculty
After grading each assignment the instructor filled out a
feedback form detailing his efforts specific to the assignments
(e.g., lecture time, answer questions, grading time), and im-
pressions on student learning. As mentioned, the instructor
did not have prior background in computer graphics/games
and purposely avoided specific lecture time and extra help
for GTAs. As a direct result, his feedback showed no sig-
nificant difference in efforts between the GTA and console
assignments. However, he reported students’ verbal com-

8Students had the option to not participate in these surveys.

Like CS Career Coding Prepared Difficulty Scope

Pre 4.50 4.64 3.91 2.90 2.61 3.41

Post 4.50 4.68 3.68 3.86 3.41 3.77

Change 0.00 0.05 -0.23 0.96* 0.80 0.36

Pre 4.17 4.73 3.65 3.04 3.09 3.41

Post 4.40 4.70 3.20 3.10 3.80 3.50

Change 0.23 -0.03 -0.45 0.06 0.71 0.09

GTA

(N=22)

Console

(N=10)

*P < 0.02

Table 1: CS1 Pre- Post- Course Survey.

Like CS Career Coding Prepared Difficulty Scope

Pre 4.64 4.82 3.86 4.27 2.64 3.59

Post 4.61 4.94 3.89 4.56 3.06 4.11

Change -0.03 0.13 0.03 0.28 0.42 0.52

Pre 4.54 4.38 3.46 3.54 3.08 3.69

Post 4.44 4.78 3.67 4.11 3.44 3.78

Change -0.09 0.39 0.21 0.57 0.37 0.09

Console

(N=9)

GTA

(N=18)

Table 2: CS2 Pre- Post- Course Survey.

ments on GTAs to be more work and more difficult9. In the
end, because the GTAs were “dropped” into the classes with-
out any dedicated lecture time, the assignments had mini-
mal effect on the class as a whole. It is encouraging that
as the instructor became more comfortable with GTAs, he
did begin experimenting with graphics/game programming
and developed a simple card matching game based on the
provided tutorials. Currently, the instructor is experiment-
ing with incorporating game-themed instructional modules
in his CS1 classes [2].

6. CONCLUSION
The resulting games and survey feedback from GTA work-
shop participants indicated that it is straightforward for fac-
ulty without graphics/games background to understand and
begin working with GTA modules. Our classroom case study
demonstrated that it is possible for a CS faculty member
with no background in graphics/games to integrate GTA
modules in an existing course without adverse effects on
student learning. These results are exciting because inter-
ested faculty can confidently begin limited curriculum scope
experimentation with selected GTA modules in their own
courses. To further support these faculty members, we have
developed limited curriculum scope, self-contained “Game-
Themed Instructional” (GTI) modules for teaching individ-
ual programming concepts (e.g., linked-lists, or arrays) [2].
We envision interested faculty members experimenting with
selected GTA and GTI modules in their existing classes, be-
coming comfortable with game-themed teaching approach,
consulting the tutorials provided with GTA and GTI mod-
ules, and beginning to develop their own game-themed mate-
rials. We believe the true potential of engaging and exciting
students can only be realized when the instructor becomes
proficient in and feels ownership of the instructional mate-
rials [4].

Currently, we are designing a multilingual and API-independent
platform to support GTA/GTI modules in multiple pro-
gramming languages and APIs. In addition, we are working
on sharing our results with colleagues from community col-
leges and high schools and continuing to offer workshops for
interested faculty members.

7. REFERENCES
[1] BIT142/143: Intermediate programming and data

structure, 2007. Cascadia Community College.

9The instructor did not have access to any survey information
during the classes.

[2] R. Angotti, C. Hillyard, K. Marino, M. Panitz, K. Sung,
and J. Nordlinger. Game-themed instructional modules: A
video case study. November 2009. Work in progress.

[3] J. D. Bayliss. The effects of games in cs1-3. Journal of
Game Development, 2(2), 2007.

[4] J. D. Bayliss. Using games in introductory courses: tips
from the trenches. In SIGCSE ’09, PP. 337–341, 2009.

[5] K. Bierre, P. Ventura, A. Phelps, and C. Egert. Motivating
oop by blowing things up: an exercise in cooperation and
competition in an introductory java programming course.
In SIGCSE ’06, PP. 354–358, 2006.

[6] S. Cooper, W. Dann, and R. Pausch. Teaching objects-first
in introductory computer science. In SIGCSE ’03, 2003.

[7] J. Cromack and W. Savenye. Learning about learning in
STEM education, 2007.
http://research.microsoft.com/ur/us/AssessmentToolkit/.

[8] W. Dann, S. Cooper, and R. Pausch. Learning to Program
with Alice. Prentice Hall, Upper Saddle River, NJ, 2006.

[9] M. Eagle and T. Barnes. Experimental evaluation of an
educational game for improved learning in introductory
computing. In SIGCSE ’09, PP. 321–325, 2009.

[10] M. Guzdial. Contextulized computing education. In Invited
Presentation, Microsoft Research Faculty Summit,
http://home.cc.gatech.edu/guzdial/169, July 2008.

[11] P. Haden. The incredible rainbow spitting chicken: teaching
traditional programming skills through games
programming. In ACE ’06, PP. 81–89, 2006.

[12] S. Haller, B. Ladd, S. Leutenegger, J. Nordlinger, J. Paul,
H. Walker, and C. Zander. Games: good/evil. In SIGCSE
’08, PP. 219–220, 2008.

[13] M. Külling and P. Henriksen. Game programming in
introductory courses with direct state manipulation. In
ITiCSE ’05, PP. 59–63, 2005.

[14] S. Leutenegger and J. Edgington. A games first approach to
teaching introductory programming. In SIGCSE ’07, PP.
115–118, 2007.

[15] R. B.-B. Levy and M. Ben-Ari. We work so hard and they
don’t use it: acceptance of software tools by teachers.
SIGCSE Bull., 39(3):246–250, 2007.

[16] M. C. Lewis and B. Massingill. Graphical game
development in cs2: a flexible infrastructure for a semester
long project. In SIGCSE ’06, PP. 505–509, 2006.

[17] A. Luxton-Reilly and P. Denny. A simple framework for
interactive games in cs1. In SIGCSE ’09, PP. 216–220,
2009.

[18] L. Ni. What makes cs teachers change?: factors influencing
cs teachers’ adoption of curriculum innovations. In SIGCSE
’09, PP. 544–548, 2009.

[19] I. Parberry, T. Roden, and M. B. Kazemzadeh. Experience
with an industry-driven capstone course on game
programming. In SIGCSE ’05, PP. 91–95, 2005.

[20] K. Sung. Computer games and traditional computer science
courses. Communications of the ACM, 52(12):74–78,
December 2009.

[21] K. Sung. Xna game-themed applications for teaching
introductory programming courses. Invited Pre-Conference
Workshop, FDG, April 2009.

[22] K. Sung. Xna game-themed applications for teaching
introductory programming courses. Invited 3-Day
Workshop, Digital Arts University, Mexico, February 2009.

[23] K. Sung, M. Panitz, R. Reed-Rosenberg, and R. Anderson.
Cs1/2 game-themed programming assignments for faculty.
Journal of Game Development, 3:27–47, March 2008.

[24] K. Sung, M. Panitz, S. Wallace, R. Anderson, and
J. Nordlinger. Game-themed programming assignments:
the faculty perspective. In SIGCSE ’08, PP. 300–304, 2008.

[25] H. M. Walker. Do computer games have a role in the
computing classroom? SIGCSE Bull., 35(4):18–20, 2003.

