
Game-Themed Instructional Modules: A Video Case Study∗

Robin Angotti
U. of Washington, Bothell

rrider@uwb.edu

Cinnamon Hillyard
U. of Washington, Bothell

chillyard@uwb.edu

Michael Panitz
Cascadia Community College

mpanitz@cascadia.edu

Kelvin Sung
U. of Washington, Bothell

ksung@uwb.edu

Keri Marino
U. of Washington, Bothell

kerij@myuw.net

ABSTRACT
Integration of video games into introductory programming
(CS1/2) courses motivates and engages students while con-
tributing to their learning outcomes [17, 1, 2]. However, it
is challenging for general faculty members teaching CS1/2
courses, few of whom have computer graphics or games back-
grounds, to integrate video games. Game-Themed Instruc-
tional (GTI) Modules are designed specifically to encourage
general faculty members to teach CS1/2 concepts using in-
teractive, graphical, game-like examples. Six independent
and self-contained GTI modules were created as a collec-
tion of interactive graphical example programs designed to
demonstrate one single programming concept (e.g., condi-
tional statements). This paper discusses the design parame-
ters and implementation of the GTI modules and describes
a case study of selectively adopting some of the GTI mod-
ules in an existing CS1 class. The results of the study
demonstrate that it is possible for a faculty member with
no games or graphics background to blend GTI modules
into an existing CS1 class with minimum alterations to es-
tablished course materials. The GTI modules are excellent
catalysts, enabling faculty to begin exploring teaching with
game-themed materials and helping students to be more en-
gaged in CS1 topics.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education – computer science education

General Terms
Design, Experimentation

∗This work is supported in part by Microsoft External Research
under the Computer Gaming Curriculum in Computer Science
RFP, Award Numbers 15871 and 16531.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FDG’10, June 19-21, 2010, Monterey, CA, USA.
Copyright 2010 ACM 978-1-60558-937-4/10/06 ...$10.00.

Keywords
CS1/2, Assessment, Games, Courseware, Adoption

1. INTRODUCTION
Despite the proven success of using computer video games as
a context for teaching introductory programming (CS1/2)
courses (e.g., [17, 1, 2]), significant barriers prevent inter-
ested faculty members from experimenting with this ap-
proach. These barriers include the lack of: adoptable mate-
rials, required background expertise in graphics and games,
and institutional acceptance [13, 16, 10]. One approach to
overcoming these obstacles is to support interested faculty
members in gradually developing expertise by allowing them
to experiment and gain experience with game-themed mate-
rials in well-defined topic areas as part of their usual classes.
In this way, as these faculty members develop their exper-
tise they can also collect and demonstrate results on student
engagement and achievement to assist the decision making
process of institutional oversight committees [25].

The Game-Themed Introductory Programming project1

design follows the“Web 2.0”model of providing simple tools
for users to build their own content. In addition to pro-
viding easily adoptable Game-Themed Instructional (GTI)2

modules, a framework that supports GTI implementation,
XNACS1Lib, is also provided as an integral tool for adopters
to design and build their own materials. To allow for ubiq-
uitous adoption, principle design goals of the GTI modules
are that they are “simple,” “self-contained,”“limited in cur-

riculum scope,” and serve as example courseware using the
XNACS1Lib library. Simplicity ensures easy comprehension
while the independence and restricted scope allows inter-
ested faculty members to pick and choose any subset of the
materials to pace integration into their existing classes.

GTI modules are simple “real-time interactive graphics
programs.” Strictly speaking, these programs do not qualify
as “games”because they have unknown entertainment value.
However, in the current implementation the term “game-
themed” is used, because the programs run on both PC and
the XBox 360 gaming platforms.

This paper focuses on the design and implementation of
GTI modules. Further, it gives results from a pilot case

1http://depts.washington.edu/cmmr/Research/XNA Games.
2A GTI module is a collection of game-themed examples with
accompanying notes designed to support the teaching of one pro-
gramming concept (e.g., conditional statements).

9

study in which an instructor selectively adopted GTI mod-
ules. It is important to note that there is nothing magical
about teaching with games. As highlighted by Bayliss [3],
faculty buy-in and experience are some of the most impor-
tant factors in realizing the potential student engagement of
a game-themed teaching approach. GTI modules were de-
signed to support faculty members developing expertise in
the area. The objective of this pilot study was to verify that
GTI modules could be adopted with minimal extra efforts by
faculty members with no background in graphics and games,
and with little change to a course syllabus. The primary
goal was to verify that the GTI modules “do no harm” to
student learning while faculty members incrementally exper-
iment with and develop experience in game-themed context.
This pilot project focused on the effectiveness of the GTI
modules and did not require the adopting faculty to develop
their own game-themed materials.

2. BACKGROUND
When evaluating new and innovative teaching materials for
adoption, faculty must attend to factors such as prepara-
tion time, material contents, institutional oversight proce-
dures, and infrastructure support [13, 16]. Additional adop-
tion concerns include finding interested faculty to develop
expertise in computer graphics and games, developing the
content of games to avoid alienation of under-represented
groups [26, 8], gathering evidence to facilitate departmental
curriculum committee decision making processes, and ensur-
ing existing systems are compatible with and capable of sup-
porting graphics-intensive programs (e.g., programming lan-
guage comparability, or sufficiently advanced graphics hard-
ware).

Existing projects for teaching CS1/2 courses using the
context of video games permit students to play with cus-
tom games (e.g, [6]), to develop individual games as assign-
ments (e.g., [2, 15]), or to work with custom game environ-
ments throughout the entire course (e.g., [14, 4]). These
projects were developed by faculty with expertise in graph-
ics and games. The main goals of these projects were stu-
dent engagement and achievement of student learning out-
comes [22]. Adaptability and generalizability of the result-
ing materials were not main concerns. Utilizing these exist-
ing materials requires a significant investment of time (e.g.,
understanding a game engine [14]), or new programming
environment (e.g., [12]), or significant reworking of current
curriculum (e.g., [4]). These factors prevent limited scope
investigation of the materials by time-constrained faculty
members who have little or no background in graphics or
games.

Success of any new approach to teaching hinges on the
instructor’s expertise and enthusiasm. This project aims to
provide simple tools and materials to make it easy for in-
terested faculty to develop game programming skills while
they experiment with the materials in their classes, teach-
ing the core concepts that are already part of their CS1/2
curriculum. The rest of the paper focuses on the GTI mod-
ules, XNACS1Lib framework, and a mixed-method study of
students using modules in an existing class.

3. GTI DESIGN AND IMPLEMENTATION
To meet our goal of making GTI modules easily adoptable,
each module is a complete teaching aid and can be used ei-

// Label A: Variables: the ball and paddles
private XNACS1Circle PongBall; // The pong ball
private XNACS1Rectangle LeftPaddle, RightPaddle; // Left & right paddles

// Label B: Initialization of the game
protected override void InitializeWorld() {

LeftPaddle = new XNACS1Rectangle(...); // Create and Initialize
RightPaddle = new XNACS1Rectangle(...); // the left/right paddles

PongBall = new XNACS1Circle(...); // Create the pong ball
PongBall.Velocity = Random(...); // Set Pong ball velocity

}

// Label C: Periodic updates of the game state
protected override void UpdateWorld() {

// Let user move left/right paddles in the y-direction
LeftPaddle.CenterY += ThumbSticks.Left.Y; // Left paddle up/down
RightPaddle.CenterY += ThumbSticks.Right.Y; // Right paddle up/down

//Label D: Conditional Statement
if (LeftPaddle.Collided(PongBall))

PongBall.VelocityX *= -1; // Left paddle/ball collided
}

Listing 1: Simple Pong game with XNACS1Lib

ther as a student self-study guide or as a laboratory exercise
manual. This completeness means that modules can serve
both as classroom courseware and as templates for faculty
seeking to develop game-themed teaching materials.

3.1 Design Considerations
Instructional goals of the GTI modules for CS1/2 program-
ming concepts are satisfied by a collection of strategically
constructed examples, each with detailed step-by-step guides
and relevant followup exercises. To support student self-
study, each module begins with simple examples and builds
gradually in complexity. Faculty pick and choose any combi-
nation of GTI modules with each self-contained module cov-
ering a well defined concept (e.g., conditional statements).
Though language-specific implementation details are impor-
tant, GTI modules reflect that the foundational program-
ming concepts are programming language neutral (e.g., “if”
statement syntax and usages are similar across Java/C++/C#).

These considerations lead to GTI modules organized ac-
cording to chapters and examples from a language inde-
pendent textbook [5]. Each GTI module corresponds to a
chapter in the textbook, with the concepts demonstrated by
game-themed examples. Following each example is a set of
follow-up questions which challenge students to refine the
game in order to demonstrate their understanding of the
concepts. Examples within a module build on each other and
increase in difficulty. Examples from different GTI modules
are completely independent, ensuring self-contained units.

Whenever possible and appropriate, examples in a module
build to a variation of the classical Pong game. This is
a popular game with simple rules and lends itself well for
demonstrating introductory programming concepts.

3.2 The XNACS1Lib Framework
In order to support fast prototyping, the C# programming
language and the Microsoft XNA framework were chosen
as the implementation platform. This platform is a public
and freely available solution which provides seamless inte-
gration of the development environment, programming lan-
guage, GUI API, and graphics API on PC, mobile device
(Zune), and console (XBox 360) platforms.3

Listing 1 shows the source code to a simple Pong-game
based on the XNACS1Lib framework. Under Label A, the
Pong ball and the two paddles are defined as the circle and
rectangle predefined data types. These objects behave intu-

itively (e.g., automatically drawn, and change position ac-
cording to velocities). The InitializeWorld() function un-

3The main reservation with a Java based solution was the
prospect of working with many independent APIs.

10

PongBall

RightPaddleLeftPaddle

Figure 1: Simple Pong-Game of Listing 1.

der Label B is invoked once before the game begins. In
this case, memory is allocated and initialized. The Update-

World() function under Label C is invoked continuously at
25-millisecond intervals during the game. In this case, with
the ball traveling according to its velocity, a Pong game only
requires updating the paddles positions (based on the user’s
ThumbStick), and detecting ball–paddle collisions (under
Label D). Figure 1 shows the simple Pong-game resulting
from the code of Listing 1.

The XNACS1Lib defines a small framework that supports
the development of simple game-like applications. It is im-
portant to note that XNACS1Lib is suitable for building sim-

ple game-like applications. With careful design, such simple
applications can be suitable courseware materials for teach-
ing CS1/2 courses. However, the framework is not suitable
for building general purpose games.

Figure 2: Games by Faculty with no prior backgrounds.

3.2.1 XNACS1Lib Workshops For Faculty
Outside of classrooms, XNACS1Lib related faculty devel-
opment workshops have been offered for interested faculty
members at regional and national conferences (e.g., [23]) and
at institutions internationally (e.g., [24]).4 These workshops
guided faculty to develop game-themed applications based
on the XNACS1Lib. Images in Figure 2 are screen shots of
a “Worm-like” and a “Pizza Delivery” games resulting from
the second day of multi-day workshop (e.g., [24]). These
games were designed and developed in a matter of hours by
CS1/2 faculty members with no prior background in graph-
ics/games.

The workshops have received overwhelmingly positive feed-
back from the participants. For example, written feedback
on “the appropriateness of material difficulty,” included:

• “I found the materials challenging but able to compre-

hend,” and

4Refer to http://faculty.washington.edu/ksung for workshop lec-
ture notes.

BarrierBlocksPongBallLeftPaddle

if (LeftPaddle.Collide(PongBall))
 PongBall.VelocityX *= -1

RightPaddle

if (BlockA.Collide(PongBall))
 ...
else if (BlockB.Collide(PongBall))
 ...

Figure 3: Conditional Statements: Pong Soccer.

• “good balance of complexity and new materials.”

While the written feedback on “the presented materials will

help me develop game-themed applications,” included:

• “For sure!” and

• “In this environment, YES!”

The results and feedback from these workshops showed that,
though they found the materials to be non-trivial, faculty
participants with no prior expertise in graphics/games com-
prehend and develop game-like applications within a matter
of hours.

3.3 GTI Modules

CS1 Topic # Examples Final Game
IO & Variables 14 N/A
Functions 10 N/A
Conditionals 12 Pong Variation
Loops 21 Laser Zap
Arrays 10 Pong Variation
Classes & Objects 12 Pong Variation

As shown in the above table, six GTI modules were devel-
oped with a total of 79 examples based on topics covered
in typical CS1 classes. The first two modules include trivial
examples as it is difficult to build such simple examples into
complete games. The Loop module exploits the repetition
construct in defining paths of laser beams, while the remain-
ing three examples build to different variations of the Pong
game.

As discussed, each example is accompanied by detailed
notes. The following uses the Conditionals (or Decision
Structure) GTI module to explain the organization of game-
themed examples. The structure of the accompanied lecture
notes is illustrated in Figure 4, which outlines the notes for
the Case Statement example.

3.3.1 Examples from the Conditional GTI Module
The first example in the Conditionals module contains all
the source code in Listing 1 except the very last conditional
statement under Label D. This first example serves as a tem-
plate for introducing subsequent conditional concepts. The
goal of this module is to build up to a Pong-like game, and in
this example the pong ball will travel rightward and disap-
pear out-of-bound. The second example introduces simple
floating point comparisons by replacing the following state-
ment under Label D:

if (PongBall.CenterX > 100f) // Pong ball out of bound
PongBall.CenterX = 0; // Reset to the left bound

11

4th Module (Decision structures)
9th Example (Case statement)

Notes of one GTI Example

Introduction and background

Semantic structure
of the example

Explanation of source code

Further Exercise

Figure 4: Notes for the Case Statement.

The third example is identical to Listing 1 where the left
paddle is capable of bouncing the pong ball. The fourth
example introduces the if-then-else construct by replacing
the following statements under Label D:

if (LeftPaddle.Collided(PongBall))
PongBall.VelocityX *= -1; // Left paddle/ball collided

else if (RightPaddle.Collided(PongBall))
PongBall.VelocityX *= -1; // Right paddle/ball collided

The subsequent examples are equally simple: introducing
nested if statements for collision with BarrierBlocks in Fig-
ure 3, logical comparison operators for detecting winning
conditions, and case statements for alternates to nested if

statements. Because all subsequent examples are related
and introduce new concepts by modifying a similar region
of the code (and by changing the game behavior accord-
ingly), once students become familiarized with the initial
template example they will find subsequent examples easier
to understand. Figure 3 shows the Pong game from the last
example of the Conditionals module.

3.3.2 Notes from One GTI Example
As illustrated in Figure 4, detailed notes accompany each
game-themed example. In this case, a portion of the notes
for the case statement example is shown. In general, notes
are divided into four main sections. The first section intro-
duces the example and includes a list of prerequisite knowl-
edge as well as associated reference links in case students

need review. The second section offers a detailed expla-
nation of concepts illustrated in the example. The third
section offers a detailed explanation of how the concept is
implemented in source code, frequently explaining how the
code works step-by-step. The fourth section lists exercises
for students to complete reinforcing the intended concepts.
Notes for the 79 examples are extensive, and amount to 500+
web-pages.5

4. EXPERIMENT DESIGN
As indicated, use of Game-Themed instruction can increase
student engagement in CS1/2 courses. However, that fact
alone is not enough to facilitate faculty buy-in to the use of
the GTI modules. The purpose of this study was to demon-
strate that the modules can be selectively adopted in ex-
isting classes with no adverse effects on student learning.
From the position of an interested faculty with limited ex-
pertise in graphics and games, it is speculated that initial
classroom adoption will be of relatively small scale. One
reasonable scenario is for such faculty members to experi-
ment with a limited number of game-themed examples in
the classroom and recommend the modules as an out-of-
classroom self-study guide. With these goals and considera-
tions, this study focused on initial examples from three dif-
ferent GTI modules as in-classroom exercises. Researchers
wanted to understand if instructors and students, without
graphics and games background, could read and follow the
game-themed examples with little or no assistance.

In order to investigate the effectiveness and ease of adop-
tion, a mixed-method research plan was employed to study
how students interact with GTI modules. This included
collecting data from student surveys and evaluating video-
taped classroom human-computer interactions of students
working with GTI modules. It was hoped that this anal-
ysis would give insight into students’ use of GTI modules
when given little faculty support. In addition, this analy-
sis facilitates future research on using GTI as a lab exercise
workbook or self-guided tutorials outside of typical class-
room instruction. Video recording was employed to capture
both what students were doing with GTI modules as well as
student-student and student-teacher interactions. This type
of video-based observation had the unique properties of al-
lowing for capturing and reflecting on a complex classroom
setting and giving a more complete picture of how students
were using the modules [7, 9].

4.1 Experiment Setup
The instructor selected the first exercise from each of the
Variables, Loops, and arrays modules on and integrated
them into the course featured in this research. The use of
three independent modules tested the theory that the mod-
ules could be selected and used as needed rather than as
a complete curriculum. All students in the class were re-
quired to do the selected exercises in class at the same time.
Students were given approximately one hour for the first
module and 30 minutes for the remaining two subsequent
modules. Student surveys were given at the end of each ex-
ercise and measured student opinions on clarity of module
content, effectiveness of the module as a learning tool, as well
as enjoyment of the game-themed environment. Six groups

5All GTI modules are freely available at
http://depts.washington.edu/cmmr/Research/XNA Games.

12

Notes for the
GTI Example

Screen capture

IDE Window

Site camera recording

Figure 5: PIP from Screen Capture and Site Camera.

of students were recorded and the recordings transcribed.
Data was collected via two video and voice captures: first
on the interaction of the pairs with a site camera focused
on the students; and the second by computer screen cap-
ture. Figure 5 shows that the two data streams were syn-
chronized into a picture-in-picture (PIP) video where the
computer screen capture was the primary screen scene [7]
with the site camera action overlaid in the corner. Data
were analyzed across cases for each module and within cases
for each pair of subject participants. Students were given
no faculty assistance other than an explanation of how the
game is initialized, and how the UpdateWorld routine is pe-
riodically called to update the game. The objective was for
students to try to solve the problem in the module on their
own with little or no lecture. The instructor did not have
specific graphics or games background but did understand
the basic real-time model-view-controller interaction model.

In addition to the short survey after each lab exercise, a
pre-course and a post-course survey were administered to
the entire class. The pre- and post-surveys combined two
instruments: one used for studying a similar project [10]
and one developed and validated by Wilson and Shrock [27]
which included the Self-Efficacy Scale developed by Rama-
lingan and Weidenback [19, 18]. These surveys were used
to get a sense of student demographics as well as monitor
change in attitudes across time.

5. RESULTS AND ANALYSIS
Results from the mixed-method study of students including
pre- and post-course surveys and module surveys as well as
the analysis of the video case study are outlined below.

5.1 Surveys
As summarized in Table 1, twenty-one students completed
both pre- and post-course surveys. All of the students had
taken a previous class in programming and just over 85%
of the student had taken at least one calculus course, yet
only 23% had received some sort of encouragement to go
into computer science. Although changes between pre- and
post-surveys vary, the only statistically significant changes
were on the two questions: “I plan to pursue advanced stud-

ies in a technical field”(p = 0.029) and“number of hours per

week I play games on the computer” (p = 0.030). These re-

sults indicate that students started to see themselves moving
to more professional users of computers. The class contained
only two female students so results were not disaggregated
by gender. As seen in Table 2, positive, statistically signif-
icant gains were made in the overall self-efficacy scale and
subscales. These gains are comparable to other documented
uses of the scale [27, 19, 18], validating the claim that using
these modules maintains student learning.

Results from the surveys given after the individual exer-
cises reveal that students were generally satisfied with each
of the modules in the areas of clarity in write-up (mean =
4.1),6 content (mean = 4.2), learning achieved (mean =
3.6), and enjoyment of the game-theme (mean = 4.2).

5.2 Video Analysis
The interactive graphical characteristics of the GTI mod-
ules allowed students to begin with more concrete, visual,
on-screen representations of the computer game, and then
move into the more abstract source code that was respon-
sible for creating that game. Because of ease of use of GTI
modules, students could repeatedly refine their solutions and
interact with visual results immediately. Using this process,
students were able to construct an understanding of which
specific lines of code were responsible for certain output in
the game. The flow of learning became a continuous cycle
of visualizing output and modifying code. This cyclical pro-
cess of learning is highlighted in the following transcript of
student interaction during one video when they were work-
ing with an example that produced one laser beam and were
asked to create a second beam:

S2: “See, I’m wondering if it’s this? Something to do with this”

[points to screen].

S1: “You think so? Maybe change it too.”

S2: “Cause, what- Hero beam dot x.”

S1: “Do you think that means how fast it’s- it’s going across?”

S2: “Hmm.”

S1: “Something like. ... Let’s try this here.”

[Code changes, compile/run]

S2: “Well we got two beams.” [instead of one previously]

S1: “We got two beams. I don’t know what’s going on with that”

Through interactions with GTI modules, evidence of code
classification according to functionality were observed. GTI
modules allowed students to start with visualizing the out-
put and then delve into source code producing the visualiza-
tion. In disciplines such as math and statistics, research has
found that curricular approaches which emphasize flexibly
moving from concrete graphical and numeric representations
to abstract symbolic representations strengthens students’
understanding of the underlying concepts [11, 20, 21]. At
the very least, concrete representations give students a visual
cognitive reference which aids in abstract symbolic manipu-
lation skills. It is posited that the GTI modules gave com-
puter science students similar flexibility by providing visual
referents. The students were able to first see graphical out-
put and then examine the underlying code producing that
output. Repeated iterations of viewing graphical output and
examining symbolic code may assist in strengthening their
understanding of the underlying code.

Because of the immediate interactive graphical feedback,
students were engaged and motivated to experiment with the
6On a scale of 0 to 5, with 5 being the best.

13

Question Pre Post
I am in this class because I like computer science. 4.05 4.05
I plan a career in technology. 4.57 4.33
I plan to pursue advanced studies in a technical career. 3.81 4.19∗

My interest in computing is focused on programming. 3.24 3.38
My interest in computing is focused on gaming. 2.86 2.57
I have experience programming. 3.52 3.14
I expect this class to be difficult./This class was difficult. 3.48 3.29
I came into this class well prepared. 3.67 3.76
My preparation is equal to my classmates. 3.19 3.43
I will spend XX hours/week on this course outside of class time. 9.14 7.58
Working with my classmates will/did contribute to my learning. 3.81 3.29
Number of hours per week spent on surfing the web. 11.60 6.93
Number of hours per week spent on playing computer games. 11.29 9.1∗

Number of hours per week spent using application software. 4.40 3.42
Level of comfort asking and answering questions in class. 1.9 1.86
∗Statistically signi↓cant changes (p<0.05).

Table 1: Descriptive Statistics

Pre- Post-
SE Mean SE Mean

Factor 1: Independence & Persistence 4.9170 5.9405
Factor 2: Complex Programming 3.7879 5.5671
Factor 3: Self Regulation 4.4048 5.0952
Factor 4: Simple Programming 3.0000 5.8134
Overall 121.62 175.40

p < 0.025

Table 2: Self-Efficacy Scales

programs, sometimes beyond what the assignment required.
As evidenced in the following interaction between one pair of
students who were interacting with the module environment
before they started the assigned exercise:

S2: “I know. We just did ’an else’ so that it will uncolor it if
you uncollide them.”

Instructor: “Are you guys following the exercise now?” [while
students were looking at the screen]

S1/S2: “Yeah, oh yeah!!”

S1: “Cool! That’s cool. We got the collision working!”

S2: “We have our colliding circle.”

Instructor: “Do the exercise now.”

S2: “Okay, what’s the exercise? Bring it up.”

Sometimes, this was seen as a problem in which the instruc-
tor had to refocus students on the assignment at hand be-
cause ease of programming allowed them to produce tan-
gential results which were not part of the assignment (as
evidenced by producing the colliding circle in the previous
example). The visual feedback, although a powerful learning
tool, could also be a source of distraction for students.

Another distraction was found to be the time involved in
reading the background material in class while completing
the module. The videos revealed that students were taking
up to a third of the lab time to read this material. This
invaluable insight resulted in the recommendation that stu-
dents be instructed to read material before attending class.
This would allow students more time to collaborate with
partners, participate in the hands-on nature of GTI activ-
ities, complete assignments, and explore tangential exten-
sions.

The stand-alone nature of the modules allowed students

to work independently and at their own pace. In this way,
students are able to construct their understanding of the un-
derlying code from their pre-existing cognitive structures of
programming. Some students with more programming ex-
perience were able to complete and go beyond assignment
expectations in a shorter time, while others with less pro-
gramming background needed more time and support in or-
der to finish the assignment. Thus, the modules provided
flexibility of use with multiple levels of learning and varying
learning styles.

5.3 Faculty Feedback
After each video recording session and at the end of the aca-
demic quarter, the instructor was debriefed. He reported
that given the limited in-classroom time it was challenging
for students to become familiar with modules, and yet stu-
dents found GTIs were “interesting” to work with once they
were able to overcome the initial learning curve. In fact,
other students wanted more opportunities to work with the
GTIs after they become comfortable with the modules.7 In
the end, because the GTIs were essentially “dropped” into
the class without any dedicated lecture time, the modules
had minimal effect on the class structure as a whole. It is en-
couraging that as the instructor became more comfortable
with the GTIs, he did begin experimenting with graphics
and game programming and developed a simple card match-
ing game. Even after this study, the instructor continues
to select appropriate GTI modules/examples to use in his
classes.

6. CONCLUSION
The uniqueness of the GTI modules is that they provide
stand alone exercises that can be incorporated into any ex-
isting course structure. They do not need to be adopted
as an entire curriculum. In this case study, after interac-
tion with the GTI modules, improvements in students’ self-
efficacy and confidence levels were observed. It is believed
that this is directly related to students’ ability to experience
the visual output of existing code first and to be able to ex-
plore the structure of the code that produced that output.

Typically, programming is taught by having the students

7The instructor did not have access to any survey information
during the classes.

14

first write the code and then examine the output of what
they wrote. When using the GTI modules, that process is
reversed. GTI modules allowed students to start with vi-
sualizing the output and then delving into the source code
producing the visualization. This backward design process
gives an alternate method of learning programming. After
modifying the code, the students reexamine the changes in
the visualization, honing and focusing their understanding
on the factors in the source code which affected the visualiza-
tion. This cyclical, iterative process of learning fosters con-
struction of knowledge and thus meets the needs of learners
at different stages of concept formation rather than a typical
“one size fits all” method of teaching the code and expecting
students to apply it correctly. Even working independently
with little or no instruction, students were successful in com-
pleting assignments, although at varying levels of time com-
mitment depending on their previous programming experi-
ence. This is similar to any class assignment where students
have varying levels of pre-existing knowledge.

GTI modules were created to be utilized by instructors
who also have varying levels of pre-existing knowledge of
computer graphics and games. The modules allowed the in-
structor to use GTI and to improve his own understanding
of game-like programming with a minimal time investment.
This allowed the instructor to increase his expertise and con-
fidence in building his own game-themed teaching materials
without the pressure of radically changing his course and
feeling he/she must become proficient in game and graphics
programming.

The video analysis allowed researchers and the program’s
creators to examine and document student engagement, com-
munity building in the classroom through independent use
by students with little or no instructor feedback (i.e. stu-
dents had to rely on each other for questions), and to deter-
mine where GTI modules needed improvement. This anal-
ysis is paving the way for modifications of existing modules
and is adding to future work of creating a multilingual plat-
form. Changes in the modules based on the analysis featured
in this research include modifying the modules to be simi-
lar to lab experiments where the students will be assigned
preliminary reading outside of class.

Several modifications are planned for video data collec-
tion. One of the challenges of video recording with two
different scenes involved synchronizing the audio feed from
two recordings. Future video collection would allow for the
audio feed to be collected into both devices with one mi-
crophone, thus there would only be one audio feed for both
videos. Lapel microphones would be used instead of station-
ary microphones to improve the quality of audio from softer
speaking students.

This research suggests that the core concepts presented in
GTI modules are programming language and API indepen-
dent. Currently, a multilingual and API independent plat-
form is being designed to support GTI modules in multiple
programming languages and APIs. In addition, results of
this work are being shared with colleagues from community
colleges.

7. REFERENCES
[1] T. Barnes, H. Richter, E. Powell, A. Chaffin, and

A. Godwin. Game2learn: building cs1 learning games for
retention. In ITiCSE ’07: Proceedings of the 12th annual
SIGCSE conference on Innovation and technology in
computer science education, pages 121–125, New York, NY,

USA, 2007. ACM.
[2] J. D. Bayliss. The effects of games in cs1-3. Journal of

Game Development, 2(2), 2007.
[3] J. D. Bayliss. Using games in introductory courses: tips

from the trenches. In SIGCSE ’09: Proceedings of the 40th
ACM technical symposium on Computer science education,
pages 337–341, New York, NY, USA, 2009. ACM.

[4] W. Dann, S. Cooper, and R. Pausch. Learning to Program
with Alice. Prentice Hall, Upper Saddle River, NJ, 2006.

[5] T. Gaddis. Starting Out with Programming Logic and
Design. Addison-Wesley/Prentice Hall, Upper Saddle
River, NJ, 2008.

[6] P. Haden. The incredible rainbow spitting chicken: teaching
traditional programming skills through games
programming. In ACE ’06: Proceedings of the 8th
Austalian conference on Computing education, pages
81–89, Darlinghurst, Australia, Australia, 2006. Australian
Computer Society, Inc.

[7] R. Hall. Video recording as theory. In D. Lesh and
A. Kelley, editors, Handbook of Research Design in
Mathematics and Sceince Education, pages 647–664.
Maweh, NJ: Lawrence Erlbaum, 2000.

[8] S. Haller, B. Ladd, S. Leutenegger, J. Nordlinger, J. Paul,
H. Walker, and C. Zander. Games: good/evil. In SIGCSE
’08: Proceedings of the 39th SIGCSE technical symposium
on Computer science education, pages 219–220, New York,
NY, USA, 2008. ACM.

[9] J. Hiebert, R. Gallimore, H. Garnier, K. B. Givvin,
H. Hollingsworth, J. Jacobs, A. M. Chui, D. Wearne,
M. Smith, N. Kersting, A. Manaster, E. Tseng,
W. Etterbeek, C. Manaster, P. Gonzales, and J. Stigler.
Teaching mathematics in seven countries: Results from the
TIMSS 1999 Video Study. Washington, D.C.: National
Center for Education Statistics, 2003.

[10] C. Hillyard, R. Angotti, M. Panitz, K. Sung, J. Nordlinger,
and D. Goldstein. Game-themed programming assignments
for faculty: a case study. pages 270–274, 2010.

[11] E. J. Knuth. Student understanding of the cartesian
connection: An exploratory study. Educational Studies in
Mathematics, 31(4):500–507, 2000.

[12] M. Külling and P. Henriksen. Game programming in
introductory courses with direct state manipulation. In
ITiCSE ’05: Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer
science education, pages 59–63, New York, NY, USA, 2005.
ACM Press.

[13] R. B.-B. Levy and M. Ben-Ari. We work so hard and they
don’t use it: acceptance of software tools by teachers.
SIGCSE Bull., 39(3):246–250, 2007.

[14] M. C. Lewis and B. Massingill. Graphical game
development in cs2: a flexible infrastructure for a semester
long project. In SIGCSE ’06: Proceedings of the 37th
SIGCSE technical symposium on Computer science
education, pages 505–509, New York, NY, USA, 2006. ACM
Press.

[15] A. Luxton-Reilly and P. Denny. A simple framework for
interactive games in cs1. In SIGCSE ’09: Proceedings of
the 40th ACM technical symposium on Computer science
education, pages 216–220, New York, NY, USA, 2009.
ACM.

[16] L. Ni. What makes cs teachers change?: factors influencing
cs teachers’ adoption of curriculum innovations. In SIGCSE
’09: Proceedings of the 40th ACM technical symposium on
Computer science education, pages 544–548, New York,
NY, USA, 2009. ACM.

[17] I. Parberry, T. Roden, and M. B. Kazemzadeh. Experience
with an industry-driven capstone course on game
programming: extended abstract. In SIGCSE ’05:
Proceedings of the 36th SIGCSE technical symposium on
Computer science education, pages 91–95, New York, NY,
USA, 2005. ACM Press.

[18] V. Ramalingam, D. LaBelle, and S. Wiedenbaeck.

15

Self-efficacy and mental models in learning to program.
ACM SIGCSE Bulletin, 36(3):171–175, 2004.

[19] V. Ramalingam and S. Wiedenbaeck. Development and
validation of scores on a computer programming
self-efficacy scale and group analysis of novice programmer
self-efficacy. Journal of Educational computing Research,
19(4):367–381, 1998.

[20] R. Rider. The effect of multi-representational methods on
studentsŠ knowledge of function concepts in developmental
college mathematics. PhD thesis, North Carolina State
University, March 2004.
http://www.lib.ncsu.edu/theses/available/etd-03182004-
090043/.

[21] R. Rider and H. Stohl Lee. Differences in students use of
computer simulation tools and reasoning about empirical
data and theoretical distributions. In A. Rossman and
B. Chance, editors, Proceedings of the Seventh
International Conference on Teaching Statistics, 2006.

[22] K. Sung. Computer games and traditional computer science
courses. Communications of the ACM, 52(12):74–78,
December 2009. Invited Paper, Peer Reviewed.

[23] K. Sung. Xna game-themed applications for teaching
introductory programming courses. Invited Pre-Conference
Workshop, The Fourth International Conference on the
Foundations of Digital Games, Orlando, Florida, April
2009.

[24] K. Sung. Xna game-themed applications for teaching
introductory programming courses. Invited 3-Day
Workshop, Microsoft Mexico and Digital Arts University,
Guadalajara, Mexico, February 2009.

[25] K. Sung, M. Panitz, S. Wallace, R. Anderson, and
J. Nordlinger. Game-themed programming assignments:
the faculty perspective. In SIGCSE ’08: Proceedings of the
39th SIGCSE technical symposium on Computer science
education, pages 300–304, New York, NY, USA, 2008.
ACM.

[26] H. M. Walker. Do computer games have a role in the
computing classroom? SIGCSE Bull., 35(4):18–20, 2003.

[27] B. Wilson and S. Shrock. Contributing to success in an
introductory computer science course: a study of twelve
factors. ACM SIGCSE Bulletin, 33(1):184–188, 2001.

16

