
Introductory Programming Courses and Computer Games
Panelists: Mark Lewis, Trinity University
 Scott Leutenegger, University of Denver
 Michael Panitz, Cascadia Community College
 Kelvin Sung, University of Washington, Bothell (Moderator)
 Scott A. Wallace, Washington State University, Vancouver

SUMMARY
Programming games in computer science (CS) classes creates
high levels of excitement and motivation [1]. Although there are
potential pitfalls [2] and it has been argued that gender biased-
games can further alienate under-represented groups, it has also
been shown that with careful design and articulation, combining
CS classes with games at the introductory level can help recruit
and retain students [3]. The focus of this panel is not the debate
about whether games should be used in introductory computer
science, but rather if they are going to be used what are some
possible ways to do so. This panel presents four recent
approaches at integrating computer gaming into introductory
programming courses. At their core, these approaches can be
broadly classified as either: experiences in which students create
complete games of their own; or experiences in which students
implement fundamental CS concepts to complete "skeleton"
games that have been provided by the instructor. These
approaches are based on different pedagogical philosophies and
implementation platforms, yet all are designed to teach
fundamental concepts via programming computer games. In all
cases, the panelists will present examples and results from their
recent work where CS concepts are learned while programming
games.

Faculty members who are interested in finding out
more about gaming, or considering/interested-in adapting gaming
related approaches/materials in their classes will find this panel
especially relevant.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms: Design, Experimentation.
Keywords:
Introductory programming courses, games, assignments.
Mark Lewis: At Trinity we have developed a 2-D game
infrastructure that we use in our second semester course [4]. All
the assignments the students do during the semester are parts of a
game that they build up to produce final result. The infrastructure
itself is extremely flexible, allowing nearly any 2-D game to be
implemented. This has been critical as it allows students who
don't see themselves as serious gamers to still implement
something they have some experience with. We have yet to meet
a current college student who has never played some form of
arcade style game.

 The framework has two main goals in this project. It
allows the first assignments to have a graphical interface when
students haven't yet learned how to do graphics. It also gives the
students experience in doing design in the context of an existing
framework. Having a single project that spans the entire semester
allows students to get a better feel for design as they wind up
producing a larger product and get to go back and revisit
decisions made early in the semester.

Using a project where students get to select a game and
build the entire game with significant flexibility also allows them
to express their creativity. This is vital for keeping the interest of
many students and showing them the true potential of what we
are trying to teach. In the program at Trinity, the use of this
project across all section of CS2 has also led to an enhanced
sense of community, as it provides a common experience that
most viewed as being both educational and enjoyable.

Looking to the future, another advantage of games is
likely to come into play: games are one of the few applications
that can push modern computers. At Trinity we have been
thinking of ways to extend parallelism through the curriculum
and the game project will be part of this.

Scott Leutenegger: We believe that allowing students to create a
complete self-designed game increases student interest. Further,
such an approach encourages alternative game genres. We agree
that building part of a predefined game has many advantages, but
at the same time argue that taking ownership of the entire game
design and outcome greatly motivates students. In order to pull
off such an ambitious goal we must focus on more modest 2D
games with a tool that does much of the “heavy lifting”. Our
approach has been to use Flash/Actionscript [5]. We have now
offered introductory programming using Flash/Actionscript three
times [6]. Extensive class notes and exercises in the form of a
preliminary book are currently available from our web site [7].

Students create simple characters using the Flash
drawing environment. Placing characters on the screen and
moving them around is made simple using the actionscript
MovieClip class. Actionscript also provides an easy to use
hitTest() method that does collision detection. Flash also
provides easy methods for keyboard control, mouse control, and
sound. In the panel presentation we will demonstrate
programming assignment solutions that show how elementary
programming concepts are taught. We will also show a few final
games created by students.

Although we personally feel Flash/Actionscript is an
excellent tool/language, we realize there are other pragmatic
concerns. First, the high school AP exam is currently in Java and
many schools and industry jobs use Java. Second, most computer
science college programs use Java, C++, C, or C# as the most
common programming languages. Although we feel that
transitioning from Actionscript to Java or C++ is not an issue,

Copyright is held by the author/owner(s).
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
ACM 978-1-60558-183-5/09/03.

some of our students did find this difficult. For these and other
reasons, we plan to explore using Java inside of Greenfoot [8] in
the upcoming year. Regardless of the exact tool, the concept of
Games First, instead of objects first versus procedural first,
remains our focus.

Michael Panitz and Kelvin Sung: We believe faculty members
should be able to experiment with game-themed programming
assignments, examine the results, and gradually adopt suitable
results into their classes in order to meet the needs of their
students. However, most existing game-themed projects require
tight integration with a specific pedagogical philosophy; demand
in-depth knowledge of computer gaming or graphics; or require
extensive alterations to existing curricula. Based on this, it can be
challenging for a faculty member with limited time to experiment
with and incrementally improve their existing well-established
introductory programming classes with game-themed
assignments.

We have developed game-themed programming
assignment modules [9, 10] specifically targeted for adoption by
CS1/2 faculty who have no gaming or graphics backgrounds.
These assignment modules are gender and programming
experience neutral because students are not expected to develop
any games from scratch on their own. Instead, each assignment is
a skeleton of a game-like application, where students must fill-in
the relevant, missing, core CS concepts. Each assignment module
is also self-contained, so as to facilitate easy experimentation and
incremental integration by faculty. Each module includes: a
summary of prerequisite knowledge; a list of learning outcomes;
a sample pre- and post- test; a sample grading rubric; a sample
solution for the instructor; and the assignment skeleton for
students. To ensure faculty with no gaming/graphics background
can adopt the modules, all needed graphics/gaming code is
provided in the assignment skeleton. In addition, a detailed step-
by-step tutorial is provided for those faculty interested in the
game-specific details of the assignment. Finally, these
assignments have been assessed by an external independent
faculty member to ensure the technical integrity. In this way,
faculty members currently teaching CS1/2 courses can pick and
choose from our assignment modules and combine them with
their own, existing, non-game assignments.

We have adopted these assignment modules in our own
console-based CS1/2 classes where selected console-assignments
were replaced by game-themed ones. We will summarize our
experience: the extra efforts required, student learning outcomes,
and students’ excitement and satisfaction.

Scott Wallace: I believe that games provide a rich and visual
environment for students to explore a variety of important
Computer Science topic areas and skills. The Java Instructional
Game (JIG) Project [11, 12] was established as a collaboration
between Washington State University Vancouver and the
University of Puget Sound to provide support for resource limited
colleges and universities that want to bring game related projects
or courses into their CS curriculum. The goal of the JIG Project is
not to train computer game developers. Rather, the JIG team is
interested in training excellent computer scientists and believes
that games offer a good vehicle to achieve this goal.

For the members of the JIG team, Java is a natural
choice for such software since it is a leading choice, if not the
leading choice, for first programming languages and is often used
throughout the CS curriculum. Furthermore, because Java is also

used on the Advanced Placement exam for high school students,
many students exposed to programming before college will likely
end up learning Java.

To help bring games into the Java classroom, the JIG
team has created a software foundation (game engine) suited for
students at all four years of study. This engine enables instructors
to offer dedicated game design courses and also provides the
infrastructure for curricular modules. Our curricular modules
enable instructors to add individual game projects to traditional
CS courses in the same spirit as Panitz and Sung’s project. They
are designed as short (one or two week) stand-alone projects and
target concepts from CS1/2 (e.g., recursion, flow control, and
data structures) to the senior level (e.g., computational geometry,
and graph algorithms). By providing the game skeleton, our
modules attempt to ensure that the student’s effort is focused on
the learning objectives of the project, and not devoted to learning
how to use the JIG game engine or learning to program complete
games from scratch.

IMPORTANCE: The intended audience of this panel is
anyone considering using a game approach in an introductory
computer science class. The panel is especially timely as more
computer science departments are adding tracks or majors in
game development or at least considering the use of games within
the existing curriculum to attract more students to the major. The
audience will come away with an overview of possibilities and
arguments for and against specific approaches. This panel is both
timely and important.

REFERENCES
[1] U. Wolz, T. Barnes, I. Parberry and M. Wick, “Digital gaming as

a vehicle for learning,” in SIGCSE '06, PP. 394-395, 2006.
[2] S. Hallern, B. Ladd, S. Leutenegger, J. Nordlinger, J. Paul, H.

Wallker, and C. Zander, “Games: good/evil,” in SIGCSE’08, PP.
219-220.

[3] M. Guzdial, E. Soloway, “Teaching the Nintendo generation to
program,” Communications of the ACM, 45(4), pp. 17–21, 2005.

[4] M. C. Lewis and B. Massingill, “Graphical game development in
cs2: a flexible infrastructure for a semester long project,” in
SIGCSE'06, PP. 505-509, 2006.

[5] S. Crawford and E. Boese, “Actionscript: a gentle introduction to
programming,” J. Comput. Small Coll., 21(3):156-168, 2006.

[6] Course web site: www.cs.du.edu/~leut/1671/06_Fall, 2007.
[7] S. Leutenegger, J. Edgington, "A Games First Approach To

Teaching Introductory Programming", SIGCSE’07, PP. 115-118.
[8] P. Henriksen, and M. Kulling, "Greenfoot: Combining object

visualisation with interaction", in Companion to OOPSLA
conference, PP 73-82, 2004.

[9] Games-themed Introductory Programming Project web-site,
2008,
http://depts.washington.edu/cmmr/Research/XNA_Games/.

[10] K. Sung, M. Panitz, B. Rosenberg, R. Anderson , "CS1/2 Game-
Themed Programming Assignments for Faculty," Journal of
Game Development, Vol. 3, Issue 2, March 2008, PP. 27-47.

[11] S. Wallace, A. Nierman. “Addressing the need for a Java based
game curriculum,” J. Comput. Small Coll. 22(2), 20-26. 2006.

[12] S. Wallace, JIG—Java Instructional Gaming,
http://ai.vancouver.wsu.edu/jig/, retrieved July 3, 2008.

