
74 communications of the acm | december 2009 | vol. 52 | no. 12

review articles

the push for presenting abstract CS
concepts in the context of familiar real-
world applications.

Relating abstract principles to real-
world experience has become increas-
ingly prominent in mathematics and
general science education. For exam-
ple, the Calculus Reform movement of
the 1990s included both pedagogical
changes and foci on real-world prob-
lems, while the Carl Wieman Science
Education Initiative at the University
of British Columbia has redesigned its
freshmen introductory physics course
such that:a

“As much as possible, the standard
introductory physics material will be
presented in connection with real-world
situations and issues such as home
heating, transportation, and electricity
generation.”

In the CS education arena, the Media
Computation of Georgia Tech18 is an
excellent example where foundational
programming concepts are presented in
the context of popular digital multime-
dia applications. This contextualization
of computing education18 is an ongoing
effort and interactive computer video
games, being one of the most familiar
application areas for our students, is a
context favored by many CS educators.

This article presents the USC Game-
Pipe Laboratory effort where the entire
CS curriculum is redesigned in the con-
text of game development (Please refer
to the USC GamePipe Laboratory effort
by Michael Zyda on page 66 where the
CS curriculum is designed in the con-
text of game development). This article
examines the ongoing efforts to inte-
grate computer video games in existing
traditional CS courses. The discussion
is divided into introductory program-
ming courses and elective CS courses,
and concludes with guidelines for con-
sidering integrating computer game
content into existing CS classes.

Games and CS Classes
There are many types of games that

a	 http://www.cwsei.ubc.ca/departments/physics-
astro courses.htm (Nov. 2007 update).

S i n c e c o m p u t i n g i s the foundation of modern
society, a proficient computing work force is essential
for maintaining the country’s leadership and
competitiveness in the global economy. The recent
decline in enrollments across computer science (CS)
departments and the decrease in student diversity
pose significant challenges to the continuation of
the nation’s prominent position in the global high-
technology arena. The CS education community
responded to this challenge with a general critical
self-reexamination where the entire traditional
CS education system is being evaluated, from the
outreach to K–12 education, to the fundamental
philosophies behind the curriculum design. One of
the emerging results from these developments is

Computer
Games and
Traditional CS
Courses

doi:10.1145/1610252.1610273

Integrating computer games into existing CS
courses may help attract students to the field,
but there are guidelines to be considered.

by Kelvin Sung

december 2009 | vol. 52 | no. 12 | communications of the acm 75

are suitable for teaching CS subjects
including many noncomputer games
or games that are based on dedicated
devices (for example, Lego robots). Our
focus is on interactive graphical com-
puter games. It is important to recog-
nize that in the CS education arena the
term “computer game” is often used to
refer to the attempts at, and the results
of, effective and meaningful integra-
tion of animated graphical visualization
and various degrees of interactivity. Be-
cause of the unknown entertainment
value, strictly speaking, much of these
are interesting and innovative teaching
materials and are not computer games
in a commercial sense.

As discussed in Sung et al.,33 when
examining recent efforts in integrating
computer games into CS classes, we
observe three general categories.

Game development classes.1.	 These
are entire curricula,7,40 individual
classes,4,6,14,31,39 or capstone projects2,29

designed specifically to develop new
games as an end product. The educa-
tion committee of the main profession-
al organization for the games industry,
The International Game Developer As-
sociation (IGDA), has proposed a com-
prehensive curriculum framework
conveying the industry’s articulated
desires for well-trained college gradu-
ates seeking jobs in the game industry.
When evaluated against the IGDA cur-
riculum framework, we see that these
classes cover all the major core topic
areas. Students in these classes must
be concerned with all aspects of pro-
ducing a real game including enter-
tainment value, visual quality, audio
effects, physics simulations, and real-
time performance.

Game programming classes. 2.	
These are classes (for example, Kuff-
ner’s CMU course37) designed specifi-
cally to study technical aspects and is-
sues involved in building games. For
example, topics covered may include
event loops, path planning algorithms,
and terrain representation. These
classes typically do not require building
an end product and the topics covered
are general and usually are applicable
to different domains. These classes
concentrate on covering the game pro-
gramming topic area in the IGDA cur-
riculum framework.

Game development client3.	 . These
are existing CS classes that creatively in-V

i
sual

i

zat

i

on

 of

 a
 d

e
cod

e
d

 n
i

nt

e
ndo

 gam

e

 by

 b
e

n
 fry

 (
http

:/

/b
e

nfry

.com

/mar

i
osoup

)

76 communications of the acm | december 2009 | vol. 52 | no. 12

review articles

effort required by faculty, existing work
done in this area can be classified into
three broad approaches:

Little or no game programming.9,17 In
these courses students learn by playing
custom games but they do not actually
program the games.

Per-assignment game develop-
ment.3,21,32,33,38 All these classes devel-
oped games as part of individual pro-
gramming assignments. In each case,
isolated games are designed around
technical topics being studied.

Extensive game development. For ex-
ample, faculty must design program-
ming assignments based on custom
library,39 general game engines,4 dedi-
cated game engines,25 specialized pro-
gramming environments,22 custom
object-oriented class hierarchies,25 spe-
cific curricula,23 or new programming
languages.11

Much of this work reported re-
sounding successes with drastically in-
creased enrollments and student suc-
cesses.3,11,23 Based on these results, it is
well recognized that integrating com-
puter gaming into CS1 and CS2 (CS1/2)
courses, the first programming courses
students encounter, is a promising
strategy for recruiting and retaining po-
tential students. With the enrollment
challenges faced by the CS discipline,
it is desirable and important that this
strategy can be adopted widely by all in-
terested faculty and departments.

However, most of the existing work
in this area is based on pioneering ex-
ploratory projects by faculty members
with expertise in computer graphics
and gaming.3,23,28 With few exceptions,
these projects are student-centric where
the main goals of study are student
engagement and various learning out-
comes. Adaptability and generality of
the resulting materials are usually not
main concerns. For the faculty mem-
bers teaching CS1/2 courses, most of
which are without computer graphics or
gaming background, it can be challeng-
ing to take advantage of these results.

In addition, when considering ex-
perimentation with CS1/2 courses, it is
important to appreciate institutional
oversight procedures. Though becom-
ing less controversial in recent years,
many CS educators continue to be un-
sure about integrating gaming in for-
mal educational settings.20 It can be
challenging in departmental commit-

tegrate games into their existing curric-
ulum. Typically, games are used as pro-
gramming assignments,1,3,5,22,25,33,34,37
or to teach abstract concepts,11,15,30

or as an example application area to
teach the concepts involved in an en-
tire topic area.9 These are traditional
CS classes that exist independent of
game programming. These classes are
actually clients of game development
where they use game development as a
vehicle to deliver specific abstract con-
cepts. After these classes, students are
expected to understand the abstract CS
concepts, and not the details of game
development.

Courses in the first two categories are
new courses designed to teach students
about game development. Over time, as
the game development field matures, it
is expected that these courses will evolve
and eventually some of the contents
will become part of the standard CS
curriculum. This is not unlike the early
years of many existing disciplines in CS
(for example, software engineering13 or
computer graphics8), where the syllabi
of pioneering courses consolidated as
the disciplines mature. Courses in the
third category, the “game development
clients,” are traditional CS courses that
can be found in existing CS curricula.
The earliest work in this area1,12 adapt-
ed games almost anecdotally without
holistic considerations; most of the
more recent work is structured around
addressing core competency areas with
reference to the ACM Curriculum. Ac-
cordingly, courses in the “game devel-
opment clients” category can be divid-
ed into two broad efforts: introductory
programming classes (CS1/2) and ad-
vanced/elective classes.

Games and Introductory
Programming Classes
Many CS educators recognized and
took advantage of younger generations’
familiarity and interests for computer
video games and integrate related con-
tents into their introductory program-
ming courses. Because these are the
first courses students encounter, they
build excitement and enthusiasm for
our discipline.24, b Based on the type of

b	 It is important to reiterate that, after these
classes students are expected to understand
abstract programming concepts rather than
concepts specific to building games.

tees to arrive at consensus for signifi-
cant modifications to CS1/2 courses,
especially if the modifications involve
computer games. For these reasons,
to be widely adaptable, game-related
CS1/2 materials should be designed
with the following considerations:

The materials should not demand 1.	
knowledge in computer games or
graphics.

The materials should include in-2.	
dependent modules that are limited in
curriculum scope.

The materials should support se-3.	
lective experimentation by individual
faculty members in small-scale pilot
demonstration projects in their exist-
ing courses.

Selective Gradual Adoption. Results
from the extensive game development
approach discussed previously typi-
cally include large amounts of adopt-
able/adaptable courseware materials.
However, using these materials often
requires a significant investment of
time, for example, understanding a
game engine, or significant reworking
of an instructor’s existing curriculum.
Because of the considerable overhead,
results from this approach are typically
not suitable for selective adoption.

 In terms of suitability for selective
adoption, we expect that results from
the per-assignment game development
approach will be most applicable. For
example, one could selectively replace
nongame assignments in existing
classes by the corresponding games
assignments. However, because of the
pioneering nature of work in this area,
many of the results on per-assignment
game development are “anecdotal” and
do not discuss the impact of such as-
signments on the CS1/2 curriculum ho-
listically. For example, the results from
Huang only involve turn-based strate-
gic games,21 Ross only discusses puzzle
games,32 and the discussion from Val-
entine is based on a single game.38

The Game-Themed Introductory Pro-
gramming Project at the University of
Washington, Bothellc is specifically de-
signed to address these issues. In the
first phase of our project, we have de-
signed and built general game-themed
CS1/2 programming assignment mod-
ules that demand no existing knowl-

c	 http://depts.washington.edu/cmmr/Research/
XNA Games/index.php

review articles

december 2009 | vol. 52 | no. 12 | communications of the acm 77

While it is the
case that proper
integration of game
development and
game content in CS
classes have the
potential to further
engage students
resulting in higher
success rates, it is
not the case that
any game content
will result in having
a positive impact.

edge of games or graphics from the
faculty,33 and have demonstrated it re-
quires minimum changes to existing
classes in order to successfully adopt
these materials. Currently in the sec-
ond phase of our project, we are build-
ing game-themed examples and tu-
torials designed to provide a pathway
for interested faculty to gradually in-
corporate game-related materials into
their existing courses. Our project is
student-centric because our materials
allow students to practice CS concepts
in a more real-world-like context. More
importantly, the materials are also fac-
ulty-centric because these materials are
the stepping-stones for faculty to begin
experimenting with a promising new
approach to teaching CS1/2 courses.

Games and Elective CS Courses
As highlighted earlier, the CS education
community has a sound understand-
ing of how to integrate visualization
and interactivity in delivering CS1/2
content and has achieved impressive
successes. In comparison, there is a
relatively modest amount of work done
in integrating computer games into
existing traditional CS elective classes.
This is not surprising as a successful
systematic integration requires the de-
livery of an entire technical topic area
to lend itself well in visualization and
interactivity. There are anecdotal ex-
amples of using game content in deliv-
ering selective topic areas (for example,
design patterns,16,27 or spatial search
algorithms34). These are small-scale
projects not meant to address entire
courses as identified in the standard
CS curriculum.

Artificial intelligence (AI),9 software
engineering (SE),5,10,37 and computer
graphics (CG)36 are examples of elec-
tive courses where published results
describe attempts at systematically in-
tegrating game development. In all of
these cases, the stated student learning
outcomes are similar to those from the
typical CS curriculum and do not in-
clude competencies involved in game
development as defined by the IGDA
curriculum framework. In these class-
es, students study the core topic areas
and implement games to demonstrate
their understanding of the fundamen-
tal CS concepts. This work reported
high student engagement and enthusi-
asm, while pointing out that the faculty

members involved must develop large
amounts of software infrastructure to
facilitate and support students’ game
development.

Notice that all three of these topic ar-
eas have significant overlaps with com-
puter games in general: intelligent be-
havior (AI) is one of the most important
attributes of modern games, SE meth-
odologies are applicable in any soft-
ware product development, and topics
in CG are the conceptual framework for
visualization in games. One can argue
that for these topic areas, it is relatively
straightforward to integrate game con-
tent in a consistent manner. In general,
for topic areas that do not offer obvious
overlaps with computer games or game
development (for example, compiler or
programming languages), dedication
and creativity would be required to de-
velop the elaborate infrastructure and
to systematically integrate the new con-
tents. In these cases, one should care-
fully examine the trade-offs between
required efforts, expected benefits, and
consider other perhaps more appro-
priate practical contexts (for example,
popular applications on the Internet).

Guidelines for Consideration
While it is the case that proper integra-
tion of game development and game
content in CS classes have the potential
to further engage students resulting in
higher success rates, it is not the case
that any game content will result in
having a positive impact. In addition,
when exploring the potential for devel-
opment or adoption of game content,
we must work within the bounds of in-
stitutional oversights and be conscious
about the expertise areas of faculty
members. The following are some fac-
tors for consideration:

Institutional oversight. ˲˲ Depart-
mental committee consensus is often
required for significant changes to core
courses. Because of the potential im-
pact, it can be especially challenging to
arrive at a consensus for modifications
to introductory-level courses like CS1/2.
A strategy is to design limited-curricu-
lum-scope experiments to gain experi-
ence (and collect results) to assist the
committee’s decision-making process.

Faculty background.˲˲ Many faculty
members did not grow up playing com-
puter games and most are not familiar
with graphics programming. When

78 communications of the acm | december 2009 | vol. 52 | no. 12

review articles

developing or evaluating materials for
adoption, it is essential to pay attention
to the prerequisite knowledge. An ideal
approach would be to clearly separate
and hide the graphical and user inter-
activity functionality. In this way, fac-
ulty and students only need to concen-
trate on the core CS concepts.

Gender and expertise neutrality.˲˲ As
with any powerful tool, inappropriate
use of games can backfire and result in
further alienation of underrepresented
groups.20 It is important that the gam-
ing materials are gender and expertise
neutral. For example, it is important to
avoid violence and unnecessary com-
petitions.26 The materials used should
discourage the addition of superfluous
“eye-candy” graphical enhancements,
or user interaction programming by
students with extensive prior program-
ming experience. Doing so will help to
avoid intimidating other less-experi-
enced students.

Infrastructure support.˲˲ Free and
simple are the keywords here. Given
the financial reality of most schools,
all materials must be freely available;
the associated institutional infrastruc-
ture requirements must be modest and
straightforward.

Conceptual integrity.˲˲ Our discus-
sion focuses on the traditional CS cours-
es. It is important to remember that
ultimately, the goal is to facilitate stu-
dents’ learning about the core CS con-
cepts. Any dilution, even in favor of ac-
quiescing to some students’ desire and
motivation to become game developers,
would do the students a disservice.

Textbook availability.˲˲ As in all
pioneering work, mature and well-
organized materials are mostly under
development. Although there are some
textbooks available for specific ap-
proaches (for example, CS1/2,11 com-
puter graphics35), mostly, one must be
ready to develop custom reading mate-
rial to guide students along.

Acknowledgments
This work is supported in part by the
National Science Foundation grant
DUE-0442420 and Microsoft Research
under the Computer Gaming Curricu-
lum in Computer Science RFP, Award
Number 15871 and 16531. All opinions,
findings, conclusions, and recommen-
dations in this work are those of the au-
thors and do not necessarily reflect the

views of the National Science Founda-
tion or Microsoft.	

References
1.	 Adams, J.C. Chance-It: An object-oriented capstone

project for CS-1. In Proceedings of the 29th SIGCSE
Technical Symposium on Computer Science Education.
ACM Press, NY, 1998, 10–14.

2.	 Barnes, T., Richter, H., Powell, E., Chaffin, A., and
Godwin, A. Game2learn: Building CS1 learning games
for retention. In Proceedings of the 12th Annual
SIGCSE Conference on Innovation and Technology in
Computer Science Education. ACM, NY, 2007, 121–125.

3.	 Bayliss, J.D. The effects of games in CS1-3. Journal of
Game Development 2, 2 (2007).

4.	 Bierre, K., Ventura, P., Phelps, A., and Egert, C.
Motivating OOP by blowing things up: An exercise in
cooperation and competition in an introductory Java
programming course. In Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science
Education. ACM Press, NY, 2006, 354–358.

5.	 Chen, W-K and Cheng, Y.C. Teaching object-oriented
programming laboratory with computer game
programming. IEEE Transactions on Education 50, 3
(Aug. 2007), 197–203.

6.	 Clark, B., Rosenberg, J., Smith, T., Steiner, S., Wallace,
S., and Orr, G. Game development courses in the
computer science curriculum. J. Comput. Small Coll.
23, 2 (2007), 65–66.

7.	 Coleman, R., Krembs, M., Labouseur, A., and Weir, J.
Game design and programming concentration within
the computer science curriculum. In Proceedings of
the 36th SIGCSE Technical Symposium on Computer
Science Education. ACM Press, NY, 545–550.

8.	 Cunningham, S., Brown, J.R. Burton, R.P., and Ohlson,
M. Varieties of computer graphics courses in computer
science. In Proceedings of the 19th SIGCSE Technical
Symposium on Computer Science Education. ACM
Press, NY, 1988.

9.	 da Silva, F.S.C. Artificial intelligence for computer
games. University of Sao Paulo, Microsoft Academic
Alliance Repository Newsgroup, 2006; http://www.
msdnaacr.net/curriculum/pfv.aspx?ID=6210.

10.	 da Silva, F.S.C. Software engineering for computer
games. University of Sao Paulo, Microsoft Academic
Alliance Repository Newsgroup, 2006; http://www.
msdnaacr.net/curriculum/pfv.aspx?ID=6211.

11.	 Dann, W., Cooper, S., and Pausch, R. Learning to
Program with Alice. Prentice Hall, Upper Saddle River,
NJ, 2006.

12.	 Faltin, N. Designing courseware on algorithms
for active learning with virtual board games. In
Proceedings of the 4th Annual SIGCSE/SIGCUE
Conference on Innovation and Technology in
Computer Science Education. ACM Press, NY, 1999,
135–138.

13.	 Freeman, P. Software engineering education: Needs
and objectives. In Proceedings of the ACM SIGCSE-
SIGCUE Technical Symposium on Computer Science
and Education. ACM Press, NY, 1976, 266.

14.	 Frost, D. Ucigame, A Java library for games.
In Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education. ACM
Press, NY, 2008.

15.	 Gestwicki, P.V. Computer games as motivation for
design patterns. In Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education.
ACM Press, NY, 2007, 233–237.

16.	 Gestwicki, P.V. Computer games as motivation for
design patterns. In Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education.
ACM Press, NY, 2007, 233–237.

17.	 Giguette, R. Pre-games: Games designed to
introduce CS1 and CS2 programming assignments.
In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education. ACM
Press, NY, 2003, 288–292.

18.	 Guzdial, M. Contextulized computing education. Invited
Presentation, Microsoft Research Faculty Summit;
http://home.cc.gatech.edu/guzdial/169 (July 2008).

19.	 Haden, P. The incredible rainbow spitting chicken:
Teaching traditional programming skills through games
programming. In Proceedings of the 8th Australian
Conference on Computing Education. Australian
Computer Society, Darlinghurst, 2006, 81–89.

20.	 Haller, S., Ladd, B., Leutenegger, S., Nordlinger, J.,
Paul, J., Walker, H., and Zander, C. Games: Good/
evil. In Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education. ACM
Press, NY, 2008, 219–220.

21.	 Huang, T. Strategy game programming projects. In
Proceedings of the 6th Annual CCSC Northeastern
Conference on the Journal of Computing in Small
Colleges. Consortium for Computing Sciences in
Colleges, 2001, 205–213.

22.	 Külling, M. and Henriksen, P. Game programming in
introductory courses with direct state manipulation.
In Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in
Computer Science Education. ACM Press, NY, 2005.

23.	 Leutenegger, S. and Edgington, J. A games-first
approach to teaching introductory programming. In
Proceedings of the 38th SIGCSE Technical Symposium
on Computer Science Education. ACM Press, NY, 2007,
115–118.

24.	 Lewis, M., Leutenegger, S., Panitz, M., Sung, K., and
Wallace, S.A. Introductory programming courses and
computer games. In Proceedings of the 40th SIGCSE
Technical Symposium on Computer Science Education.
Mar. 2009.

25.	 Lewis, M.C. and Massingill, B. Graphical game
development in CS2: A exible infrastructure for a
semester long project. In Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science
Education. ACM Press, NY, 2006, 505–509.

26.	 Natale, M.J. The effect of a male-oriented computer
gaming culture on careers in the computer industry.
SIGCAS Comput. Soc. 32, 2 (2002), 24–31.

27.	 Nguyen, D.Z. and Wong, S.B. Design patterns for
games. In Proceedings of the 33rd SIGCSE Technical
Symposium on Computer Science Education. ACM
Press, NY, 2002, 126–130.

28.	 Parberry, I., Kazemzadeh, M.B., and Roden, T. The art
and science of game programming. In Proceedings of
the 37th SIGCSE Technical Symposium on Computer
Science Education. ACM Press, NY, 2006, 510–514.

29.	 Parberry, I., Roden, T., and Kazemzadeh, M.B.
Experience with an industry-driven capstone
course on game programming: Extended abstract.
In Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education. ACM
Press, NY, 2005, 91–95.

30.	 Pulimood, S.M. and Wolz, U. Problem solving in
community: a necessary shift in CS pedagogy.
In Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education. ACM
Press, NY, 2008, 210–214.

31.	 Repenning, A. and Loannidou, A. Broadening
participation through scalable game design.
In Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education. New
York, NY, USA, 2008.

32.	 Ross, J.M. Guiding students through programming
puzzles: Value and examples of Java game
assignments. SIGCSE Bull. 34, 4 (2002), 94-98.

33.	 Sung, K., Panitz, M., Wallace, S., Anderson, R.,
and Nordlinger, J. Game-themed programming
assignments: The faculty perspective. In Proceedings
of the 39th SIGCSE Technical Symposium on Computer
Science Education. ACM Press, NY, 2008, 300–304.

34.	 Sung, K. and Shirley, P. Algorithm analysis for
returning adult students. In Proceedings of the Sixth
Annual CCSC-NW Conference. J. Computing Sciences
in Colleges 20, 2 (Dec. 2004) 62–72.

35.	 Sung, K., Shirley, P. and Baer, S. Essentials of
Interactive Computer Graphics: Concepts and
Implementation. A.K. Peters, Wellesley, MA, 2008.

36.	 Sung, K., Shirley, P. and Reed-Rosenberg, R.
Experiencing aspects of games programming in an
introductory computer graphics class. In Proceedings
of the 38th SIGCSE Technical Symposium on Computer
Science Education. ACM Press, NY, 2007, 249–253.

37.	 Sweedyk, E., deLaet, M., Slattery, M.C., and Kuffner,
J. Computer games and CS education: Why and
how. In Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education. ACM
Press, NY, 2005, 256–257.

38.	 Valentine, D.W. Playing around in the CS curriculum:
Reversi as a teaching tool. J. Comput. Small Coll. 20, 5
(2005), 214–222.

39.	 Wallace, S.A. and Nierman, A. Using the Java
instructional game engine in the classroom. J.
Comput. Small Coll. 23, 2 (2007), 47–48.

40.	Zyda, M. Guest editor’s introduction: Educating the
next generation of game developers. IEEE Computer
39, 6 (June 2006), 30–34.

Kelvin Sung (ksung@u.washington.edu) is a professor in
the department of Computing and Software Systems at
the University of Washington, Bothell, WA.

© 2009 ACM 0001-0782/09/1200 $10.00

