
Game-Themed Programming Assignments:
The Faculty Perspective ∗

Kelvin Sung
University of Washington, Bothell

ksung@u.washington.edu

Michael Panitz
Cascadia Community College

mpanitz@cascadia.ctc.edu

Scott Wallace
Washington State University, Vancouver

wallaces@vancouver.wsu.edu

Ruth Anderson
University of Washington, Seattle

rea@cs.washington.edu

John Nordlinger
Microsoft Research

johnnord@microsoft.com

ABSTRACT
We have designed and implemented game-themed program-
ming assignment modules targeted specifically for adoption
in existing introductory programming classes. These assign-
ments are self-contained, so that faculty members with no
background in graphics or gaming can selectively pick and

choose a subset to combine with their own assignments in
existing classes. This paper begins with a survey of previ-
ous results. Based on this survey, the paper summarizes the
important considerations when designing materials for selec-
tive adoption. The paper then describes our design, imple-
mentation, and assessment efforts. Our result is a road map
that guides faculty members in experimenting with game-
themed programming assignments by incrementally adopt-
ing/customizing suitable materials for their classes.

Categories and Subject Descriptors: K.3.2[Computers
and Education]:Computer and Information Science Educa-
tion – computer science education

General Terms: Design, Experimentation

Keywords: CS1/2, Games, Programming Assignments, Adap-
tation

1. INTRODUCTION
Encouraged by the recent successes (e.g., [38, 42]) in teach-
ing computer science (CS) concepts based on programming
computer games, we have experimented with and accom-
plished modest successes in teaching computer graphics con-
cepts based on building interactive computer games [37].
Inspired by the positive feedback from students and local
employers, we started investigating potential approaches for
integrating games programming in other CS courses.

Because of the relatively straightforward assignments and
the abundant, favorable results (e.g., [8, 27]) we began our

∗
This work is supported in part by the National Science Foundation grant DUE-

0442420 and Microsoft Research under the Computer Gaming Curriculum in
Computer Science RFP, Award Number 15871. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation or
Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003 ...$5.00.

investigation with introductory programming courses (CS1/2).
Our initial intent was to study and adapt from existing ap-
proaches. However, as discussed in the next section, most
existing results are exploratory, and do not facilitate adop-
tion by time-constrained faculty members. This is especially
true for those faculty members who are primarily interested
in limited experimentation and incremental changes to their
existing well-established CS1/2 curricula.

In 2006, we began our investigation into designing/devel-
oping CS1/2 game-themed programming assignments specif-
ically targeted for selective adoption and limited-scope ex-
perimentation by faculty with no gaming/graphics experi-
ence [36]. Our work follows the observation that the mod-
ern generation of students demands multimedia experiences,
i.e., real time interaction in a visual environment [21]. Be-
cause existing results demonstrating that students’ needs
can be met (e.g., [9]) and that the learning outcomes can
be achieved (e.g., [8]), our work focuses on the needs of the
faculty. Our project consists of two phases. First, develop
materials that are suitable for adoption. Second, adopt the
materials in existing courses and study the following: faculty
effort; student learning outcome; and student engagement.

We have completed the first phase and started on the sec-
ond phase of our project. In the first phase of the project,
under the assessment of an independent, external faculty
member, we have developed a set of self-contained game-
themed assignment modules, a simple library, and a set of
detailed tutorials. We expect faculty members to selectively

pick and choose from the game-themed assignments to com-
bine these with their existing assignments, or to design/de-
velop their own game-themed assignments based on the pro-
vided tutorials/library. In the rest of this paper, we describe
our efforts and our results from the first phase of the project.

Our assignments are simple “real-time interactive graph-
ics programs”. Strictly speaking, these programs do not
qualify as “games” because they have unknown entertain-
ment values. However, in our current implementation, the
programs run on both PCs and the XBOX 360 gaming con-
sole. As such, we use the term: “game-themed”.

2. GAMES AND CS1/2 CLASSES
While there are many types of “games” that are suitable for
teaching CS subjects (e.g., non-computer games [15]) our
focus is interactive graphical computer games. As discussed
in [37], recent work in this area can be classified into: game

development (e.g., [32]) where students learn about building
games; game programming (e.g., [38]) where students study
games related algorithms; and game client (e.g., [37]) where

students learn about CS concepts via games. Integrating
games into CS1/2 classes belongs to the game client cat-
egory because after these classes students are expected to
understand abstract programming concepts and not about
building games.

When examining existing work that integrates games into
CS1/2 courses, we observe three broad approaches according
to the efforts from the faculty in preparing the programming
assignments:

1. Few or no game programming assignments (e.g, [19,
22]). In these courses students learn by playing custom
games but they do not actually program the games.

2. Per-assignment game development [17, 25, 9, 24, 35,
29, 39, 8]. All these classes developed games as part
of individual programming assignments. These games
are typically designed around the technical topics be-
ing studied.

3. Extensive game development. For example, faculty
must develop and/or design programming assignments
based on game engines suitable for general games de-
velopment (e.g., [10]), game engines specifically de-
signed for a course (e.g., [28]), specialized program-
ming environments (e.g., [26]), custom object-oriented
class hierarchies (e.g., [28]), specific curricula (e.g., [27]),
or new programming languages (e.g., [14]).

Results from the last approach typically involve large amounts
of adoptable/adaptable courseware materials. However, us-
ing these materials usually requires significant investments,
e.g., understanding a games engine, etc. Because of the con-
siderable overhead, results from the third approach are not
suitable for selective adoption.

Ideally, results from the per-assignment game develop-
ment approach are best suited for selective adoption. For ex-
ample, one would selectively replace non-game assignments
in existing classes with the corresponding game assignments.
However, because of the pioneering nature, many of the re-
sults are “anecdotal”, and without holistic considerations
with respect to the CS1/2 curriculum. For example, [24]
only involves turn-based strategic games, [35] only discuss
puzzle games, and the discussion in [39] is based on one sin-
gle game. The systems described by [25, 29] are designed
specifically for an objects-first approach. While results from
[9] are based on an ascii character game, and the excellent
ideas presented in [9, 8] are without implementations.

3. DESIGN CONSIDERATIONS
Based on the above survey, we articulate the following con-
siderations as guidelines for designing game-themed pro-
gramming assignments targeted for selective adoption.

• Institutional Oversight : Departmental committee con-
sensus is often required for significant changes to the
core courses. Because of the potential impact, it can be
especially challenging to arrive at consensus for modifi-
cations to introductory level courses like CS1/2. How-
ever, limited scope experimentation by individual fac-
ulty is usually acceptable. Our assignment modules
are limited in scope and self-contained, to facilitate
selective experimentation by individuals. In this way,
faculty members can gain experience (and collect re-
sults) to assist the committee’s decision making pro-
cess.

• Faculty Experience: Many faculty did not grow up
playing computer games and most are not familiar
with graphics programming. To facilitate adoption,
game-themed assignment modules should be skeleton
applications with complete graphics and user interac-
tion functionality. In this way, faculty and students
only need to concentrate on the missing core CS con-

cepts. In addition, tools and support should be pro-
vided for the interested faculty to develop their own
game-themed assignments. It is important that the
provided tools define the proper abstractions to hide
the details of real-time graphics programming.

• Material Neutrality : As with any powerful tool, inap-
propriate use of games can backfire and result in fur-
ther alienation of under-represented groups [40]. It is
important that the materials built are gender and ex-

pertise neutral. For example, it is important to avoid
violence (shooting), and unnecessary competitions [2,
20, 31]. The materials should discourage superfluous
graphics and user interaction programming.

• Infrastructure Support : Free and simple are the key-
words here. Given the financial reality, all materials
must be freely available; the associated infrastructure
requirements must be modest and straightforward.

• Academic Integrity : Since our work focuses on the
needs of the faculty, the discussion and analysis have
been centered around the perspective of the adopting
faculty. It is important to remind ourselves that ulti-
mately, the goal of this work is to facilitate students’
learning about core CS concepts. Any dilution, in fa-
vor of even acquiescing to their motivation as game
developers, would do the students a disservice.

4. DESIGN AND IMPLEMENTATION
Our efforts are guided by three principles. (1) Neutrality,
with respect to both gender and programming experience.
The importance of this cannot be overstated, as we cannot
afford to alienate under-represented groups. (2) Simplicity,
with respect to resource requirements (as opposed to be-
ing technically easier for the students). Simpler is better,
unless the instructional integrity of the faculty member’s
existing course materials is an issue. (3) Modularity, mean-
ing that each assignment module should be completely self-
contained, and should include sufficient supporting materi-
als that faculty can consider the adoption of each assignment
in isolation.

Based on these principles, this section discusses our de-
sign decisions and describes our implementation efforts. All
materials mentioned in this and next sections are available
on-line at [1].

4.1 Implementation Platform
There has been work done in integrating the tools required
for building interactive graphical computer games into in-
troductory programming courses, including event handling
(e.g., [13]), graphical user interfaces (GUI) (e.g., [33]) and
graphical application programming interfaces (API) (e.g., [30]).
In our case, to maintain simplicity, we are interested in hid-

ing these aspects of games programming. We need a plat-
form that transparently integrates all of the above tools so

that faculty and students do not need to be aware of their
existence.

We have chosen the C# programming language and the
Microsoft XNA framework [4]. Our choice is governed pri-
marily by the fact that C#, XNA, and Microsoft’s Games
Studio Express combination is the only publicly and freely
available solution that provides seamless integration of the
development environment, programming language, GUI API,
and graphics API1.

A very important benefit of our choice is the fact that
XNA based programs can run on both the PC and the
XBOX 360 platforms. With our secondary goal of develop-
ing an introductory games programming course (e.g., [22]),
this benefit is of special importance.

4.2 The Assignment Modules
The first decision is the technical topics for the assignments.
Becker [9] and Bayliss [8] are excellent references for ideas
that relate fundamental programming concepts to existing
commercial video games. In our case, we must be concerned
with any unnecessary complexity; we need simple interactive
graphical applications that assist students in implementing
the relevant programming concepts. At the same time, we
must ensure that our assignments are interchangeable with
those of typical CS1/2 courses.

We have taken a reverse adoption strategy and adopted
the technical topics for the game-themed assignments from
the console-assignments in our existing CS1/2 courses [3].
There are several advantages to this strategy. (1) Our ex-
isting CS1/2 courses are well-established with many batches
of successful alumni in advanced CS courses and in indus-
try. This success justifies the selected technical topic areas.
(2) Assignments with identical technical topic areas imply
they can be interchanged. This offers a perfect vehicle for
the second phase of our project, where we can simply replace
corresponding assignments and study the effects. (3) The
console-assignments are included as part of the assignment
modules. In this way, each assignment module addresses a
well defined technical topic area and has two versions: a con-
sole version and a game-themed version. The console version
of the assignment is an excellent and familiar reference for
faculty members unfamiliar with games programming. The
next section will describe the assessment procedure that en-
sures that the console and game-themed versions of the as-
signment are equivalent.

Within its particular technical topic, each assignment mod-
ule is designed to be self-contained, and consists of materials
for both the faculty and the students.

For the faculty, each module includes a summary of pre-
requisites and learning outcomes, a sample pre- and post-
test, a sample grading rubric, sample solutions for both con-
sole and game-themed versions, frequently asked questions,
and an implementation tutorial. The implementation tuto-
rial is a step-by-step guide on the implementation of the
game-themed assignment. For interested faculty, this tu-
torial demonstrates how they can implement game-themed
assignments on their own.

For the students, each module includes a description of
the assignment, and a skeleton starter project. The game-
themed starter project is a game-like application where all

1At the time when the project started, our main reservation with
a Java based approach was the prospect of working with the sep-
arate Java3D library.

necessary graphics and user interactions are provided. Stu-
dents work with the starter project to fill-in the missing,
relevant, core CS concepts to complete each assignment.
In this way, the assignments can maintain gender neutral-

ity and programming experience neutrality, because students
are not expected or encouraged to develop any games from
scratch.

We have implemented 6 assignment modules. We plan
to use these to replace the corresponding assignments in
our existing CS1/2 courses in Phase 2 of our project. The
6 modules cover topic areas that include integer division
and the modulus operator, random number generation, in-
heritance, 2D arrays, class hierarchy/inheritance, linked lists
and queues, and arrays of object references. After the dis-
cussion of the assessment procedures in the next section,
Section 6 presents two of the assignments in detail.

4.3 The Supporting Library
All game-themed assignments are implemented based on a
simple 2D library. This library is designed to support faculty
members interested in developing their own game-themed
assignments. To maintain simplicity, the library consists of
a single superclass for assignments, a handful of drawing
functions, and an instance of the game controller object for
handling input.

// Label A: AssignmentBase Subclass responsibilities:
public Constructor (...) // construct and define drawing dimension
protected override void InitializeWorld() // called once at init time
protected override void UpdateWorld() // called every 25 msec
protected override void DrawWorld() // called every 25 msec

// Label B: Output drawing support
void EchoToBottomStatus(String msg)
void EchoToTopStatus(String msg)
void DrawCircle(Vector2 at, float radius,...String imageFile)
void DrawRectangle(Vector2 center,...dimension...String imageFile)

// Label C: Input support
XnaAssignmentBase.GamePad. // poll object for state of input device

The above listing shows all the functions in our library.
With this library, the only requirement for faculty to de-
velop real-time graphical applications is an understanding of
the UpdateWorld function (which updates game state) and
the DrawWorld function (which draws all graphical prim-
itives). Under Label B are the output drawing functions.
Notice that, besides text output, the only supported graph-
ical primitives are squares and circles. Our design agrees
with results from previous approaches, which indicated that
only simple primitives are required for CS1/2 courses [34].
The GamePad object under Label C contains instances of
relevant button and trigger objects that reflect the state of
the input device. Associated with this library is a step-by-
step tutorial explaining each of the above functions within
a simple interactive graphical application.

The simplicity of the library is noteworthy, as this simplic-
ity enables a wide range of uses. There is no graphical class
hierarchy or any utility functions (e.g., collision detection).
Our design decision is based on experiences from building
graphics libraries [37]. We have learned that clean and ef-
ficient utility functions enforce requirements on graphical
objects and the complexity can increase rapidly resulting
in elaborate class hierarchies. As discussed in recent re-
sults (e.g., [12, 33]), such hierarchies may not be well suited
for supporting different approaches [11] to teaching CS1/2
classes. Moreover, many games (e.g., Reversi [39]) do not re-
quire any additional functionality from our library. Our goal
is to facilitate experimentation by novice faculty members,
and so simplicity is the key.

Circle

color repeats

Figure 1: The Operator Game.

5. ASSESSMENT
Because we are developing “game-themed” applications for
teaching concepts, it is important to have an independent
evaluator assessing the integrity of the materials. In ad-
dition, the technical equivalence between the console and
game-themed assignments must be verified. Professor Ruth
Anderson is our external reviewer. She is an experienced in-
structor who has taught CS1/2 courses many times at multi-
ple institutions and in a variety of programming languages.
She has won multiple teaching awards (e.g., [5]) and is active
in CS education research (e.g., [7, 23]). In addition to these
excellent credentials, Professor Anderson is perfectly suited
for evaluating our materials because she has never taught a
graphics or gaming course and has limited experience with
GUI programming. Before this project, Professor Ander-
son did not know anyone on the project team. During the
project, we avoided in-person or verbal communications to
maintain impartiality, and to simulate investigations by cu-
rious faculty. The actual assessment was performed across
our project web-site [1] where newly released materials were
downloaded, examined, and tested. Feedback was posted
via a custom evaluation form.

Our evaluation form is designed to collect both forma-
tive feedback and quantitative scores [18]. Each assignment
module is assessed in two areas. (1) Quality of the assign-

ment, which focuses on the technical equivalence between
the console and game-themed assignments, and the sup-
porting materials (e.g., pre/post test, etc.). (2) Potential

for adoption, which focuses on the factors that may prevent
adoption of high quality assignments.

Based on the review feedback, the assignments were well
received overall. We believe that because the assignments
were reversely adopted, technical merits were never an is-
sue. Professor Anderson agrees with us that the assign-
ments are appropriate for typical CS1/2 courses. Assign-
ments with low quality of assignment scores were revised
and re-assessed. This process continues until the formative
comments are positive and the numeric scores are above 4
(out of 5). As expected, all of the low scores were caused by
game-themed assignments. Typically, the reasons are in the
following categories.

1. Differences in difficulties: initial game-themed as-
signments are often too difficult, complex, or intimi-
dating. Based on the feedback, we have adjusted the
assignments accordingly.

2. Inappropriate use of concept: designing assign-
ments around negative results from game play is a bad

Circle covered
by a ladybug image Rectangle covered

by a “box” image

Tools: low priority Animals: high priority

Maintained as a
priority queue

Figure 2: Catch Objects Game.

idea. For example, a linked list structure is invoked
for bookkeeping when the player has been unsuccess-
ful at a given task. In this case, in order to test the
linked list, students must purposely be unsuccessful at
playing the game. This can take the fun out of the
assignment.

3. Deficiency in support: the development team of-
ten overlooked important details. For example, in the
beginning, a specialized hardware controller was the
only way to control a game. This problem was reme-
died with keyboard simulation.

Finally, because Java is the language of choice at Professor
Anderson’s institution, we were not surprised when we re-
ceived consistently lower scores in the potential for adoption

area. We are fully aware that the language issue must be ad-
dressed for wide adoption of our results. Now that we have
experience building these assignments, and understand the
important attributes of the library, we are investigating the
possibility of porting our results to other environments.

6. EXAMPLE ASSIGNMENTS
As mentioned, the game-themed assignments are simple “in-
teractive graphics applications”. This section uses two of
the assignments to demonstrate the general flavor of the
programs.

Example 1: Assignment on integer arithmetic. This is
designed to be the very first CS1 assignment. Figure 1 shows
the game-themed version of the assignment. In this case,
the user can control the horizontal position of the circle in
the front. The color bands in the background are vertical
rectangles with repeating colors. Given this skeleton ap-
plication, students must program proper integer arithmetic
to control the color of the circle, such that as the circle is
moved horizontally its color always reflects that of the rect-
angle underneath it. The console version of the assignment
is a simple character based flash-card quiz program. In both
cases, the solution consists of 10’s of lines of C# code.

Example 2: Assignment on linked lists based queues. In
this assignment, students must maintain a priority queue.
The priority queue consists of two linked list based queues
with “high” and “low” priorities. Figure 2 depicts the game-
themed version. In this case, the user can insert either high
(animals) or low (tools) priority objects into the priority
queue located at the top of the window. A high priority ob-
ject would be enqueued to the front queue, and low priority
object to the back queue. The game continuously dequeues

and drops objects from the priority queue. The user moves
the box to catch the dropping object. The console version
of this assignment is a text-based “help desk” application.
The user can enter high or low priority requests to be en-
queued to the front/back queue respectively. Similar to the
game-themed version, the retrieval of requests is a simple de-
queue operation on the priority queue. The skeleton starter
projects for both versions contain all necessary I/O function-
ality: graphics/GUI for game-themed, and character I/O for
console. In both cases, students only need to implement the
linked list queue and the priority queue. The solutions are
almost identical involving about 200 lines of C# code.

Based on these assignment modules, we have begun the
second phase of our project. Since both versions of any given
assignment cover identical technical topics, we are able to
adopt the game-themed version transparently. We are in-
terested in verifying that the game-themed assignments do
not require extra resources from the faculty, that they can
achieve similar student learning outcomes, and that they
can increase student interest and engagement. We plan to
demonstrate students’ assignments on the XBOX 360 con-
soles in our high school recruitment trips.

7. REFERENCES
[1] XNA-based assignment home page:

http://depts.washington.edu/cmmr/Research/XNA Games.
[2] In J. Cassell and H. Jenkins, editors, From Barbie to

Mortal Kombat: Gender and Computer Games. MIT Press,
1998.

[3] BIT142/143: Intermediate programming and data
structure, 2007. Cascadia Community College.

[4] XNA game studio, 2007. Microsoft Inc,
http://msdn2.microsoft.com/en-us/directx/Aa937794.aspx.

[5] R. E. Anderson, ACM Faculty Award, Dept. of CS, U. of
Virginia, 2004.

[6] J. Alm, R. Baber, S. Eggers, C. O’Toole, and A. Shahab.
You’d better set down for this!: creating a set type for cs1
& cs2 in c#. In ITiCSE ’02, PP. 14-18, 2002.

[7] R. Anderson, R. Anderson, K. M. Davis, N. Linnell,
C. Prince, and V. Razmov. Supporting active learning and
example based instruction with classroom technology.
SIGCSE Bull., 39(1):69–73, 2007.

[8] J. D. Bayliss and S. Strout. Games as a ”flavor” of cs1. In
SIGCSE ’06, PP. 500-504, 2006.

[9] K. Becker. Teaching with games: the minesweeper and
asteroids experience. J. Comput. Small Coll., 17(2):23-33,
2001.

[10] K. Bierre, P. Ventura, A. Phelps, and C. Egert. Motivating
oop by blowing things up: an exercise in cooperation and
competition in an introductory java programming course.
In SIGCSE ’06, PP. 354-358, 2006.

[11] K. B. Bruce. Controversy on how to teach cs 1: a
discussion on the sigcse-members mailing list. SIGCSE
Bull., 37(2):111-117, 2005.

[12] K. B. Bruce, A. Danyluk, and T. Murtagh. A library to
support a graphics-based object-first approach to cs 1. In
SIGCSE ’01, PP. 6-10, 2001.

[13] H. B. Christensen and M. E. Caspersen. Frameworks in cs1:
a different way of introducing event-driven programming.
In ITiCSE ’02, PP. 75-79, 2002.

[14] W. Dann, S. Cooper, and R. Pausch. Learning to Program
with Alice. Prentice Hall, 2006.

[15] P. Drake. Data Structures and Algorithms in Java.
Prentice Hall, 2006.

[16] J. Ernie Giangrande. Cs1 programming language options.
J. Comput. Small Coll., 22(3):153-160, 2007.

[17] N. Faltin. Designing courseware for active learning with
virtual board games. In ITiCSE ’99, PP. 135-138, 1999.

[18] J. Frechtling, L. Sharp, and Ed. User-Friendly Handbook
for Mixed Method Evaluations. Directorate for Education
and Human Resources, Division of Research, Evaluation
and Communication, National Science Foundation, 1997.

[19] R. Giguette. Pre-games: games designed to introduce cs1
and cs2 programming assignments. In SIGCSE ’03, PP.
288-292, 2003.

[20] D. Gürer and T. Camp. An acm-w literature review on
women in computing. SIGCSE Bull., 34(2):121-127, 2002.

[21] M. Guzdial and E. Soloway. Teaching the nintendo
generation to program. CACM, 45(4):17-21, 2002.

[22] P. Haden. The incredible rainbow spitting chicken: teaching
traditional programming skills through games
programming. In ACE ’06: Austalian conference on
Computing education, PP. 81-89, 2006.

[23] T. B. Horton, R. E. Anderson, and C. W. Milner. Work in
progress-reexamining closed laboratories in computer
science. Proc. FIE 2004, 2004.

[24] T. Huang. Strategy game programming projects. In
CCSC-NE ’01, PP. 205-213.

[25] R. Jiménez-Peris, S. Khuri, and n.-M. Marta Pati˙Adding
breadth to cs1 and cs2 courses through visual and
interactive programming projects. In SIGCSE ’99, PP.
252-256, 1999.

[26] M. Külling and P. Henriksen. Game programming in
introductory courses with direct state manipulation. In
ITiCSE ’05, PP. 59-63, 2005.

[27] S. Leutenegger and J. Edgington. A games first approach
to teaching introductory programming. In SIGCSE ’07,
PP. 115-118, 2007.

[28] M. C. Lewis and B. Massingill. Graphical game
development in cs2: a flexible infrastructure for a semester
long project. In SIGCSE ’06, PP. 505-509, 2006.

[29] T. Lorenzen and W. Heilman. Cs1 and cs2: write computer
games in java! SIGCSE Bull., 34(4):99-100, 2002.

[30] S. Matzko and T. A. Davis. Teaching cs1 with graphics and
c. In ITICSE ’06, PP. 168-172, 2006.

[31] M. J. Natale. The effect of a male-oriented computer
gaming culture on careers in the computer industry.
SIGCAS Comput. Soc., 32(2):24-31, 2002.

[32] I. Parberry, T. Roden, and M. B. Kazemzadeh. Experience
with an industry-driven capstone course on game
programming. In SIGCSE ’05, PP. 91-95, 2005.

[33] V. K. Proulx, J. Raab, and R. Rasala. Objects from the
beginning - with guis. In ITiCSE ’02, PP. 65-69, 2002.

[34] E. S. Roberts. A c-based graphics library for cs1. In
SIGCSE ’95, PP. 163-167, 1995.

[35] J. M. Ross. Guiding students through programming
puzzles: value and examples of java game assignments.
SIGCSE Bull., 34(4):94-98, 2002.

[36] K. Sung. Xna based games-themed programming
assignments for cs1/2. Microsoft Research, Computer
Gaming Curriculum in Computer Science, Award Number:
15871, 2006-2008.

[37] K. Sung, P. Shirley, and B. R. Rosenberg. Experiencing
aspects of games programming in an introductory computer
graphics class. In SIGCSE ’07, PP. 249-253, 2007.

[38] E. Sweedyk, M. deLaet, M. C. Slattery, and J. Kuffner.
Computer games and cs education: why and how. In
SIGCSE ’05, PP. 256-257, 2005.

[39] D. W. Valentine. Playing around in the cs curriculum:
reversi as a teaching tool. J. Comput. Small Coll.,
20(5):214-222, 2005.

[40] H. M. Walker. Do computer games have a role in the
computing classroom? SIGCSE Bull., 35(4):18-20, 2003.

[41] S. A. Wallace and A. Nierman. Addressing the need for a
java based game curriculum. J. Comput. Small Coll.,
22(2):20-26, 2006.

[42] U. Wolz, et. al. Digital gaming as a vehicle for learning. In
SIGCSE ’06, PP. 394-395, 2006.

