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Abstract

The modern graphics processing units (GPUs), found on almost every personal computer, use the z-buffer algorithm to compute
visibility. Ray tracing, an alternative to the z-buffer algorithm, delivers higher visual quality than the z-buffer algorithm but has
historically been too slow for interactive use. However, ray tracing has benefited from improvements in computer hardware, and many
believe it will replace the z-buffer algorithm as the graphics engine on PCs. If this replacement happens, it will imply fundamental
changes in both the API to and capabilities of 3D graphics engines. This paper overviews the backgrounds in z-buffer and ray tracing,
presents our case that ray tracing will replace z-buffer in the near future, and discusses the implications for graphics oriented classes
should this switch to ray tracing occur. Since computer gaming is one of the most important industry driving graphics hardware and the
fact that recently there are many computer science courses related to games and games development, we also describe the potential
impact on games related classes.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction classes of applications that have not significantly benefited
from this revolution:
At present almost every personal computer has a

dedicated processor that enables interactive 3D graphics. e those that have data sets much larger than a few million
These graphics processing units (GPUs) implement the triangles;

z-buffer algorithm introduced in Catmull’s landmark e those that have non-polygonal data not easily converted
University of Utah dissertation [1]. These GPUs can into triangles;

interactively display several million triangles with texture e those that demand high quality shadows, reflection, and
and lighting. The wide availability of GPUs has revolutio- refraction effects.

nized how work is done in many disciplines, and has
enabled the hugely successful video game industry. While
the hardware implementation of the z-buffer algorithm has
allowed excellent interactivity at a low cost, there are three

These classes of applications typically use Whitted’s ray
tracing algorithm [2-4] or Cook’s distribution ray tracing
(DRT) algorithm which is an order of magnitude more
expensive than simple Whitted ray tracing but allows many
advanced visual effects (Fig. 1). The ray tracing algorithm

*Corresponding author. is better suited to huge data sets than the z-buffer

E-mail address: ksung@u.washington.edu (K. Sung). algorithm because it creates an image in time sub-linear
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Fig. 1. Ray tracing can robustly and naturally support next generation visual effects not easily combined with GPU graphics including depth-of-field,
motion blur, glossy and specular reflection, soft shadows, and correct refraction. More details on the system that generated of these images are available

in [3].

in the number of objects while the z-buffer is linear in the
number of objects. It is ray tracing’s larger time constant
and lack of a commodity hardware implementation that
makes the z-buffer a faster choice for data sets that are not
huge. Ray tracing is better suited for creating shadows,
reflections, and refractions because it directly simulates the
physics of light. Ray tracing enables these forms of isolated
visibility queries that are problematic (or impossible) for
the z-buffer algorithm. Ray tracing also allows flexibility in
the intersection computation for the primitive objects that
allows non-polygonal primitives such as splines or curves to
be represented directly. Unfortunately, computing these
visual effects based on simulating light rays is computa-
tionally expensive, especially on a general-purpose CPU.
The ray tracing algorithm currently requires tens to
hundreds of CPUs to be interactive at full-screen resolution.

Games have driven almost all desktop 3D graphics, and
we believe that trend will continue. Because ray tracing is
well-suited to support a quantum leap in the ability of
games to support higher-order surfaces, complex models,
and high quality lighting, we believe games will migrate to
using it once ray tracing is fast enough. In this paper we
argue that it is feasible to make ray tracing fast enough,
and that this implies that migration will take place. Because
such a migration implies a basic change of algorithm, it will
have major effects on both future graphics and games
related courses. The main purposes of this paper are to
analyze these issues and examine how courses related to
graphics and games might be effected.

Another reason we think ray tracing should have more
of a place in computer graphics classes is that academics
are well ahead of industry in ray tracing research. This
enables an instructor to make the students feel like they are
“in the club” in a way that their cohorts in industry are
not. It becomes increasingly difficult to convince a college-
age student that they can learn things in the academic
environment that are unavailable in industry, it is
important to take advantage of such opportunities and
ray tracing presents a major one.

We first give an overview of the z-buffer algorithm found
in GPUs, and contrasts this with the ray tracing algorithm.
We then argue, in detailed, why we believe ray tracing is
coming to the desktop, and probably sooner than is

commonly believed. Finally, we discuss what the implica-
tions of this change are for graphics and games education.

2. Ray tracing versus rasterization

In this section we review the ray tracing and z-buffer
algorithms, the applications that use them, the perfor-
mance such applications demand, and the various ways
such performance might be delivered.

Current GPUs are based on the z-buffer [1] which is a
straightforward algorithm. In hardware implementations it
typically has two frame buffers; one for color and one for z
(depth) values. While computing one of the color buffers (the
“back” buffer), it displays the other (the “front” buffer).
When all of the colors are computed in the back buffer, the
two buffers are “swapped” (the front becomes the back and
vice versa) and the new set of colors are displayed. The
z-buffer is only used while computing the new colors in the
back buffer. Computing the back buffer is a loop over all
triangles:

initialize all pixel colors to background color
initialize all pixel z values to oo
for all N triangles do
for each pixel p that triangle might be seen through do
compute color ¢, and depth z,,,,
if 2., <z, then
Cp = Cpew
Zp = Znew-

The if statement is how the hidden surface elimination
remains simple; overlapping polygons settle their order by
means of storing the closest depth value seen so far in the
triangle loop. This algorithm’s runtime is proportional to
the number of triangles N. While the algorithm can be
made sub-linear through occlusion culling [6], randomized
culling [7], and by level-of-detail management [§], these
techniques add complexity and data restrictions to the
implementations.

The z-buffer algorithm has difficulty in three main areas:
rendering images with shadows and mirror-like reflections
and refractions, rendering images with extremely large data
sets, and rendering images with primitives that are not
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z-buffer

ray tracing \

Fig. 2. Top: the z-buffer algorithm projects a triangle toward the nine
pixel screen and writes all pixels with the distance to the eye (the ““z” value)
and its color unless a smaller distance is already written in the z-buffer.
Bottom: the ray tracing algorithm sends a 3D half-line (a “‘ray”) into the
set of objects and finds the closest one. In this case the triangle 7', is
returned.

simple triangles. The ray tracing algorithm loops over
pixels rather than objects:

for all P pixels do
find the nearest object seen through that pixel.

This loop “finds the nearest object” by doing a line query
in 3D (Fig. 2). Some implementations do ‘“double-
buffering” like the z-buffer above, but the algorithm above
is inherently ““frameless™ in that a pixel can be immediately
updated when computed. Frameless implementations have
some advantages in responsiveness [9—11], and are proble-
matic for the z-buffer which does not know the color of any
pixel until the end of its main loop.
There are five key advantages of ray tracing:

1. for preprocessed models, ray tracing is sub-linear in N
[12], so for some sufficiently large value of N it will
always be faster than a z-buffer which is linear in N;

2. ray tracing can process curved surfaces such as splines in
their native form [13];

3. ray tracing can naturally support volume data with
partial transparency [14];

4. because a ray tracing program must perform a 3D line
query, it can reuse this line query to casily generate
shadows and reflections that also depend on a 3D line
query (Fig. 3) [2];

5. the ray tracing algorithm is highly parallel, and has been
demonstrated to have over 91% parallel efficiency on
512 processors [10].

reflected ray

glass sphere

matte plane

refracted ray

shadow

Fig. 3. Ray tracing can easily generate shadow rays, reflected rays, and
refracted rays. These rays need not have a shared origin so they are
difficult to duplicate for a z-buffer algorithm.

light

lens

pixel

Fig. 4. In distribution ray tracing, multiple samples are taken per pixel
and these are used both for antialiasing and other effects such as soft
shadows as is shown here by sampling different points on an area light
source.

While the z-buffer can be made to do specular reflections
and shadows [15,16], the underlying techniques are neither
general nor robust. However, the z-buffer algorithm does
currently have two important advantages over ray tracing:
although it is linear in N, it has a very low time constant so
it can render scenes with moderate N very quickly; it has a
mass-produced hardware implementation available that
has lowered the time constant even further. Because the N
for real applications is increasing exponentially for most
applications, the time constant advantage is of decreasing
importance. Further, the ubiquitous special purpose hard-
ware exaggerates the time constant difference between ray
tracing and the z-buffer approaches.
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Fig. 5. Left: ray tracing with shadows only with 1 sample per pixel. Middle: Whitted-style ray tracing with 1 sample per pixel. Right: distribution ray
tracing with 64 samples per pixel. We expect Whitted-style ray tracing to soon be on the desktop, and distribution ray tracing to later follow.

Ultimately, we expect DRT (Figs. 4 and 5) to end up on
the desktop because of its higher image quality. However,
because it requires tens of samples per pixel, it is
intrinsically more expensive than traditional Whitted-style
ray tracing.

Simulation and games demand interactivity and cur-
rently use z-buffer hardware almost exclusively. However,
they spend a great deal of effort and programmer time
creating complicated “hacks” to fake lighting effects and
reduce N by model simplification and in the end they have
imagery of inferior quality to that generated by ray tracing.
Those industries would use ray tracing if it were fast
enough.

3. Why we think ray tracing is coming

In this section we examine exactly what the gap is
between current ray tracing performance and that needed
for games, and speculate on how that gap will be closed. As
a reference, we target a HDTV-type 1080p monitor (e.g.,
displays by game console) refreshed at 60 Hz, or ‘“‘real
time” frequency. This is about 2 million pixels per update.

Because visual quality is important, we must also
consider ‘“‘secondary” rays. These can be for shadows,
reflections, or refractions. The individual viewing ray and
secondary rays are sometimes called ray segments [17], and
we will use that terminology. We note that for a general
scene many ray segments per viewing ray are typically
required. For example, a headlight model will have five
segments for the simplest path through the assembly (one
viewing ray, two refracted rays before the reflector, one
reflected ray, and two refracted rays through inner and
outer surfaces of the glass to leave the headlight). Other
paths will have more. An architecture space will typically
have dozens up to hundreds of lights, each generating a
shadow ray segment.

The dominant visual artifact of interactive ray tracing
programs is flickering caused by subpixel objects of
different colors moving over the pixel center when the
objects or eye moves [18]. This is best alleviated by sending
multiple viewing rays per pixel and averaging the result,
which not only alleviates flickering but also provides
antialiasing. Current z-buffer systems use 4-9 samples per
pixel on object edges to accomplish this. A high quality ray
traced image must have at least 4 viewing rays per pixel.

Our own software implementation of Whitted ray
tracing runs at approximately 1 million pixels per second

per core on complex scenes (hundreds of thousands of
primitives) on a 2 GHz Opteron 870. For DRT with 64
samples per pixel we are about 100 times slower than that.
The slowdown is more than a factor of 64 because in
addition to using 64 times as many samples, the spread of
rays resulting from sampling areas such as lights decreases
coherence and adds some per-sample computation. So in
software on one core with current CPU technology we are
approximately a factor of 100 away from our 60 Hz 2
million pixel goal, and for DRT we are approximately a
factor of 10,000 away. So we believe we need improvements
of about 100 times over current one-core software systems
for ray tracing to be fluid for games, and a further factor of
100 for DRT to become fluid.

For adequate, as opposed to ideal, performance, we
could also assume 480p30 (300k pixels, 30 Hz). Further, we
could use 16 samples per pixel for DRT. This puts us less a
factor of 10 away for one core for Whitted-style ray tracing
and less than a factor of 200 for DRT for one core. Given
that eight-core CPUs are on the horizon, and dual CPU
quad-core systems are available now, Whitted-style ray
tracing in software should be fluid quite soon on the
desktop with a 480p30 display. Because clock speeds and
process sizes are unlikely to shrink much more [19], to gain
a factor of 100 over current one-core systems, a change of
architecture is probably needed.

A general rule of thumb in system design is that system
generality and system performance are inversely correlated.
That is, a system that is good in general is not excellent
at anything in specific. This is exactly the insight that
caused the GPU revolution in the 1980s [20-23]. A
carefully crafted computational pipeline for transforming
triangles and doing depth checks combined with an equally
carefully crafted memory system to feed those pipelines
combined to make our current generation of z-buffer
GPUs possible. Current GPUs have up to 192 floating
point units on a single GPU [24] and aggregate memory
bandwidth of 15-30 Gbytes per second from their on-chip
memories [25]. These combine to achieve graphics perfor-
mance that is orders of magnitude higher than could be
achieved by running the same algorithms on a general-
purpose processor.

Virtually all of these performance gains of GPUs are due
to architectural improvements. In fact, GPUs generally run
with quite a bit slower clock than high-performance CPUs
in the same process generation. A state of the art GPU
might run at 300450 MHz whereas a CPU might run at
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close to 4 GHz. The architectural advantage comes mainly
from custom floating point pipelines designed to execute
the operations required for z-buffer graphics and from
wide, fast, on-chip memory structures. Pipelines of this sort
reduce the need to bring data in and out of a register file as
is done on a general CPU. High-performance CPUs
generally also use a large number of custom and dynamic
circuits in their critical paths that are hand designed and
hand tuned for speed. In general, custom circuits run
between 3 to 8 times faster than even semi-custom cell-
based ASICs [26], but these highly sensitive and difficult
custom circuits are not typically required in GPUs, other
than as part of their highly replicated floating point
arithmetic units. This is encouraging because it means that
if similar architectural improvements are possible for a ray
tracing chip, extremely high-performance custom circuit
techniques should not be necessary, other than for a few
highly replicated arithmetic subsystems.

Fundamentally ray tracing, like GPUs, will require a
special purpose pipeline of floating point arithmetic units
tuned to a specific set of operations. There are three
fundamental operations that must be supported: intersect-
ing a ray with the spatial data structure that encapsulates
the scene objects, intersecting the ray with the primitive
objects contained in the selected data structure leaf nodes,
and computing the illumination and color of the pixel
based on the intersection with the primitive object and the
collection of the contributions from the secondary ray
segments. These operations are different enough from the
GPU pipeline that it is unlikely that a GPU will ever
support ray tracing in an effective way. However, it is
certainly feasible to design suitable high-performance
floating point units and connect them in ways suitable to
the ray tracing algorithm. More promising are architec-
tures such as Intel’s Tera-scale prototype that use tens of
simple cores with good floating point capabilities. Such
chips would surely be better suited to ray tracing than
current general-purpose CPUs, and would probably be
sufficient for 1080p Whitted-style ray tracing. For DRT, a
special purpose ray tracing chip may be needed. A
prototype ASIC design indicates that this is probably a
practical route even if improvements in process are slow
from now on [27].

In summary, Whitted-style ray tracing at 480p30 is
already fluid for complex models on eight-core systems.
Improvements to hardware should allow a gradual migra-
tion to 1080p60 and later distribution ray tracer. The basic
issues faced by users and programmers will not be
influenced much by that migration. Because of ray tracing’s
high visual quality, it should have a market, and games
programmers will need to understand ray tracing.

4. Impact on computer graphics courses
Over the past two decades computer graphics courses

[28-31] exhibit a pattern of curriculum refinement driven
by the changes in graphics hardware. Although the

foundations in the field remain the same, the subset of
these concepts covered and the context for which these
concepts are presented have evolved significantly. For
example, 20 years ago learning and practicing raster line
drawing algorithms were relevant, while with current
GPUs one can argue that it is more important to
understand and practice the mathematics behind inter-
active camera control [31]. If we are correct that ray tracing
will replace z-buffer then computer graphics courses will
once again need to evolve.

Just as real time z-buffer hardware did not alter the core
concepts in computer graphics, we do not expect real time
ray tracing hardware to fundamentally impact the dis-
cipline. The topics covered in an introductory course will
continue to be foundational concepts [32,33] such as
transformation, hierarchical modeling, illumination mod-
els, camera modeling. However, as in the case of real time
z-buffer, we expect the priority and context to evolve. We
now list the biggest likely changes in emphasis.

Hllumination models: Ray tracing integrates visibility and
illumination computations. For example, shadows are
computed as part of visible energy received from the light
source, and reflection is computed as visible energy received
from the mirror reflection direction. In this way, many
common physical effects that are currently referred to as
“special effects” (e.g., transparency, reflection, etc.) will
evolve back into their natural illumination computations.

Perspective transform and homogeneous coordinate: Ray
tracing simulates perspective naturally. For this reason, the
mathematics model that simulates foreshortening and the
associated homogeneous coordinate system will become
less important. This will simplify the traditional transfor-
mation pipeline, where the last stage of the pipeline,
projection transform, will not be needed anymore.

Higher-order surfaces: Ray tracing computes visibility
by mathematically intersecting a line and a primitive.
It is straightforward to ray trace mathematically defined
higher-orders surfaces such as trimmed NURBS. Without
tessellation, higher-order primitives have much more
compact representations while retaining all the original
geometric integrity. For example, an implicit sphere can be
represented by a handful of variables while the mathematic
expression maintains quadratic continuity throughout the
surface. The current heavier emphasis on object models
based on tessellated triangle meshes will shift towards
modeling based on surfaces’ native representations.

Volumetric effects: Ray tracing supports volumetric data
naturally. Volumetric effects like arial fog or more general
participating media (e.g., smoke) can be modeled as
semitransparent volumetric primitives with dedicated
illumination models. The needs for special case shaders,
tricks, and hacks for such effects will greatly diminished.

5. Impact on computer gaming courses

The front end visualization of interactive computer
games depends on computer graphics. Conversely, it is also
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true that computer gaming is the single most important
factor driving the development of computer graphics
hardware. For these reasons, when discussing the impact
of interactive ray tracing, we should also examine its effect
on computer games. Future computer games will take
advantage of the new functionality: the faster ray tracing
hardware, and the drastically improved realism. As
educators, our tasks are to analyze and understand how
to evolve computer gaming courses/curricula accordingly.

The development of courses/curricula associated with
computer gaming has lagged behind the industry quite
significantly. While computer gaming has been around in
different forms for many decades, the first classes dedicated
to games development has become available only in the
early 1990s [34]. During these early times there were very
few computer gaming related classes. Most of the efforts
in incorporating gaming into computer science classes/
curricula had only recently demonstrated significant results
(e.g., [35-41]). In addition, many of these efforts repre-
sented strategies to increase interest and enthusiasm for the
discipline and to counter the drastic downturn in enroll-
ments [42]. Although there are dedicated curriculum
designed to educate next generation games developers
(e.g., [35,43-46]), these programs are new; computer
gaming as a discipline in computer science is a work-
in-progress.

The following discussion is organized based on the
framework described in Sung et al. [41], where we discuss
the effects of interactive ray tracing in each of the: game
programming, game development, and game clients cate-
gories.

Game programming classes: These are classes that study
general technical issues related to programming computer
games (e.g., Kuffner’s CMU course [47]). For example,
topics covered may include path planning algorithms,
terrain representation, etc. The topics covered in these
classes are general and typically can be applied to different
domains. These classes concentrate on covering the games
programming topic area in the IDGA [48] curriculum
framework.

The following are games related programming issues
associated with fast ray tracing.

® Ray tracing is capable of computing line/primitive
intersection extraordinarily fast. The intersection com-
putation is the foundation for supporting collision and
selection. From the games programming perspective, the
challenge would be to efficiently integrate this function-
ality into the core of games engine. In addition, the
entire collision subsystem should be reevaluated. For
example, with the ray tracing collision support, the merit
of support collision primitives becomes questionable.

o Ray tracing naturally supports partial redraw where
redraws only need to occur in regions that changed from
previous frame. This means polygon/primitive count
will not be the only factor affecting the bottom-line
frame rate. In this case, the frame-to-frame coherency

may be even more important. From games program-
ming perspective, it is important to understand and take
advantage of temporal coherence.

Game development classes: These are classes that study
how to design new games as an end product (e.g.,
[35,36,49]). Students in these classes must be concerned
with all aspects of a real game production including
entertainment value, visual quality, audio effects, etc.
When evaluated against the IDGA curriculum framework
we see that these classes cover all the major core topic
areas. For these classes, the challenges are in game design
to improve the aesthetic and the general game play
experience based on the new functionality.

e As discussed, many existing special effects will become
common and natural illumination effects with ray
tracing. Not being special means there will be no special
restrictions associated with the effects (e.g., no restric-
tion on mirror must be planar). However it is also true
that the computations of these effects will not be free or
cheap. For example, although any and every object in a
scene can be reflective, it is always faster to compute the
frame with no reflections. In games development classes,
students must learn to balance the new found flexibility,
against the associated cost to achieve the specific
aesthetic needs of their games.

e As discussed, the ray tracing hardware supports efficient
collision detection, and the ray tracing paradigm sup-
ports partial redraw. These two characteristics suggest
that as long as we limit the changes in consecutive
frames, we can design and interact with scenes of high
complexity. For example, walking into a room full of
objects with detailed geometry with the ability to
interact (e.g., pickup and open) with any object.

Game client classes: These are non-game related CS
classes that creatively integrate games into their existing
curriculum. Typically, games are used as programming
assignments (e.g., [47,50-55]) or to teach abstract concepts
(e.g., [39,41,52,56-58]), or as an example application area
to teach the concepts involved in an entire topic area (e.g.,
[59-61]). These are traditional CS classes that exist
independent from game programming. These classes are
actually clients of game development where they use game
development as a vehicle to deliver specific abstract
concepts. After these classes, students are expected to
understand the abstract concepts, and not the details of
game development. These classes are applications of
computer gaming, we expect the impact on classes in this
category to be indirect and minimal.

Discussion: Our outline of changes to courses above is by
no means exhaustive. Our areas of expertise are in
computer graphics and computer architecture. Based on
our knowledge, we predict interactive ray tracing will
become more prominent in the near future. Because of our
background, and because computer graphics is a better



266 P. Shirley et al. | Computers & Graphics 32 (2008) 260-267

established field, we have some understanding on the
impact of this upcoming change with respect to computer
graphics. We believe ray tracing will also significantly
impact computer gaming and computer gaming related
classes. In this last section, we presented our speculations,
but we are not as confident in these ideas as games classes
are much less well established than graphics classes.
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