Assessing Game-Themed Programming Assignments for
CS1/2 Courses’

Kelvin Sung
Computing and Software Systems
University of Washington, Bothell
ksung@u.washington.edu

Rebecca Rosenberg
Teaching and Learning Center
University of Washington, Bothell
beckyr@u.washington.edu

ABSTRACT

We have designed and implemented game-themed program-
ming assignment modules targeted specifically for adoption
in existing introductory programming classes. These as-
signments are self-contained, so that faculty members with
no background in graphics/gaming can selectively pick and
choose a subset to combine with their own assignments in
existing classes. This paper begins with a survey of previ-
ous results, followed by a description of the game-themed
assignment modules. The paper then focuses on our efforts
in assessing the assignments: including details of the pro-
cedures and instruments for evaluating student achievement
of learning outcomes and attitudes towards the assignments,
as well as the extra effort required of faculty to adopt the
assignments in existing clases.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education — computer science education

General Terms

Design, Experimentation

Keywords
CS1/2, Games, Programming Assignments, Adaptation

1. INTRODUCTION

It has been demonstrated that teaching computer science (CS)
concepts based on programming interactive graphical games
motivates and engages students while accomplishing the de-
sired student learning outcome (e.g., [30, 35]). Our own

*This work is supported in part by the National Science Foun-
dation grant DUE-0442420 and Microsoft Research under the
Computer Gaming Curriculum in Computer Science RFP, Award
Number 15871.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GDCSE’08, February, 2008, Miami, Florida, USA.

Copyright 2008 ACM 978-1-60558-057-9/08/02 ...$5.00.

Michael Panitz
Software Programming
Cascadia Community College
mpanitz@cascadia.ctc.edu

Ruth Anderson
Computer Science and Engineering
University of Washington, Seattle
rea@cs.washington.edu

experience in integrating computer graphics and games pro-
gramming [29] verified this observation. Inspired by the pos-
itive feedback from students and local employers, we started
investigating possibilities of integrating games programming
into other CS courses.

Because of the relatively straightforward technical topic
areas and the abundant, favorable results (e.g., [6, 20]) we
began our investigation with introductory programming courses
(CS1/2). Our initial plan was to examine existing approaches,
identify appropriate ones, and gradually integrate them into
our courses. However, as discussed in the next section, most
of the existing work is exploratory in nature and performed
by faculty with expertise in gaming/graphics. Their results
usually lack generality and do not facilitate gradual adop-
tion by faculty that lack graphical/gaming expertise.

In 2006, we began our investigation into designing and
developing CS1/2 game-themed programming assignments
specifically targeted for selective adoption and limited-scope
experimentation by faculty with no gaming/graphics experi-
ence [27]. Our work follows the observation that the modern
generation of students demands multimedia experiences, i.e.,
real time interaction in a visual environment [14]. With ex-
isting results demonstrating that students’ needs can be met
(e.g., [7]) and learning outcomes can be consistent (e.g., [6]),
our work focuses on the needs of the faculty. Our project
consists of two phases. First, develop materials that are suit-
able for adoption. Second, adopt the materials in existing
courses and then measure student acheivement of learning
outcomes, student engagement and interest in the area, and
the required faculty efforts.

The details of design and development of the game-themed
assignments are discussed in [28]. In this paper, we first
survey existing work done in combining CS1/2 courses with
computer gaming. After that, we briefly describe the re-
sults from the first phase of the project and concentrate on
the current efforts in assessing the effectiveness of the game-
themed assignments.

Our assignments are simple ‘“real-time interactive graph-
ics programs”. Strictly speaking, these programs do not
qualify as “games” because they have unknown entertain-
ment value. However, in our current implementation, the
programs run on both PCs and the XBOX 360 gaming con-
sole. As such, we use the term: “game-themed”.

2. GAMES AND CS1/2 CLASSES

While there are many types of “games” that are suitable
for teaching CS subjects (e.g., non-computer games [10])

our focus is interactive graphical computer games. As dis-
cussed in [29], recent work done in integrating gaming into
CS classes can be classified into: game development (e.g.,
[24]) where students learn about building games; game pro-
gramming (e.g., [30]) where students study games related
algorithms; and game client (e.g., [29]) where students learn
about CS concepts via games.

Integrating games into CS1/2 classes belongs to the game
client category because after these classes students are ex-
pected to understand abstract programming concepts and
not about building games. Based on the efforts from the
faculty in preparing the programming assignments, existing
work done in this area can be categorized into three broad
approaches:

1. Little or no game programming assignments (e.g, [13,
15]). In these courses students learn by playing custom
games but they do not actually program the games.

2. Per-assignment game development [11, 18, 7, 17, 26,
23, 31, 6]. All these classes developed games as part
of individual programming assignments. In each case,
isolated games are typically designed around technical
topics area being studied.

3. Extensive game development. For example, faculty
must develop and/or design programming assignments
based on general games engines (e.g., [8]), dedicated
games engine (e.g., [22]), specialized programming en-
vironments (e.g., [19]), custom object-oriented class hi-
erarchies (e.g., [22]), specific curricula (e.g., [20]), or
new programming languages (e.g., [9]).

Results from the last approach typically include large amounts
of adoptable/adaptable courseware materials. However, us-
ing these materials usually requires significant investments,
e.g., understanding a games engine, etc. Because of the con-
siderable overhead, results from the third approach are not
suitable for selective adoption.

In terms of suitability for selective adoption, we expect
that the per-assignment game development approach would
be best. For example, one could selectively replace non-
game assignments in existing classes with the corresponding
game assignments. However, because of the pioneering na-
ture, many of the results are “anecdotal” without holistic
considerations with respect to the CS1/2 curriculum. For
example, [17] only involves turn-based strategic games, [26]
only discuss puzzle games, and the discussion in [31] is based
on one single game. The system described by [18, 23] are
designed specifically for object-first approach. While results
from [7] is based on an ascii character game, and the excel-
lent ideas presented in [7, 6] are without implementations.

Our work is designed to be per-assignment game targeted
to address the above issues. Our game-themed assignments
are general CS1/2 assignments, require no existing knowl-
edge in games or graphics from the faculty, and require only
minimum changes to existing classes to be adopted.

3. THE ASSIGNMENT MODULES

We have developed 6 game-themed assignment modules based
on the principles that the assignments should be: neutral
with respect to gender and students’ prior programming ex-
perience, simple enough that a minimum of resources, time,

and effort are required from faculty to adopt the assign-
ments, modular so that each assignment module is com-
pletely self-contained, and has sufficient supporting materi-
als to facilitate independent adoption. Please refer to [28]
for the details of the assignment design and development®.
This section briefly describes the characteristics of the as-
signment modules.

3.1 Implementation Platform

We have chosen the C# programming language and the Mi-
crosoft XNA framework [3]. Our choice is governed by the
fact that the Microsoft Games Studio Express, C#, and
XNA combination is the only publicly available solution that
provides seamless integration of the development environ-
ment, programming language, GUI API, and graphics API.
Additionally and very importantly, XNA based programs
can be compiled to run on the XBOX 360 consoles. This
will provide an immediate draw to young students excited
about being able to build games that can run on familiar
entertainment devices in their first programming courses.

3.2 Choice of Topic Areas

The technical topics of our game-themed assignment mod-
ules are the same topics that are covered by our console-
based assignments in our existing CS1/2 courses [2]. Choos-
ing the topics this way provided the following advantages:

(1) Our existing CS1/2 courses are successful and well-established.

These facts justify the selected technical topic areas. (2) As-
signments with identical technical topic areas imply they
can be interchanged. This offers a perfect vehicle for the
second phase of our project, where we can simply replace
corresponding assignments and study the effects. (3) The
console-assignments are included as part of the assignment
modules. In this way, each assignment module addresses a
well defined technical topic area and has two versions: a con-
sole version and a game-themed version. The console version
of the assignment serves as an excellent and familiar refer-
ence for faculty members unfamiliar with graphics/games
programming.

3.3 Contents of an Assignment Module

Each assignment module is designed to be self-contained,
and consists of materials for both the faculty and the stu-
dents.

For the faculty, each module includes a summary of the
assignment, an game-themed version and a console-based
version, a sample solution for both the console and game-
themed versions, a sample grading rubric for each version, a
list of prerequisites and expected learning outcomes for the
students, a sample pre- and post- test, a list of frequently
asked questions, and an implementation tutorial. The imple-
mentation tutorial is a step-by-step guide that explains the
implementation of the game-themed (XNA-based) assign-
ment, for faculty who are interested in learning more about
how to create game-themed assignments on their own.

For the students, each module includes a description of
the assignment, and skeleton starter projects. The game-
themed starter project is a game-like application where all
necessary graphics and user interactions are provided. Stu-
dents work with the starter project to fill in code, using
the relevant core CS concepts to complete each assignment,

! All materials described are available on-line at [1]

Randomly

. . generated insect
* Hero insect| * -

3 o &

o %oy, 2 catcher |, S

® & = Es § ? _
> 5 &8 :

%@? Fe @;ﬁ X b 4 E %

Example Solution: Insects Garden
Status: Caughtl Score=18 New Insect will be gone in: 107

%, g,

TotallnsectsSpotted:37 & ® = = o
N . FirstFiveScores:[16 6 8 8 20
¥ NAccumulation .
< e
e V P m R g
s Array
v Ratio - storage| -
oy 400 wate 5w

Figure 1: The Insect Garden Game.

without having to know anything about XNA-specific im-
plementation details.

3.4 Library Support

All of our game-themed assignments are implemented based
on a simple 2D library. This library is designed to support
faculty members interested in developing their own game-
themed assignments. To maintain simplicity, the library
consists of a single superclass for all assignments, a handful
of drawing functions, and an instance of an input object for
handling input. Our design agrees with results from previ-
ous approaches, where only simple primitives are required
for CS1/2 courses [25].

3.5 Examples

As mentioned, the game-themed assignments are simple “in-
teractive graphics applications”. Here we use two of the
assignments as examples to provide a taste of what the pro-
grams are like.

Example 1: This is one of the earlier assignments in
CS1 on random number generators and operators. Figure 1
shows the game-themed version, where the user controls the
hero insect catcher to net randomly generated insects. Pro-
vided with all the graphics and interaction functionality, stu-
dents must support random number generation and main-
tain proper accumulated results, success ratio, etc. The con-
sole version of this assignment is on monte carlo integration
where students must approximate the area of a circle based
on randomly generated sample positions. In both cases, the
finished solution consists of tens of lines of C# code in a
single source code file, in addition to the code that was pro-
vided.

Example 2: This is an assignment on array of references
to objects. Figure 2 shows that the game-themed version is
a variation of the Snakes and Ladders game. Similar to the
classic game, the heroine advances across the game board
(a 1D array) based on die rolls and skips forward /backward
upon encountering ladders/snakes. In our case, the goal of
the game is to collect all the gold bars scattered on the game
board. In addition, the user can request the creation of a
ladder/snake in an empty game cell (creation of objects). As
in all of our game-themed assignments, in this case the stu-
dent starter project includes proper support for a completed
game board with all necessary interaction functionality. The
console version of this assignment is a periodic table where
the user can query/insert element objects into a 1D array.
In both cases, students only need to concentrate on manag-
ing object allocations/initializations and insertions into the

LadderAndRope

Figure 2: Ladder and Snake Game.

array. Both finished solutions are similar, involving about
150 lines of C# code in two separate classes, in addition to
the code that was provided.

4. ASSESSING THE ASSIGNMENTS

The game-themed assignments are designed for students to
practice and learn fundamental concepts in programming.
It is important to independently evaluate the academic con-
tents of the materials. Additionally, it is important to ver-
ify the technical equivalence between the game-themed and
console assignments in each module. Professor Ruth Ander-
son is our external reviewer. She is an experienced instructor
who has taught CS1/2 courses many times at multiple insti-
tutions and in a variety of programming languages; has won
multiple teaching awards (e.g., [5]); and is active in CS edu-
cation research (e.g., [4, 16]). In addition to these excellent
credentials, Professor Anderson is perfectly suited for evalu-
ating our materials because she has never taught a graphics
or gaming course and has limited experience with GUI pro-
gramming. Before this project, Professor Anderson did not
know anyone on the project team. During the project, we
avoided in-person or verbal communications to maintain im-
partiality, and to simulate investigations by curious faculty.
The assessment of the assignments was conducted across
our project web-site [1] where newly released materials were
downloaded, examined, and tested by Professor Anderson.
Feedback was provided to us via a custom assignment eval-
uation form.

The assignment evaluation form is designed to collect both
formative feedback and quantitative scores [12]. Each as-
signment module is assessed in two areas.

1. Quality of the assignment, assesses the merit of, and
the technical equivalence between, the console and game-
themed assignments, as well as the merit of the sup-
porting materials (e.g., pre/post test, etc.).

2. Potential for adoption, is designed to assess the factors
independent of the quality of assignments that may
prevent adoption (e.g., programming language used).

Based on the review feedback, the assignments have been
well received, oversall. We believe because the assignments
were based on our existing CS1/2 assignments, technical
merits were never an issue. Professor Anderson agrees with
us that the assignments are appropriate for typical CS1/2
courses. Assignments with low quality of assignment scores
were revised and re-assessed. This process continued until

the formative comments are positive and the numeric scores
are above 4 (out of 5).

As expected, all of the low scores were caused by game-
themed assignments. Typically, the reasons are in the fol-
lowing categories.

1. Differences in difficulties: our initial attempts at
game-themed assignments often result in highly dif-
ficult, complex, or intimidating programs. Based on
the feedback, we have adjusted the assignments ac-
cordingly.

2. Inappropriate implementation of concepts: de-
signing assignments around negative results from game
play is a bad idea. For example, a linked list structure
might be used for tracking when the player has been
unsuccessful at a given task. In this case, in order to
test the linked list, students must purposely be unsuc-
cessful at playing the game. This can take the fun out
of the assignment.

3. Deficiency in support: the development team often
overlook important details. For example, in the begin-
ning, a specialized XBox 360 game controller (hard-
ware) was the only way to play a game. Based on the
feedback, this problem was remedied with a keyboard-
based software object simulation.

Because Java is the language of choice at Professor Ander-
son’s institution, we have received consistently lower scores
for potential for adoption. We are fully aware that the lan-
guage issue must be addressed for wide adoption of our re-
sults. Now that we have experience building these assign-
ments, and understand the important attributes of the li-
brary, we are investigating possibilities in porting our results
to other environments.

S. ASSESSING STUDENT LEARNING

The results presented in the previous section are initial ver-
ifications for the academic contents of the game-themed as-
signments. With these results, we can proceed with the
second phase of our assessment: studying the effects of us-
ing these assignments in existing classes. We will study the
adoption of game-themed assignment modules from three
different aspects: student learning outcomes; student per-
ception; and faculty efforts. This section describes our pro-
cedure, discusses our goals and the instruments designed in
assessing each of these aspects.

5.1 Student Learning Outcomes

The feedback from the independent faculty evaluator indi-
cated academic appropriateness, however, it does not mean
that the game-themed assignments will be effective in the
classroom. We must verify that we can replace individ-
ual console-based assignment with the corresponding game-
themed assignment without negative impact.

Of the 6 assignment modules we have developed, 4 are
targeted for CS1, and the other 2 are meant for CS2. We will
replace 2 of the 4 console-based assignments in each of our
existing CS1/2 classes [2]. In alignment with our teaching
schedule, the game-themed assignments will be integrated
and studied over three academic quarters:

Fall 2007 Winter 2008 | Spring 2008
CS1-Games CS1-Console CS1-Games
CS2-Console CS2-Games

The CS2-Console during Fall 2007, and CS1-Console dur-
ing Winter 2008 are offerings of our existing CS1/2 courses
without modifications. The results from these courses will
serve as our control groups. We will replace 2 of the 4
existing console assignments with the corresponding game-
themed assignments in each of the CSI1-Games and CS2-
Games courses from Fall 2007 and Spring 2008 . In this
way, with the two offerings of the CS1-Games courses, and
one offering of the CS2-Games course, we will have the op-
portunity to examine all 6 of the game-themed assignments.
Notice that the games-courses consist of 2 existing console
based and 2 new game-themed assignments. In this way
we can verify that a faculty member can indeed select and
replace some of the existing assignments.

In all cases, pre- and post- tests will be assigned as writ-
ten homework assignments before and after each console and
game-themed programming assignments. Together with stu-
dents’ mid-term and final exam results, we hope to verify
that student learning outcomes are similar in all cases.

5.2 Student Perspective

Similar to much of the existing work in integrating computer
gaming into CS curriculum [35, 21], one of the major moti-
vations of our work is to further engage students via inter-
esting and/or relevant assignments. With the recent decline
in enrollments [33] and the decrease in student diversity [32],
many people have pointed to the potentials of using highly
interactive media applications as ways to connect with the
new generation of students (e.g., [14]). In our case, we do
not believe one or two game-like graphical assignments in
CS1/2 courses will cause fundamental changes. However,
we are interested in assessing students’ interests and gen-
eral attitudes towards the CS discipline. In addition, we are
highly concerned with potential undesirable effects of com-
puter gaming (e.g., [34]) and would like to assess students’
perception of our game-themed assignments.

We have designed pre- and post- course survey forms to
assess students’ background, attitudes towards the course,
and their interests in continuing with the CS major. Addi-
tionally, we have designed a per-assignment feedback form
where students are asked to:

e verify the clarity of the assignment;
e predict their grades for the assignment;
o self-reflect on learning from the assignment; and

e evaluate the assignment in terms of interests, difficulty,
satisfaction, and usefulness of time spent.

These survey forms will be filled out by the students in all
of the above courses for all of the assignments, including
the console-based assignments. By comparing results to the
control group, we hope to identify any changes in students’
level of interest and/or enthusiasm after the game-themed
assignments.

5.3 Faculty Perspective

As discussed, selective adoption of the assignments by fac-
ulty with minimal experience in games and graphics pro-
gramming is an important goal of our work. Towards this
end, we must understand faculty’s perception when using
these assignments.

We have designed a custom survey form for the adopting
faculty. On this form, the faculty is asked to reflect upon:

their own agenda in adopting the assignments (e.g.,
reasons and goals, etc.);

the extra efforts involved in using the assignment (e.g.,
extra time in grading or answering questions);

independent from test results, their perception of stu-
dent learning and enthusiasms;

their perception of the assignments in terms of diffi-
culty and appropriateness; and

general difficulty in integrating the assignment with
the rest of their courseware materials.

This information will provide guideline on how we can im-
prove the supporting materials associated with each assign-
ment module.

Discussion

At this point, we have completed the first phase of our
project and verified that the academic content of the game-
themed assignment modules are sound. We have designed all
the instruments and procedures for evaluating the three as-
pects of using these assignments in existing classes: student
learning, student perception, and faculty perception. We
are currently using these assignments and are in the process
of collecting assessment results. It is hoped/expected that
the assessment results from the second phase of the project
will affirm the effectiveness of the game-theme assignments.

6.
(1]

[9]
(10]

(11]

(12]

13]

REFERENCES

XNA-based assignment home page:
http://faculty.washington.edu/ksung/research /xna_games.
BIT142/143: Intermediate programming and data
structure, 2007. Cascadia Community College.

XNA game studio, 2007. Microsoft Inc,
http://msdn2.microsoft.com/en-us/directr/Aa987794.aspz.
R. Anderson, R. Anderson, K. M. Davis, N. Linnell,

C. Prince, and V. Razmov. Supporting active learning and
example based instruction with classroom technology.
SIGCSE Bull., 39(1):69-73, 2007.

R. E. Anderson. Acm faculty award, 2004. voted best
teacher by students, Dept of CS, Univ. of Virginia.

J. D. Bayliss and S. Strout. Games as a ”flavor” of csl. In
SIGCSE 06, pages 500-504, 2006. ACM Press.

K. Becker. Teaching with games: the minesweeper and
asteroids experience. J. Comput. Small Coll., 17(2):23-33,
2001.

K. Bierre, P. Ventura, A. Phelps, and C. Egert. Motivating
oop by blowing things up: an exercise in cooperation and
competition in an introductory java programming course.
In SIGCSE 06, pages 354-358, 2006. ACM Press.

W. Dann, S. Cooper, and R. Pausch. Learning to Program
with Alice. Prentice Hall, Upper Saddle River, NJ, 2006.
P. Drake. Data Structures and Algorithms in Java.
Prentice Hall, Upper Saddle River, NJ, 2006.

N. Faltin. Designing courseware on algorithms for active
learning with virtual board games. In ITiCSE ’99, pages
135-138, 1999. ACM Press.

J. Frechtling, L. Sharp, and Ed. User-Friendly Handbook
for Mized Method Evaluations. Directorate for Education
and Human Resources, Division of Research, Evaluation
and Communication, National Science Foundation, 1997.
R. Giguette. Pre-games: games designed to introduce csl
and cs2 programming assignments. In SIGCSE 03, pages
288-292, 2003. ACM Press.

[14]

(15]

[16]

(17)

(18]

19]

20]

(21]

(22]

23]

[24]

[25]

[26]

27)

(28]

[29]

(30]

(31]

32]
(33]
(34]

(35)

M. Guzdial and E. Soloway. Teaching the nintendo
generation to program. Commun. ACM, 45(4):17-21, 2002.
P. Haden. The incredible rainbow spitting chicken: teaching
traditional programming skills through games
programming. In ACE 06, pages 81-89, Darlinghurst,
Australia, Australia, 2006. Australian Computer Society,
Inc.

T. B. Horton, R. E. Anderson, and C. W. Milner. Work in
progress-reexamining closed laboratories in computer
science. FIE 2004, October 2004. Conference Proceedings
(Conference CD).

T. Huang. Strategy game programming projects. In
CCSC-NE 01, pages 205213, , USA, 2001. Consortium for
Computing Sciences in Colleges.

R. Jiménez-Peris, S. Khuri, and n.-M. Marta Pati’Adding
breadth to csl and cs2 courses through visual and
interactive programming projects. In SIGCSE ’99, pages
252-256, 1999. ACM Press.

M. Kiilling and P. Henriksen. Game programming in
introductory courses with direct state manipulation. In
ITiCSE 05, pages 59—63, 2005. ACM Press.

S. Leutenegger and J. Edgington. A games first approach
to teaching introductory programming. In SIGCSE ’07,
pages 115-118, 2007. ACM Press.

M. Lewis, S. Leutenegger, M. Panitz, K. Sung, and

S. Wallace. Introductory programming courses and
computer games. In Panel Proposal, Submitted to SIGCSE
08, Sep 2007.

M. C. Lewis and B. Massingill. Graphical game
development in cs2: a flexible infrastructure for a semester
long project. In SIGCSE 06, pages 505-509, 2006. ACM
Press.

T. Lorenzen and W. Heilman. Csl and cs2: write computer
games in java!l SIGCSE Bull., 34(4):99-100, 2002.

I. Parberry, T. Roden, and M. B. Kazemzadeh. Experience
with an industry-driven capstone course on game
programming: extended abstract. In SIGCSE 05, pages
91-95, 2005. ACM Press.

E. S. Roberts. A c-based graphics library for csl. In
SIGCSE ’95, pages 163167, 1995. ACM Press.

J. M. Ross. Guiding students through programming
puzzles: value and examples of java game assignments.
SIGCSE Bull., 34(4):94-98, 2002.

K. Sung. Xna based games-themed programming
assignments for csl1/2. Microsoft Research, Computer
Gaming Curriculum in Computer Science, Award Number:
15871, 2006-2008.

K. Sung, M. Panitz, S. Wallace, R. Anderson, and

J. Nordlinger. Game-themed programming assignments:
The faculty perspective. In Submitted to SIGCSE ’08, Sep
2007.

K. Sung, P. Shirley, and B. R. Rosenberg. Experiencing
aspects of games programming in an introductory computer
graphics class. In SIGCSE 07, pages 249-253, 2007. ACM
Press.

E. Sweedyk, M. deLaet, M. C. Slattery, and J. Kuffner.
Computer games and cs education: why and how. In
SIGCSE ’05, pages 256257, 2005. ACM Press.

D. W. Valentine. Playing around in the cs curriculum:
reversi as a teaching tool. J. Comput. Small Coll.,
20(5):214-222, 2005.

J. Vegso. Cra taulbee trends: Female students & faculty,
2005. http://www.cra.org/info/taulbee /women. html.

J. Vegso. Drop in cs bachelor’s degree production.
Computing Research News, 18(2), March 2006.

H. M. Walker. Do computer games have a role in the
computing classroom? SIGCSE Bull., 35(4):18-20, 2003.
U. Wolz, T. Barnes, 1. Parberry, and M. Wick. Digital
gaming as a vehicle for learning. In SIGCSE ’06, pages
394-395, 2006. ACM Press.

