
Experiencing Aspects of Games Programming in
an Introductory Computer Graphics Class ∗

Kelvin Sung
Computing & Software Sys.
Univ. of Washington, Bothell

Bothell, Washington

ksung@u.washington.edu

Peter Shirley
School of Computing

Univ. of Utah
Salt Lake City, Utah

shirley@cs.utah.edu

Becky Reed Rosenberg
Teaching and Learning Center
Univ. of Washington, Bothell

Bothell, Washington

breed@uwb.edu

ABSTRACT
Our computer graphics (CG) programming class uses games
development as a means to help students understand CG
concepts. Many students mistakenly thought this CG class
was a games programming class. We present a simple frame-
work for discussing games programming classes. Based on
the framework, the paper describes our efforts in integrating
competencies associated with games programming into our
CG programming class. Our results show that the resulting
class maintains the integrity of the original CG class while
allowing students to develop projects with more interesting
games features.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education – computer science education

General Terms
Design, Experimentation

Keywords
Graphics Programming, Games Programming, Curriculum

1. INTRODUCTION
We have designed and implemented a top-down approach

to teaching computer graphics (CG) where we study funda-
mental concepts in the context of designing and implement-
ing moderately complex CG applications [22]. To show real-
world applicability, we have built many “concept demon-
stration applications” (CDAs) to present CG concepts. Our
top-down implementation has been well received by the CG
education community [24, 2]. We have been refining the

∗This work is supported in part by the National Science
Foundation grant DUE-0442420.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07, March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003 ...$5.00.

CDAs [20] and are currently funded by the National Science
Foundation (NSF) to formally study the effectiveness of our
CG class [21].

Since adopting the top-down approach, we have observed
a steady enrollment increase in the CG class. Many of the
students in that class chose to develop interactive game-
type applications as their final project and have attracted
considerable attentions from their peers. After graduation,
some of these students have pursued careers in games devel-
opment. For example, some of our graduates took jobs at
games companies/studios including Crankypants, Electronic
Arts, Flying Labs, Amaze Entertainment, Griptonite, Hand-
heldgames, Her Interactive, Humongous Entertainments, Wild
Tangent. As a result, students in our department started re-
ferring to the CG class as “the games programming class.”
Ordinarily, we would not be overly concerned with how stu-
dents refer to any particular class. However, associated with
the name reference seem to be students’ expectations. Stu-
dents started to direct computer games specific questions
toward this class such as “which games engine would be stud-
ied.”

Our introductory CG class is not designed to be and does
not contain the necessary intellectual contents [13] to be a
games programming class. We have no interest in changing
our CG class into a games programming class. In addition,
our funding obligations [20] and the on-going assessment
project [21] dictate that we must maintain the basic philo-
sophical approach: learning fundamental CG concepts in the
context of designing and implementing moderately complex
CG applications. Instead of confronting students to re-align
their expectations, encouraged by the recent successes (e.g.,
[4, 3, 15]), we investigated and exploited the possibilities of
maintaining the academic integrity of an introductory CG
class while addressing students’ intellectual curiosity about
games programming.

In the next section, we present a simple framework that
helps categorize existing games programming classes. Base
on this framework, Section 3 analyzes the content of our
CG class and identifies the missing competencies that are
associated with games programming. Section 4 describes
our efforts in integrating some of the topics from games pro-
gramming into our CG class. Section 5 concludes the paper
with a discussion of our results.

2. BACKGROUND
To integrate aspects of “games programming” into our

CG class, we must understand existing games programming

249

classes. When we examine recent publications that relate
to “games” and “programming” we observe three general
categories of classes listed below.

1. Games development classes. These are entire curric-
ula (e.g., [6]), individual classes (e.g., [18, 16]), or cap-
stone projects (e.g., [14, 19]) designed specifically to
develop new games as an end product. When eval-
uated against the curriculum framework proposed by
the IDGA education committee [13], we see that these
classes cover all the major core topic areas. Students
in these classes must be concerned with all aspects of
a real game production including entertainment value,
visual quality, audio effects, physics simulations, and
real-time performance.

2. Games programming classes. These are classes (e.g.,
[25, Kuffner’s CMU course]) designed specifically to
study technical aspects and issues involved in building
games. For example, topics covered may include event
loops, path planning algorithms, terrain representa-
tion, etc. These classes typically do not require build-
ing an end product and the topics covered are gen-
eral and typically can be applied to different domains.
These classes concentrate on covering the game pro-
gramming topic area in the IDGA curriculum frame-
work.

3. Games development client. These are existing CS classes
that creatively integrate games into their existing cur-
riculum. Typically, games are used as programming
assignments (e.g., [1, 10, 11, 23, 25, 3, 15]) or to
teach abstract concepts (e.g. [4, 11, 12, 5, 9, 17]), or
as an example application area to teach the concepts
involved in an entire topic area (e.g., [8, 7]). These
are traditional CS classes that exist independent from
games programming. These classes are actually clients
of games development where they use games develop-
ment as a vehicle to deliver specific abstract concepts.
After these classes, students are expected to under-
stand the abstract concepts, and not about games de-
velopment.

Our CG class emphasizes the understanding of basic con-
cepts and implementing of these concepts in interactive ap-
plications. Because of the “interactivity” and “graphics”
components, it is trivial and natural to build “games themes”
into the programming assignments and we have. All of the
programming assignments in our CG class involve user con-
trol of graphical objects that move and interact [22, 24].
These assignments use “games programming” as a vehicle
for delivering CG concepts. Competencies in games devel-
opment are not part of the consideration in the design of
the assignments. In this way, our original top-down CG
class belongs to the third category: a games development
client.

3. DESIGN CONSIDERATIONS
Based on informal discussions, it is clear that our stu-

dents are interested in acquiring competencies associated
with both games programming and games development. In
the long term, as an academic department we must deter-
mine the feasibility of creating new classes to support our
students’ needs. In the short term, we challenged ourselves
with two related questions:

Is it possible to integrate meaningful aspects of
games programming and development into our
CG class without sacrificing the intellectual in-
tegrity of the course? If so, how?

To begin answering these questions, it is helpful to com-
pare the topic areas covered by interactive CG programming
classes (e.g., [24]) to those covered by games programming
classes (e.g., [18]):

• Common to both: software architecture and program-
ming framework. Both of these classes require students
to understand and practice event-driven programming
based on Model-View-Controller architecture frame-
work.

• In-depth coverage in CG: transformations, geometric
modeling, scene graphs, animations, viewing, projec-
tion, illumination, shading, rendering buffers, render-
ing effects, texture mappings [2]. These are “standard”
topics in CG classes. It is interesting that even though
not covered at the conceptual level, games program-
ming classes typically use the results of these topics to
communicate to the user.

• Additional essential topics for games programming:
Newtonian physics, scripting architecture, sprite ani-
mation, object resource managements, audio program-
ming, in-game artificial intelligence (AI), networking,
persistent game state, file format. These are technical
topics usually not covered in a “typical” CG class.

The above comparison points out that to systematically
expose students to the competencies associated with games
programming, we must at least touch on topics in the last
category. Our challenge then is to find ways to cover or
touch on these additional topic areas without sacrificing the
core topic areas of a CG class.

We should point out that missing from the above discus-
sions are important qualitative issues that must be addressed
by games development classes. For example, degrees of fun,
social impact, general aesthetic appeal, etc. These are issues
we dare not even begin to consider in a CG class.

4. IMPLEMENTATION
We have two simple principles guiding our efforts in inte-

grating games programming topics into our CG class: (1) This
is a CG class and CG learning will be the only factor govern-
ing the scheduling the presentation of the materials. (2) We
will not dedicate lecture time to cover topics specific to
games programming.

The above seems to imply we are looking for a free ride
to cover extra topics in games programming. Quite on the
contrary, the strict guidelines imply careful planning and
gradual integration. Over the past couple of years, based
on different strategies, we have managed to integrate some
aspects of games programming into our CG class.

4.1 Physics and In-Game AI
A major characteristic of our top-down approach to teach-

ing CG is in the CDAs (Concept Demonstration Applica-
tions). The CDAs are custom built, Model-View-Controller
based, event driven interactive graphics programs that demon-
strate foundational CG concepts. We have modified ap-
propriate CDAs to include simple physics computation in

250

event service routines. In other CDAs, we have maintained
persistent application state (game state) with build-in ran-
domness based on users’ input (rudimentary AI). Below are
some examples of our modifications. For the CDAs demon-
strating timer event services, we modified the service routine
to include a free falling circle. For the CDAs demonstrat-
ing extents of graphical primitives, we modified the collision
detection routines to compute and react to perfectly elas-
tic collisions when primitive bounds are violated. For the
CDAs demonstrating multi-level scene graphs, we modified
the main timer service routine to shoot circles towards one
of the leaf nodes; allow student interactive control over the
position of the leaf node; and alter the shooting rate and
direction based on the leaf node position (rudimentary AI).
For many other CDAs, we modified their implementation
to demonstrate other physical effects, e.g., friction, deceler-
ation, left/right turning of primitives, “home-in” automatic
target seeking, etc.

We use these CDAs to demonstrate/discuss CG concepts
as before, except that we briefly mention the “extra” games
programming features. In this way, we do not dedicate lec-
ture time discussing physics or in-game AI and yet students
have the opportunity to examine source code of simple ex-
amples of these topics. From a games programming point of
view, the CDAs seem to scatter important topics into unre-
lated examples that are covered according to unrelated CG
concepts throughout the academic quarter. For example, it
would be awfully difficult to try to learn physics simulations,
or build a physics engine based on our CDAs. However, from
the CG point of view, the CDAs present CG topics in a co-
herent manner. Presently, there are more than 100 CDAs
publicly accessible on our course web sites at:

http://courses.washington.edu/css450
http://courses.washington.edu/css451

4.2 DirectInput and Audio Libraries
Input mechanisms are discussed in our course as part of

event services and user interactions. However, due to time
constraints, we do not use a specific input API. In particu-
lar, we do not cover keyboard input because the CG topic
coverage does not demand it. Audio is an even more remote
topic. These topics are not covered in our CG class and
there are no associated CDAs for these topics.

We understand the importance of keyboard input and
sound effects in games. To address this knowledge gap,
we engage students in independent projects outside of class-
rooms. Through these projects students investigate relevant
APIs, and develop detailed tutorials demonstrating how to
integrate such libraries into applications. We have collected
tutorials for working with the DirectInput library, as well as
the Bass and FMOD audio libraries. These tutorials have
become standard resources on our course web sites. Students
are expected to read these and integrate keyboard input and
audio effects into their projects.

4.3 Sprite Animation
As part of texture mapping, we do mention that cycling

through appropriate texture maps during subsequent refresh
cycles can create interesting “animation” effects. However,
from a CG perspective, there is no real need to go into the
details of programming with sprites. On the other hand, we
do demand students program with masks and alpha blend-

ing. As a result, more motivated students often create in-
teresting animations in their projects by cycling through
alpha-blended texture maps.

4.4 Assignments and Projects
Since the above topics are not covered in lectures, we

rely on programming assignments to assist in organizing
students’ exposure to these topics. Physics simulation and
AI requirements are integrated into all programming assign-
ments, and successive ones build upon previous results and
increase in complexity. For example, the first programming
assignment is designed to practice event driven program-
ming. As part of the assignment, students must simulate
projectile motion under gravity where the user has control
over the world bounds, initial velocity, and gravitational ac-
celeration. The next assignment builds on this and requires
students to implement collision between moving and station-
ary objects. Eventually, students must program the collision
of multiple objects in motion. In the final project for the
course, students must synthesize their knowledge by build-
ing a game-like application that includes all of the CG and
games programming topics described above.

4.5 Discussions
With the above integration efforts, we have managed to

expose students to some interesting topics in games pro-
gramming that are not usually covered in CG classes. There
are many important aspects of games programming that
are still absent from our current course materials. Some
of these topics e.g., file format, and object resource manage-
ment, are potential candidates for future integration into
relevant CDAs. For other topics that require tight inte-
gration and dedicated software infrastructure support, e.g.,
scripting, our minimalist “on-the-side” type approach may
simply not work.

The above integration efforts involve work done mostly
before the offering of the CG class. During the course we
dedicate minimal lecture time on this material, and rely
heavily on student initiative. Students are expected to un-
derstand simple linear algebra implementation, and learn
new APIs. With this extra effort, students can expect lim-
ited experience and competencies in the related aspects of
games programming. Without dedicated lecture time one
cannot expect in-depth understanding.

5. RESULTS
We begin experimenting with the top-down approach to

teaching CG in 2000. By 2002, we had a somewhat sta-
ble version of courseware material. That was about the
time we began noticing “games programming” expectations.
The games programming related materials were introduced
over the past two years as part of an on-going assessment
project [20, 21]. Throughout these times, we used the most
up-to-date materials when we teach. Since the materials
evolved gradually and students from different years were
exposed to slightly different versions, it is difficult to draw
subtle before/after observations.

Fortunately, also as part of the on-going assessment project,
we monitor student learning with pre/post-tests, and contin-
uously polling students on self-reflections. In the pre-test,
we assess student’s prerequisite (e.g., programming skills)
and CG (e.g., terminologies, concepts) knowledge. During
the course, we ask students to reflect on what is easy, diffi-

251

Figure 1: Music Run (Fall 2002).

cult, or helped them learn, etc. The post test evaluates the
students’ grasp on CG concepts. In addition, we also collect
the “typical” student course evaluation forms. With these
information, we evaluate our work in the following three
ways.

1. Effects on learning CG. One concern with our work is
that the additional information would divert students’
attention and thus affect their learning of CG con-
cepts. Fortunately, this concern is unfounded. The
post-test results showed remarkably little variations
over the years.

2. Comments from students. Except during the initial
years (2000/2001) when the CDAs were under major
developmental changes, student feedback from our CG
class has been along a similar theme: a lot of work,
and the course is challenging and fun. It is interest-
ing that even as the CDAs are refined to include extra
complexities; students are required to self-learn addi-
tional APIs; and the assignments are biased increasing
towards full-blown games, the types and distribution
of student comments do not show significant changes.
Examples of student comments include, “took up all
my free time,” “challenging class,” and “had too much
fun with projects,”. These types of comments were
distributed in similar fashions over the years. The nu-
meric rating for the class has also remain somewhat
constant at around 4.5/5.0. Based on student feed-
back, it is as though nothing much has happened.

3. Quality of student projects. Figure 1 shows Music
Run, a final project from Fall 2002. This was one of the
projects we referred to when we describe the top-down
approach to teaching CG in [24]. Figure 2 shows Pan-
damonium, a final project from Fall 20041. The two
projects have similar technical CG contents. For ex-
ample, both contain two user-manipulable views of the
world; both have a multi-level scene graph defined hero
object that is under user’s control; and in both cases,
the hero object can interact with other elements in the

1Due to a sabbatical interruption, this CG class was not
offered in 2005.

Enemies

Hero

Platforms

World View

Figure 2: Pandamonium (Fall 2004).

environment, etc. However, the project from 2004 do
appear busier, with a more interesting environment.
For example, the hero can jump, with gravitation ef-
fects, to different platform levels to battle with the en-
emies. Finally, and very importantly, the project from
2004 provides a more pleasant game play experience
with interesting audio effects and familiar keyboard
controls. These characteristics are generally true that
student projects from latter years appear busier and
support more pleasant game play experiences.

Over the past few years we have systematically increased
the complexities of the course materials without dedicating
lecture time to cover the extra materials. At the same time,
we have increased students’ workload and demanded extra
features in their assignments. It is interesting that, from
the feedback, students’ opinion of the class did not show
any changes. One may conclude that the class was too easy
before the changes, but we beg to differ. We believe there
are two independent factors at play. First, the extra work-
load are related to games programming and are fun for the
students. They probably did not mind the extra learning.
Second, the refined CDAs are better documented and bet-
ter organized. With the improved CDAs, students should be
able to comprehend the concepts more efficiently and thus
might not have spent significantly more time on this class.

6. ACKNOWLEDGMENTS
This work is supported in part by the National Science

Foundation grant DUE-0442420. All opinions, findings, con-
clusions, and recommendations in this work are those of
the authors and do not necessarily reflect the views of the
National Science Foundation. Thanks to the reviewers for
the excellent and critical suggestions. Steve Baer has re-
developed most of the CDAs in CSS450, the refinement ef-
fort is supported by the University of Washington, Both-
ell, Worthington Scholar Award. Music Run is developed
by Aida Sakkal; and Pandamonium is developed by Mike
Shaver.

252

7. REFERENCES
[1] J. C. Adams. Chance-it: an object-oriented capstone

project for cs-1. In SIGCSE ’98: Proceedings of the
twenty-ninth SIGCSE technical symposium on
Computer science education, pages 10–14, New York,
NY, USA, 1998. ACM Press.

[2] E. Angel, S. Cunningham, P. Shirley, and K. Sung.
Teaching computer graphics without raster-level
algorithms. In SIGCSE ’06: Proceedings of the 37th
SIGCSE technical symposium on Computer science
education, pages 266–267, New York, NY, USA, 2006.
ACM Press.

[3] J. D. Bayliss and S. Strout. Games as a ”flavor” of
cs1. In SIGCSE ’06: Proceedings of the 37th SIGCSE
technical symposium on Computer science education,
pages 500–504, New York, NY, USA, 2006. ACM
Press.

[4] K. Becker. Teaching with games: the minesweeper and
asteroids experience. J. Comput. Small Coll.,
17(2):23–33, 2001.

[5] M. C. Carlisle, T. A. Wilson, J. W. Humphries, and
S. M. Hadfield. Raptor: a visual programming
environment for teaching algorithmic problem solving.
In SIGCSE ’05: Proceedings of the 36th SIGCSE
technical symposium on Computer science education,
pages 176–180, New York, NY, USA, 2005. ACM
Press.

[6] R. Coleman, M. Krembs, A. Labouseur, and J. Weir.
Game design & programming concentration within the
computer science curriculum. In SIGCSE ’05:
Proceedings of the 36th SIGCSE technical symposium
on Computer science education, pages 545–550, New
York, NY, USA, 2005. ACM Press.

[7] F. S. C. da Silva. Artificial intelligence for computer
games, 2006. University of Sao Paulo (USP/SP),
Microsoft Academic Alliance Repository Newsgroup,
Object ID: 6210,
http://www.msdnaacr.net/curriculum/pfv.aspx?ID=6210.

[8] F. S. C. da Silva. Software enginnering for computer
games, 2006. University of Sao Paulo (USP/SP),
Microsoft Academic Alliance Repository Newsgroup,
Object ID: 6211,
http://www.msdnaacr.net/curriculum/pfv.aspx?ID=6211.

[9] W. Dann, S. Cooper, and R. Pausch. Learning to
Program with Alice. Prentice Hall, Upper Saddle
River, NJ, 2006.

[10] N. Faltin. Designing courseware on algorithms for
active learning with virtual board games. In ITiCSE
’99: Proceedings of the 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and technology in
computer science education, pages 135–138, New York,
NY, USA, 1999. ACM Press.

[11] R. Giguette. Pre-games: games designed to introduce
cs1 and cs2 programming assignments. In SIGCSE
’03: Proceedings of the 34th SIGCSE technical
symposium on Computer science education, pages
288–292, New York, NY, USA, 2003. ACM Press.

[12] S. Hansen. The game of set®: an ideal example
for introducing polymorphism and design patterns. In
SIGCSE ’04: Proceedings of the 35th SIGCSE
technical symposium on Computer science education,
pages 110–114, New York, NY, 2004. ACM Press.

[13] IDGA. IGDA curriculum framework report version 2.3
beta, February 2003. International Game Developer’s
Association, http://www.igda.org/academia.

[14] R. M. Jones. Design and implementation of computer
games: a capstone course for undergraduate computer
science education. In SIGCSE ’00: Proceedings of the
thirty-first SIGCSE technical symposium on Computer
science education, pages 260–264, New York, NY,
USA, 2000. ACM Press.

[15] M. C. Lewis and B. Massingill. Graphical game
development in cs2: a flexible infrastructure for a
semester long project. In SIGCSE ’06: Proceedings of
the 37th SIGCSE technical symposium on Computer
science education, pages 505–509, New York, NY,
USA, 2006. ACM Press.

[16] B. Maxim. Game design and implementation 1 and 2,
2006. Microsoft Academic Alliance Repository
Newsgroup, Object ID: 6227,
http://www.msdnaacr.net/curriculum/pfv.aspx?ID=6227.

[17] MUPPET. Multi-user programming pedagogy for
enhancing traditional study, 2006. Rochester Institute
of Technology,
http://muppets.rit.edu/muppetsweb/people/index.php.

[18] I. Parberry, M. B. Kazemzadeh, and T. Roden. The
art and science of game programming. In SIGCSE ’06:
Proceedings of the 37th SIGCSE technical symposium
on Computer science education, pages 510–514, New
York, NY, USA, 2006. ACM Press.

[19] I. Parberry, T. Roden, and M. B. Kazemzadeh.
Experience with an industry-driven capstone course
on game programming: extended abstract. In SIGCSE
’05: Proceedings of the 36th SIGCSE technical
symposium on Computer science education, pages
91–95, New York, NY, USA, 2005. ACM Press.

[20] K. Sung. Courseware infrastructure development for
supporting proposals to the nsf. Worthington Scholar
Award, University of Washington, Bothell, June
2004-2006.

[21] K. Sung. Essential concepts for building interactive
computer graphics applications. CCLI-EMD, NSF,
DUE-0442420, 2005-2007.

[22] K. Sung and P. Shirley. A top-down approach to
teaching introductory computer graphics. ACM
SIGGRAPH 2003 Educator’s Program, July 2003.
Conference CD/DVD-ROM Disc 1.

[23] K. Sung and P. Shirley. Teaching computer graphics
programming to non-traditional returning adult
students. Extended Abstract in Eurographics/ACM
SIGGRAPH Workshop on Computer Graphics
Education 2004, June 2004.

[24] K. Sung and P. Shirley. A top-down approach to
teaching introductory computer graphics. Computer
and Graphics, 28(3):383–391, June 2004. Invited full
paper based on SIGGRAPH 2003 conference-paper.

[25] E. Sweedyk, M. deLaet, M. C. Slattery, and
J. Kuffner. Computer games and cs education: why
and how. In SIGCSE ’05: Proceedings of the 36th
SIGCSE technical symposium on Computer science
education, pages 256–257, New York, NY, USA, 2005.
ACM Press.

253

