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Abstract 
Social media have become an established feature of 

the dynamic information space that emerges during 

crisis events. Both emergency responders and the 

public use these platforms to search for, disseminate, 

challenge, and make sense of information during crises. 

In these situations rumors also proliferate, but just how 

fast such information can spread is an open question. 

We address this gap, modeling the speed of 

information transmission to compare retransmission 

times across content and context features. We 

specifically contrast rumor-affirming messages with 

rumor-correcting messages on Twitter during a 

notable hostage crisis to reveal differences in 

transmission speed. Our work has important 

implications for the growing field of crisis informatics.  
 

 

1. Introduction  

 
Social media are vital information sources during 

non-routine circumstances such as crisis events 

[1][2][3]. The public increasingly turns to social media 

platforms to search for, disseminate, challenge, and 

make sense of uncertain information in non-routine 

settings such as disasters and crisis events [4][5][6]. 

Emergency responders and mass media outlets also 

participate in this emerging conversation online, 

resulting in a complex and dynamic, event-related 

information environment contained within a larger 

stream of informal communication on these platforms 

[7].  

One natural consequence of such behavior is the 

emergence of rumors – stories of unknown validity at 

the time of communication, which may eventually turn 

out to be true or false (as evaluated after the conclusion 

of the event). Rumoring is often characterized as a 

sense-making process through which individuals and 

groups grapple with a lack of information during times 

of uncertainty [8][9]. A key mechanism through which 

sense-making can occur is the diffusion or transmission 

of information from one individual to the next (or 

many others in the case of broadcast content) via social 

relationships. As information diffuses through a 

population individuals interact with each other and the 

content, processing and commenting on the validity 

and importance of the information [10][7]. Serial 

transmission of information is also vital for increasing 

the reach, and thus exposure, of the information.  

Serial transmission of content is especially 

important during crisis events, because information can 

be time-sensitive and critical for decision making - 

information could mean the difference between life and 

death. While a growing number of studies have 

examined information transmission during crisis events, 

less work has attempted to quantify the speed of this 

process, which could vary in promptness of 

dissemination and persistence of attention [11]. For 

example, in the context of a crisis, there might be 

important consequences in different transmission 

speeds between substantiated information, i.e. crisis-

related facts or true rumors, and information that has 

not been verified or been falsified by the crowd. 

Moreover, certain indicators of the collective sense-

making process (e.g. authors expressing uncertainty in 

their messages) may be relevant. 

Prior work has looked at the ways in which content 

and user characteristics are associated with serial 

transmission and public attention on social media 

platforms [12].  This work reveals that content (e.g. 

topics, URLs) features and user characteristics (e.g. 

number of social ties) play a role in determining the 

number of reposts a message receives [12][13][14]. 

Building from this foundation, our work seeks to fill a 

gap in the current understanding of rumoring behavior 

on social media during crisis events by quantifying 

features of information content and context that are 

associated with the speed at which information is 

transmitted. 



Our work has important implications. First, 

exploring the dynamics of rumoring behavior has the 

potential to change our understanding of how 

collective sense-making occurs online. In particular 

this analysis could reveal how individuals differentially 

respond to various kinds of rumor-related messages 

with respect to their decision to pass content along to 

social contacts, changing our understanding of how 

collective negotiations of information veracity play out 

online. Importantly, this work could also offer 

important practical recommendations for crisis 

management by discovering the features that contribute 

to popularity and persistence of false rumor content (i.e. 

misinformation) in social media spaces – a topic of 

growing interest within emergency management 

communities, as well as the growing field of crisis 

informatics [15]. Findings could, for example, be used 

to help emergency responders to rapidly disseminate 

information and regulate rumor propagation during 

crisis events. 

In this work we measure waiting time (i.e. the time 

span between information production and 

redistribution) [11] to explore the relationship between 

waiting time and features about the author, post content 

and external context of messages posted on Twitter. 

We compare empirical differences in waiting time for 

rumor-related crisis messages with randomly sampled, 

more general posts on Twitter (i.e. tweets). We model 

the median waiting time (capturing average attention 

span) as explained by various author, content, and 

context features to address the following research 

questions: Do we observe that crisis-related content 

increases the public’s retransmission response speed 

on Twitter, when compared with random content? 

Does the average retransmission waiting time of 

content pertaining to crisis rumors vary by the 

content’s expressed stance towards the rumor (i.e. 

affirming or denying rumor claims)?  

In what follows we situate our work within the 

growing field - crisis informatics, and more generally 

to core questions about rumoring behavior from the 

social sciences. We describe the crisis case to be 

analyzed and the dataset used. Our analysis looks first 

at the empirical distribution of waiting times for crisis-

related content, compared with randomly sampled 

messages. We then present a model for median waiting 

times which we use to evaluate the relative influence of  

author, content and context features – focusing 

specifically on rumor dimensions. 

 

2. Related Work  

 
Social media are changing the ways in which 

information sharing occurs in social networks 

[22][23][24]. These technologies allow individuals to 

reach a larger number of social contacts across greater 

distances than was previously possible, for example if 

community members are restricted to face-to-face 

information exchange. Encouraging users to articulate 

their social connections, social media often leverage 

social networks to facilitate information sharing with 

friends, family and strangers. Social media platforms 

actively facilitate not only information sharing but also 

retransmission of content through reposting (i.e. re-

sharing of content posted by other users). Twitter, for 

example, allows users to “retweet” content, resending a 

message posted by another user to one’s own social 

network. It is through these kinds of transmission 

mechanisms that information can spread, or diffuse, 

through the underlying social network, reaching larger 

audiences.  

The study of information diffusion in social 

networks is not new; it has a long history in the social 

sciences [16][17][18]. Many early studies in the field 

were motivated by exploration and interest in the role 

of rumors during war [19]. Rumoring, one example of 

an information diffusion process, was thought to be a 

natural consequence of circumstances characterized by 

high levels of uncertainty and a lack of official 

information [9][8]. Rumors, as defined in this line of 

work, are stories pertaining to facts or events of topical 

interest that do not occur as part of a formal, 

institutionalized communication process. Rumors then 

become a form of “improvised news” for individuals to 

discuss and process [9].  

Early work on rumoring looked at crisis contexts 

because such non-routine circumstances were 

conducive to the growth and propagation of rumors. 

Prior work attempted to identify features related to 

increases in transmission, as well as how 

retransmission was related to information distortion 

[20]. In one of the classic studies exemplifying this 

tradition, Allport and Postman [21] propose three 

primary factors that influence rumor propagation: (1) 

perceived importance of the information, (2) degree of 

uncertainty or cognitive unclarity surrounding the 

information, and (3) relevance of the information to 

behavior. Indeed, crisis-related rumors satisfy all three 

of these conditions and are therefore ripe for 

transmission. Recently, many scholars have extended 

classic theories of information diffusion and rumoring 

into the context of social media platforms, exploring 

factors that are hypothesized to affect the magnitude of 

retransmission or size of the resulting information 

cascade [25][26]. These studies point to content themes, 

user characteristics, and context as important in 

determining the attention a particular message receives 

[27][12][28]. 



Despite notable work that explores information 

diffusion, rumor propagation in particular, on social 

media during crisis events, very few studies have 

looked at the speed of this process. How long does a 

message typically “wait” in the public stream before it 

is reposted or shared by other users? What is the 

distribution of these waiting times and how might they 

differ based on the content contained in the message? 

These are key questions to answer in order to gain a 

more thorough understanding of crisis-related 

rumoring behavior online. Indeed, while commonly 

held notions would have one believing that rumors 

“spread like wildfires” – rapidly without concern for 

obstacles in their path – research indicates such 

metaphors can be misleading [29]. 

Speed of information transmission is essential to 

understand in the crisis context. In emergency settings, 

time-sensitive information must reach target 

populations before it becomes outdated or irrelevant, or 

worse ineffective at warning of imminent danger. For 

example, suppose a flash flood warning takes days to 

diffuse through social media spaces from warning/alert 

organizations to those affected. In such a case, social 

media platforms would not be practically viable as the 

sole outlet for such warning information. On the other 

hand, if information can rapidly be transmitted online, 

emergency responders can make use of this preexisting 

“soft infrastructure” for emergency preparedness, 

warning, response, and recovery. It is important to note 

that social media are not isolated information 

environments; though outside the scope of the current 

work information transmission also occurs across 

online platforms and moves from online to offline 

spaces as well.  

Rumor transmission may rely on a complex set of 

circumstances, from basic behavioral seasonality 

patterns known to affect online communication to rich 

crowd interaction and sense-making processes 

unfolding over time. It may even be driven by the 

participation of a few highly influential users. In this 

paper, we explore variations in the speed of 

information transmission along dimensions of sense-

making and other context features. In the following 

sections we discuss the model formulation and 

implications, linking results back to foundational work 

from sociological studies of rumoring during crisis. 

 

3. Data Collection 

 
To understand rumor transmission dynamics during 

crisis events, we utilize two datasets of social media 

posts from the microblogging site Twitter. These two 

datasets were collected by our research team as part of 

a larger project to explore rumoring during crisis 

[38][39][40]. The first dataset is comprised of tweets 

collected during a hostage crisis that occurred in 

Sydney, Australia at the end of 2014. On 15 December 

2014 at 9:45 AM a gunman took 18 people hostage in a 

café in central Sydney. The 16-hour standoff that 

followed included formal negotiations with the 

gunman, various police responses and reactions, 

successful hostage escapes, and more, leading to an 

environment ripe for the emergence of rumors. The 

crisis ended after police stormed the building; two 

hostages and the gunman were killed.  

Utilizing custom python scripts to access the 

Twitter Streaming API, we collected and archived 

content (i.e. tweets) containing the following search 

terms: sydneysiege, martinplace, sydney, lindt, and 

chocolate shop. These terms were selected to capture 

event-related content and as such refer to the event and 

locale of the crisis. Data collection began on December 

15
th
, 2014 at 11:06am AEDT (local time), immediately 

following breaking news coverage of the event and 

ended two weeks later. While the majority of event-

related content was posted in the first 48 hours of the 

event, we extend data collection for a two-week period 

to prevent data loss due to unanticipated subsequent 

event discussion. We captured 5,429,345 tweets. 

The second dataset used here is comprised of a 

sample of tweets collected via the random sample 

Twitter makes available through their streaming API; 

these tweets provide a baseline case to which we can 

compare crisis-related content. Data collected are a 

small random sample of all public tweets. Tweets were 

monitored over the five-month period from January to 

May, 2015. We captured millions of tweets, and use a 

sample of these in our analysis below. 

 

4. Methods 

 
Our goal in this work is to explore the timing and 

speed of information transmission during crisis events; 

we aim to quantify the association between speed of 

retransmission and rumor-related features of the 

messages. 

 
4.1. Rumor Identification and Content Coding 
 

Our analysis makes use of a complex and rich 

dataset that has been curated through an extensive 

process of data cleaning and manual coding.  

Identifying rumors in a large corpus of unstructured 

text is a challenging problem. Our research team 

continues to develop mixed-methods approaches, 

leveraging visual exploratory data analysis as well as 

external sources (e.g. media reports). After rumor 

stories are identified, we need to determine which



Table 1. Descriptive statistics for rumor tweets sets and randomly sampled tweets 

 

tweets are related to each rumor. In our approach, we 

refine the set of tweets related to each rumor via an 

iterative process, relying heavily on the ability of 

subject matter experts to generate keyword-based 

search queries that produce a comprehensive, low 

noise corpus for each identified rumor. In the case of 

the Sydney Siege event, research team members 

identified five salient rumors, constituting the rumor 

dataset (50,708 tweets) that we utilize in the analysis 

below. Descriptive statistics of each rumor-related set 

of tweets, along with the randomly sampled dataset are 

seen in Table 1. We briefly provide background on 

each of the rumors. 

The first rumor centers on claims that an Australian 

radio host Ray Hadley spoke with one of the hostages 

on the phone, a story that turned out to be true 

(hereafter referred to as Hadley). The second rumor 

claims the Australian Federal Police were conducting 

home raids in Lakemba (a predominantly Muslin 

suburb of the city) at the same time as the Sydney 

Siege event; the story was later denied by authorities 

(hereafter referred to as Lakemba). The third rumor 

claims wearable suicide belts/vests were present; 

media reports suggest this claim was false (hereafter 

referred to as Suicide). The fourth rumor describes 

hostages holding an ISIL (Islamic State of Iraq and 

Levant) flag, which turned out later to be false 

(hereafter referred to as Flag). The last rumor reported 

that the airspace over Sydney had been closed due to 

the siege; while the story was thought to have been 

supported by the Sydney Airport, it was later 

disconfirmed by Airservices Australia (hereafter 

referred to as Airspace). 

To capture various dimensions of rumoring activity 

the research team coded each unique tweet along two 

dimensions. The first, which is designed to identify 

crowd support or correction, consists of five mutually 

exclusive categories: Affirm, Deny, Neutral, Unrelated, 

and Uncodable. Affirm tweets support or help to spread 

the story, while Deny tweets challenge all or part of the 

story. Neutral tweets neither affirm nor deny the rumor 

story, expressing an exact neutral stance on rumor 

belief. Unrelated tweets do not match with the rumor 

description but are still related to the crisis event. 

Tweets that cannot be coded are coded as Uncodable 

(e.g. tweets that contain non-English words that 

impede comprehension). Next, we code for other 

interesting signals of collective sense-making within 

the information space – expressed uncertainty is a 

second level code that can be applied to any tweet, 

suggesting some level of uncertainty about rumor story. 

Three trained coders manually code every distinct 

tweet (removing retweets and very close matches so as 

to narrow the scale of this task). We apply a “majority 

rules” decision process for assigning final codes
1

. 

Rumor identification and rumor coding tasks provide 

the foundation of our study, however, detailed 

elaboration of these processes is beyond the scope of 

the paper. Interested readers can refer to related work 

for more details [38][39][40]. 

 

4.2. Measuring the Speed of Transmission 

 
The primary quantity of interest in this analysis is 

the speed of message retransmission. We define the 

waiting time for a tweet-retweet pair as the length of 

time between when the original message was first 

posted and the later point in time it was subsequently 

redistributed by another Twitter user. We measure 

waiting times by focusing on retweets contained in the 

dataset; each retweet contains its metadata attributes 

describing its own post time as well as the post time of 

the original authored tweet. Each retweet record 

contains data about the original tweet itself including a 

set of attributes about the original author.  

In the Sydney Siege dataset, 37,555 (74.06%) of 

tweets are retweets.
2
 We then group together retweets 

of the same original tweet; if an original authored tweet 

was reposted multiple times, it has multiple retweets 

and hence multiple associated waiting times. We 

calculate average waiting times for every original tweet, 

                                                 
1 An inter-rater reliability analysis using the Fleiss’ Kappa statistic 

[41] was performed to evaluate agreement among raters and the 

result of Kappa is 0.892 (p<0.001) [39].  
2 We can only identify “official” retweets, those that users posted by 

clicking the Twitter “Retweet” button. Even though users could 

manually retweet by copying a tweet and reposting it, Twitter fails to 

automatically recognize these posts as retweets; subsequently data 

about the original message is not included as part of the record. We 

do not include manual retweets in our retweet dataset. 

 # of 
tweets 

% of 
retweets 

# of rumor-related 
retweets 

Min. waiting 
time (min) 

Med. waiting 
time (min) 

Max. waiting 
time (min) 

Random Sample NA 225539 NA 0.00 52.13 4686181.17 

Hadley Rumor 4094 0.665 1983 0.02 4.78 10037.61 

Lakemba Rumor 7912 0.920 1207 0.22 4.48 245.70 

Suicide Rumor 8134 0.762 2172 0.00 3.58 186701.60 

Flag Rumor 23165 0.641 8104 0.00 13.64 8386.32 

Airspace Rumor 7403 0.721 5293 0.00 4.92 15278.22 



using the median of a set of waiting times per tweet as 

the outcome measure of interest. In the randomly 

sampled tweet data, we utilized a simple random 

sampling strategy to avoid an abundance of retweets 

from the same tweet. We randomly sampled 225,539 

retweets to serve as the control group. We calculate 

waiting time of each random retweet as the interval 

between posting time of a randomly sampled retweet 

and its original tweet. Table 1 displays descriptive 

analysis of waiting times for the five rumor datasets 

and the random sample dataset.  

 

4.3. Tweet Feature Extraction 

 
One of the primary goals here is to evaluate which 

tweet features that are associated with longer/shorter 

median waiting time by building a predictive model for 

crisis-related content waiting time. We propose five 

categories of tweet features of interest to characterize 

different dimensions of these posts: tweet-element 

features, rumor features, interest features, exposure 

features and seasonality features. These categories of 

features are motivated by prior work, as discussed 

above, and extended into the rumor domain. Within 

each category, we come up with multiple features and 

hypothesize their effects on waiting times. Table 2 

contains a listing of the potential features to be used in 

the model.  

Table 2. Potential features 
Tweet element The presence of URLs, the presence of 

hashtags, the presence of user mentions 

Rumor Rumor stance, uncertainty, true or false 

rumor, sentiment 

Interest Retweet counts, favorite counts 

Exposure Average exposure degree (in-degree), 

average attention degree (out-degree), 

popularity of original poster, 
outgoingness of original poster 

Seasonality Time of day when original tweet was 
posted 

Tweet-element features: URLs, hashtags and user 

mentions have been shown to have a high correlation 

with retweetability and distribution of waiting time of 

hazard-related tweets [11][31][32]. Tweet-element 

features might also be related to waiting time of tweets 

with rumor content. URLs may provide external 

evidence to support a rumor or challenge a rumor, 

which may lead Twitter users to view external 

information before they respond to tweets, thereby 

lengthening waiting time. Hashtags often suggest 

themes or content of tweets; these tags also allow 

tweets to be gathered together to form channels or 

topics. Rumor-related tweets with hashtags might be 

easier and faster for Twitter users to search, consume 

and redistribute. Twitter posters can explicitly mention 

other Twitter users in their tweets using “@username” 

(known as user mentions). In the context of rumor 

propagation, user mentions may lead to different 

attractiveness to users who were mentioned and others 

who were not. 

Rumor features: This feature category 

characterizes elements related to rumor-specific 

content. Rumor stance, looking at tweets coded as 

affirm, deny or neutral, indicates the role that an 

original tweet may play during the process of rumor 

propagation and sense-making. Original tweets that 

support versus challenge a rumor serve as protagonists, 

and likewise skeptics, of the rumor story. Tweets can 

also take a neutral stance serving as messengers of a 

story. We explore the potential implications of these 

roles on waiting time, capturing differential tendencies 

for people who tend to have different attitudes towards 

rumor-related information.  

Uncertainty (captured by our second-level codes) is 

used to indicate whether a rumor-related tweet author 

expresses uncertainty in the post. This uncertainty 

might further impact others’ retweeting behaviors if 

users are wary of reposting uncertain information. True 

or false rumor measures whether a rumor turns out to 

be truth or untruth at the conclusion of the event. The 

true/false categorization is made based on researcher 

judgment after the event. Previous research suggests 

that tweets with extreme sentiment tend to be 

retweeted more often and faster compared to 

emotionally neutral ones [35][36][37]. Based on this 

hypothesis, we implemented a simple measure of 

content sentiment
3

 based on textual properties of 

tweets content; these methods provide three classes of 

sentiment: positive, neutral and negative. While a 

rough measure of sentiment, it nonetheless provides a 

simple estimate of emotional affect.  

Interest features: Existing theories suggest that 

rumor propagation can be affected by people’s interest 

in and perceived importance of the topic or subject of a 

particular piece of information. In this analysis, we 

utilize retweet counts and favorite counts of the 

original tweets to quantify how much Twitter users are 

“interested” in a certain original tweet. Retweet counts 

capture how many times an original tweet has been 

reposted at the time of observation. Favorite counts 

indicate the total number of times that a tweet has been 

“favorited” or liked by Twitter users. 

Exposure features: Exposure features are designed 

to capture the idea that once a tweet is posted it may be 

noticed, read, liked or reposted by others in the 

author’s network (to whom it is automatically 

delivered). We use follower counts and friend counts 

                                                 
3 We applied Sentiment API of MetaMind to our rumor-related 

dataset. The claimed accuracy of this method is 81.73%. 

https://www.metamind.io/classifiers/155 
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Figure 1 (a-f). Density plot for rumor-related, rumor-unrelated and randomly sampled tweets 

of the authors of original tweets to quantify popularity 

of original poster and outgoingness of original poster. 

The average degree of exposure of an original tweet is 

characterized by the median of follower counts of all 

authors that repeated a same original tweet (i.e. 

duplicate content). The average degree of attention  

measures the median of friend counts of all authors that 

reposted the same original tweet. 

Seasonality features: Previous research suggests 

that seasonality has strong association with users’ 

posting behavior. We consider the posting time in the 

local time zone of the authors of original tweets to 

study whether posting rumor-related tweets at different 

times of the day correlates to different waiting times. 

We extract the hour of the day during which the 

original tweet was posted as the feature of seasonality.  

 

4.4. Modeling Waiting Times 

 
To model waiting times of rumor-related tweets, we 

first fit the observed data using a simple linear model. 

Even though the linear model is simplistic, it is able to 

suggest explanatory power of potential features, and to 

evaluate the relative impact of each of the features. To 

extend this simple modeling framework, we also fit the 

data using a regression tree model enabling a non-

linear regression of waiting time on the set of potential 

features. In both models, waiting times are transformed 

to be on a log scale due to the skewness of the 

empirical distribution (as seen in Table 1).  

To build a linear model of waiting times, we take 

the dependent variable as the waiting times, and model 

the expected waiting time for each rumor-related tweet 

as a linear combination of features: 

 log i j ijE wt feature     

wti is the median waiting time of the i
th
 rumor-

related tweet;β j is the coefficient of the j
th
 feature of 

the model and featureij represents the value of the j
th

 

feature of the i
th
 rumor-related tweet. Since this simple 

linear regression model is restrictive - a single 

predictive formula holds over for the entire data-space 

- we extend our analysis by applying a method of non-

linear regression to partition our feature space into 

smaller regions, in order to get more interpretable 

predictions. 

 

5. Results 

 
5.1. Empirical Waiting Times  

To begin we consider the empirical distribution of 

waiting times, comparing different rumors to control 

content. Figure 1 shows the observed waiting time 

distributions for three illustrative rumors, comparing 

the waiting times for rumor-related (tweets coded as 

affirm, deny and neutral), rumor-unrelated (tweets 

coded as unrelated), and control content – tweets from 

the randomly sampled dataset. 

Three different characteristics of these waiting time 

distributions are shown from Figure 1 (a) to 1 (c). 

Figure 1 (a) shows the most common trend in the 

empirical study with three among the four false rumors 

in our dataset being consistent with this trend. The 

distribution of waiting times for rumor-unrelated and 

random tweets have fatter tails than those of rumor-

related tweets. Figure 1 (b) shows the distribution for 

the one true rumor in our dataset. The distribution of 

rumor-related tweets presents a small bump at the 

range of very short waiting times and immediately 

after that, the bump dies away. The difference between 

the distribution of rumor-related tweets and the 



distribution of rumor-unrelated tweets is not as 

noticeable as in Figure 1 (a). One explanation for this 

difference might be that once the rumor was confirmed 

as truth (which occurred relatively early) it fails to 

maintain enough excitement or uncertainty to motivate 

redistribution. Figure 1 (c) presents the comparison of 

the distributions for the Flag rumor. Though this is a 

false rumor, the distribution show that overall, rumor-

related tweets have longer waiting time than rumor-

unrelated tweets. The average waiting time of event-

related tweets is shorter than control content across all 

rumor cases. Therefore, this empirical analysis 

suggests that content pertaining to crises and crisis-

related rumors is likely to be particularly salient and 

worthy of redistribution, leading to shorter waiting 

times. 

Figure 1 (d) to 1 (f) compare the distributions of 

waiting times for rumor-affirming tweets, rumor-

denying tweets and neutral tweets for three illustrative 

rumors. Here, we see a consistent pattern across all 

three illustrative rumors – rumor-affirming tweets tend 

to have longer waiting time than rumor-denying tweets. 

Moreover, waiting times of rumor-affirming tweets are 

also longer than those of neutral tweets for Suicide and 

Flag rumors. Since the Hadley rumor only contains 

one original neutral tweet, the density curve of neutral 

Hadley tweets is not visible. 

 
Figure 2. Median waiting time for rumor-
related and randomly sampled content 

We also show a comparison of median waiting time 

across all rumors, restricting the data to rumor-related 

tweets, in relation to median waiting time for randomly 

sampled tweets, in Figure 2. Median waiting time for 

control content is much larger than all rumor-related 

tweets across each different rumor. The variability of 

rumor-related waiting times is much smaller, indicating 

rumor-related tweets have consistently shorter waiting 

times than control content. Apart from the Flag rumor, 

each of the other four rumors has similar variability 

and median values. Further applications of this 

research, in particular across new crisis event cases 

might be able to reveal why some rumor waiting times 

take on different distributional characteristics than 

others. 

 
5.2. Modeling Waiting Times  

 
In modeling tweet waiting times during crisis 

events, we experiment with different combinations of 

feature sets in order to test the relative effect of each 

feature set on waiting times. This process of features or 

model selection is a standard approach for comparing 

the fit of different models, allowing the researchers to 

choose the best fit, most parsimonious model. To select 

the best performing models, we use standard 

information criteria, AIC and BIC, as indicators of 

model fit [33][34]. Table 3 presents model fit results, 

demonstrating that each set of features has additional 

explanatory power, evident in the decrease in both AIC 

and BIC as more features are added. Therefore, the 

best performing model includes all features. We use 

this model in subsequent analyses. 

Table 3. Model selection 
Model AIC BIC 

tweet 6158.335 6185.286 

rumor 6148.258 6191.38 

interest 6133.767 6155.327 

exposure 6131.456 6163.797 

seasonality 6015.012 6149.735 

tweet + rumor 6132.614 6191.906 

tweet + rumor + interest 6093.509 6163.582 

tweet + rumor + interest + 
exposure 

6063.656 6155.289 

tweet + rumor + interest + 
exposure + seasonality 

5933.285 6148.843 

 

5.3. Factors Associated with Waiting Times  
 

Figure 3 shows the model coefficient estimates for 

each feature when all tweet-element, rumor, interest 

and exposure features are included in the model. The 

adjusted R-squared for this combined model is 0.1571. 

For tweet-element features, results suggest that the 

presence of URLs has a strong positive association 

with waiting times, indicating tweets with URLs tend 

to wait longer to be reposted. This may indicate that 

Twitter users need more time to read and comprehend 

external content provided by URL links. The presence 

of hashtags has a strong negative association with 

waiting time, suggesting these tags may help other 

Twitter users find the tweet easier and faster. A tweet 

containing a hashtag(s) is perhaps more likely to be 

seen by others earlier because it is easily accessible and 

searchable. In this model, the presence of user 

mentions does not have significant association with 

waiting times, which may suggest inclusion of 

@mentions does not affect redistribution of tweets. 

For rumor features, our rumor stance codes have a 

strong association with waiting times. The codes of 



affirm, deny and neutral categories are included in the 

model as dummy variables, using affirm as reference 

class. Results show that rumor-denying tweets and 

neutral tweets are associated with shorter waiting times. 

Among these three classes, neutral tweets have the 

shortest waiting times, which may suggest that whether 

protagonists or challengers of a rumor require more 

time to collect evidence to support their point of views. 

Neutral stance tweets may present relatively low risk 

for reposting – they may not harm the poster’s 

reputation (whereas spreading misinformation might be 

harmful). Interestingly, rumor-denying tweets are 

likely to have shorter waiting times than rumor-

affirming tweets. One possible explanation of this 

effect might be that people are more interested in 

challenging a viewpoint than in supporting one. Thus, 

people respond to rumor-denying tweets more rapidly. 

Alternatively, denials might be perceived as important 

to curbing or stopping the spread of a false rumor and 

therefore important to pass along quickly.  

 
Figure 3. Coefficient plots for rumor, tweet-
element, interest and exposure features 

 
Figure 4. Seasonality 

The feature of true/false rumor suggests that true 

rumors are associated with shorter waiting times, 

however, this requires further work (our dataset is 

limited because it contains only one true rumor). We 

need to identify more true rumors in future work to 

explore relationship between trustworthiness of rumors 

and human behaviors of redistributing rumor-related 

content. Even though the feature of content sentiment 

is not statistically significant in the model, it is still 

interesting to see that the estimated coefficient of 

dummy variable of positive sentiment is positive, 

indicating that rumors with positive sentiment spread 

slower than rumors with negative sentiment. Figure 4 

shows that selected seasonality features do have an 

association with waiting times. Tweets posted during 

the hours of 6, 9 and 10 in the morning, correlate to 

higher waiting times. However, later during the noon 

break around 11 a.m. to 12 p.m. tweets are associated 

with shorter waiting times. During the night around 20 

p.m. and 21 p.m., waiting times of tweets tend to 

become shorter as well. Seasonality results appear to 

match general usage patterns of Twitter. 

Applying a more flexible model allows us to 

confirm many of these results. In the regression tree 

model we see similar patterns of association, as seen in 

Figure 5. The feature of seasonality plays a significant 

role in waiting times. Thus, we have a stronger 

confidence in the association between patterns of usage 

of Twitter users and waiting times. An interesting 

finding in the regression tree is that the features - 

favorite counts and retweet counts of original tweets 

serve as important splits in this model. Tweets that 

have been favorited by more Twitter users are likely to 

have longer median waiting times. Similarly, more 

retweet counts (greater than 2.5) are correlated to 

longer waiting times. Since more retweet counts and 

favorite counts might suggest a longer time span from 

the time point when original tweets were posted to the 

last time point when the last tweet, median waiting 

times for tweets might be longer.  

In many ways, this split is easily recognized as a 

partition between tweets that receive no recognition 

from other users, versus those that do. Further, on the 

other side of the tree we see tweets that have large 

numbers of retweets. While these content features are 

important to note, we focus on the rumor codes. Here 

again we find support for rumor-affirming tweets 

having the longest waiting times, compared to rumor-

denying or neutral tweets. 

 

7. Discussion  

 
Our results quantifying the speed of rumor 

transmission during a crisis event, demonstrate 

significant variability in the speed that messages 

propagate in social media spaces. While there are many 

factors associated with transmission speed, such as 

URLs and hashtags, we focus on rumor dimensions, 

calling attention to the consequences of differential 

spread. Grounded in prior sociological studies of rumor, 

we consider the differences between content that 

affirms a particular rumor versus content that denies 

that rumor. Our analysis demonstrates that rumor-

affirming content tends to have longer waiting times 

than rumor-denying content, across five different



 
Figure 5. Model of regression tree 

 

rumors that spread during a hostage crisis event. 

Implications for rumoring during crisis are widespread. 

First, our analysis suggests that rapid, coordinated 

denials of rumors could outpace rumor affirmers since 

denials tend to be spread more rapidly. In the context 

of false rumors, i.e. misinformation, this implies that 

crowd corrections may be viable in preventing 

misinformation cascades as the public may respond to 

denial more quickly.  

Beyond implications for social studies of rumoring 

behavior, this research offers insight for emergency 

responders and practitioners. Demonstrating that the 

public responds differently to different rumor content 

could be encouraging for emergency responders who 

cite the potential for widespread proliferation of 

misinformation as one of the primary reasons for 

questioning the value of social media in the crisis space. 

While the work presented here is a first look at 

measuring and modeling the speed of information 

transmission during one crisis event and across 

multiple rumors, it also aims to provide a foundation 

for future work in this area. Importantly, we recognize 

the need to bring together information transmission 

size and speed. In addition, we continue to replicate 

these results across additional case studies. 

 

8. Conclusion  

 
Social media continue to play a prominent and 

important role in information dissemination during 

crisis events. Both the public and government officials 

and organizations charged with crisis management can 

utilize social media platforms to disseminate event-

related information. While social media offer many 

affordances in this setting – namely rapid, real-time 

communication – it is important to understand how 

rumor spreads in these settings. Here we fill notable 

gaps in our understanding of rumoring on social media 

during crisis, by quantifying and modeling the speed of 

transmission. More specifically, we contrast rumor-

affirming posts with rumor-correcting posts on Twitter 

during a notable hostage crisis to reveal differences in 

transmission speed. This work extends understanding 

of social behavior in online environments. 
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