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1.  Purpose 3.  References

This engineer technical letter (ETL) provides an See Appendix A.
introduction to the use of probabilistic methods in
geotechnical engineering.

2.  Applicability

This ETL applies to HQUSACE elements and USACE reliability methods of analyses for use in the
commands having responsibility for the design of civil assessment of existing levees for benefit determination
works projects. and the geotechnical portion of major rehabilitation

4.  Discussion

This is the first in a series of ETL's that will provide
guidance on the use and application of probability and

reports.
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APP B - Introduction to Probability and
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APPENDIX B:  INTRODUCTION TO PROBABILITY AND
RELIABILITY IN GEOTECHNICAL ENGINEERING

B-1.  Introduction

a. The objective of this ETL is to introduce some
basic elements of engineering reliability analysis
applicable to geotechnical structures for various modes
of performance.  These reliability measures are
intended to be sufficiently consistent and suitable for
application to economic analysis of geotechnical
structures of water resource projects.  References are
provided which should be consulted for detailed
discussion of the principles of reliability analyses.

b. Traditionally, evaluations of geotechnical
adequacy are expressed by safety factors.  A safety
factor can be expressed as the ratio of capacity to
demand.  The safety concept, however, has short-
comings as a measure of the relative reliability of
geotechnical structures for different performance
modes.  A primary deficiency is that parameters
(material properties, strengths, loads, etc.) must be
assigned single, precise values when the appropriate
values may in fact be uncertain.  The use of precisely
defined single values in an analysis is known as the 
deterministic approach.  The safety factor using this
approach reflects the condition of the feature, the
engineer's judgment, and the degree of conservatism
incorporated into the  parameter values.

c. Another approach, the probabilistic approach,
extends the safety factor concept to explicitly incor-
porate uncertainty in the parameters.  This uncertainty
can be quantified through statistical analysis of existing
data or judgmentally assigned.  Even if judgmentally
assigned, the probabilistic results will be more
meaningful than a deterministic analysis because the
engineer provides a measure of the uncertainty of his
or her judgment in each parameter.

B-2.  Reliability Analysis Principles

a.  The probability of failure.

(1) Engineering reliability analysis is concerned
with finding the reliability R or the probability of 
failure Pr(f) of a feature, structure, or system.  As a
system is considered reliable unless it fails, the
reliability and probability of failure sum to unity:

(2) In the engineering reliability literature, the
term failure is used to refer to any occurrence of an
adverse event under consideration, including simple
events such as maintenance items.  To distinguish
adverse but noncatastrophic events (which may require
repairs and associated expenditures) from events of
catastrophic failure (as used in the dam safety context),
the term probability of unsatisfactory performance
Pr(U) is sometimes used.  An example would be slope
stability where the safety factor is below the required
minimum safety factor but above 1.0.  Thus, for this
case, reliability is defined as:

b.  Contexts of reliability analysis.

(1) Engineering reliability analysis can be used in
several general contexts:

• The estimation of the reliability of a new
structure or system upon its construction and 
first loading.

• The estimation of the reliability of an existing
structure or system upon a new loading.

• The estimation of the probability of a part or
system surviving for a given lifetime.

Note that the third context has an associated time
interval, where as the first two involve measures of the
overall adequacy of the system in response to a load
event.

(2) Reliability for the first two contexts can be
calculated  using  the  capacity-demand  model  and 
quantified by the reliability index $.   In the capacity-
demand  model,  uncertainty in the performance of the
structure or system is taken to be a function of the
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uncertainty in the values of various parameters used in • A definition of the limit state (e.g., ln (FS) =
calculating some measure of performance, such as the 0).
factor of safety.  

(3) In the third context, reliability over a future standard deviation of the limit state given the
time interval is calculated using parameters developed expected values and standard deviations of the
from actual data on the lifetimes or frequencies of parameters (e.g., the Taylor's series or point
failure of similar parts or systems.  These are usually estimate methods).
taken to follow the exponential or Weibull probability
distributions. This methodology is well established in d.  Accuracy of reliability index.
electrical, mechanical, and aerospace engineering
where parts and components routinely require periodic (1) For rehabilitation studies of geotechnical
replacement. This approach produces a hazard structures, the reliability index is used as a “relative
function which defines the probability of failure in any measure of reliability or confidence in the ability of a
time period.  These functions are used in economic structure to perform its function in a satisfactory
analysis of proposed geotechnical improvements.  The manner.”
development of hazard functions is not part of this
ETL. (2) The analysis methods used to calculate the

(4) For reliability evaluation of most geotechnical the relative reliability of various structures and
structures, in particular existing levees, the capacity- components.  However, reliability index values are not
demand model will be utilized, as the question of absolute measures of probability.  Structures,
interest is the probability of failure related to a load components, and performance modes with higher
event rather than the probability of failure within a indices are considered more reliable than those with
time interval. lower indices.  Experience analyzing geotechnical

c.  Reliability index.  The reliability index $ is a
measure of the reliability of an engineering system that
reflects both the mechanics of the problem and the
uncertainty in the input variables.  This index was
developed by the structural engineering profession to a. In the capacity-demand model, the probability
provide a measure of comparative reliability without of failure or unsatisfactory performance is defined as
having to assume or determine the shape of the the probability that the demand on a system or
probability distribution necessary to calculate an exact component exceeds the capacity of the system or
value of the probability of failure.   The reliability component.  The capacity and demand can be
index is defined in terms of the expected value and combined into a single function (the performance
standard deviation of the performance function, and function), and the event that the capacity equals the
permits comparison of reliability among different demand  taken as the limit state.  The reliability R is
structures or modes of performance without having to the probability that the limit state will not be achieved
calculate absolute probability values.  Calculating the or crossed.
reliability index requires:

• A deterministic model (e.g., a slope stability illustrated for slope stability analysis in Figure B-1. 
analysis procedure). Using the expected value and standard deviation of the

• A performance function (e.g., the factor of Taylor*s series method or the point estimate method,
safety from UTEXAS2). the expected  value  and  standard  deviation  of the

• The expected values and standard deviations the factor of safety is lognormally distributed, then the
of the parameters taken as random variables natural log of the factor of safety is normally distri-
(e.g., E[N] and F ). buted.  The performance function is taken as the log ofN

• A method to estimate the expected value and

reliability index should be sufficiently accurate to rank

structures will refine these techniques.

B-3.  The Capacity-Demand Model

b. The concept of the capacity-demand model is

random variables c and N in conjunction with the

factor of safety can be calculated.  If it is assumed that
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Figure B-1.  The capacity-demand model

the factor of safety, and the limit state is taken as the • A performance function and limit state are
condition ln (FS) = 0. The probability of failure is identified.  
then the shaded area corresponding to the condition ln
(FS) < 0.  If it is assumed that the distribution on ln • The expected value and standard deviation of
(FS) is normal, then the probability of failure can be the performance function are calculated.  In
obtained using standard statistical tables. concept, this involves integrating the perfor-

mance function over the probability density

c. Equivalent performance functions and limit
states can be defined using other measures, such as the
exit gradient for seepage.

d. The probability of failure associated with the point estimate method.
reliability index is a probability per structure; it has no
time-frequency basis.  Once a structure is constructed • The reliability index $ is calculated from the
or loaded as modeled, it either performs satisfactorily expected and standard deviation of the perfor-
or not.  Nevertheless, the $ value calculated for an mance function. The reliability index is a
existing structure provides a rational comparative measure of the distance between the expected
measure. value of ln (C/D) or ln (FS) and the limit

B-4.  Steps in a Reliability Analysis Using the
Capacity-Demand Model

As suggested by Figure B-1 for slope stability, a
reliability analysis includes the following steps:

• Important variables considered to have
sufficient inherent uncertainty are taken as
random variables and characterized by their
expected values, standard deviations, and
correlation coefficients.  In concept, every

variable in an analysis can be modeled as a
random variable as most properties and
parameters have some inherent variability and
uncertainty.  However, a few specific random
variables will usually dominate the analysis. 
Including additional random variables may
unnecessarily increase computational effort
without significantly improving results.  When
in doubt, a few analyses with and without
certain random variables will quickly illustrate
which are significant, as will the examination
of variance terms in a Taylor's series analysis. 
For levee analysis, significant random
variables typically include material strengths,
soil permeability or permeability ratio, and
thickness of top stratum.  Material properties
such as soil density may be significant, but
where strength and density both appear in an
analysis, strength may dominate.  An example
of a variable that can be represented
deterministically (nonrandom) is the density of
water. 

functions of the random variables.  In prac-
tice, approximate values are obtained using
the expected value, standard deviation, and
correlation coefficients of the random vari-
ables in the Taylor's series method or the

state.

• If a probability of failure value is desired, a
distribution is assumed and Pr(f) calculated. 

B-5.  Random Variables

a. Description.  Parameters having significance
in the analysis and some significant uncertainty are 
taken as random variables.  Instead of having precise
single values, random variables assume a range of
values in accordance with a probability density
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function or probability distribution.  The probability
distribution quantifies the likelihood that its value lies
in any given interval.  Two commonly used distri-
butions, the normal and the lognormal, are described
later in this appendix.  

b. Moments of random variables.  To model
random variables in the Taylor’s series or point
estimate methods, one must provide values of their
expected values and standard deviations, which are
two of several probabilistic moments of a random
variable.  These can be calculated from data or esti-
mated from experience.  For random variables which
are not independent of each other, but tend to vary
together, correlation coefficients must also be
assigned.

(1) Mean value.  The mean value µ  of a set of NX

measured values for the random variable X is obtained
by summing the values and dividing by N:

(2) Expected value.  The expected value E[X] of a
random variable is the mean value one would obtain if
all possible values of the random variable were multi-
plied by their likelihood of occurrence and summed. 
Where a mean value can be calculated from
representative data, it provides an unbiased estimate of
the expected value of a parameter; hence, the mean
and expected value are numerically the same.  The ex-
pected value is defined as:

where

f(X) = probability density function of X (for
   continuous random variables)

p(X ) = probability of the value X  (for discretei       i

   random variables)

(3)  Variance.  The variance Var [X] of a random
variable X is the expected value of the squared
difference between the random variable and its mean
value.  Where actual data are available, the variance of
the data can be calculated by subtracting each value
from the mean, squaring the result, and determining
the average of these values:

The summation form above involving the X  termi

provides the variance of a population containing
exactly N elements.  Usually, a sample of size N is
used to obtain an estimate of the variance of the
associated random variable which represents an entire
population of items or continuum of material.  To
obtain an unbiased estimate of the population working
from a finite sample, the N is replaced by N - 1:

(4) Standard deviation.  To express the scatter or
dispersion of a random variable about its expected
value in the same units as the random variable itself,
the standard deviation F  is taken as the square root ofX

the variance; thus:

(5)  Coefficient of variation.  To provide a
convenient dimensionless expression of the uncertainty
inherent in a random variable, the standard deviation is
divided by the expected value to obtain the coefficient
of variation V  which is usually expressed as a percent:X

The expected value, standard deviation, and coefficient
of variation are interdependent: knowing any two, the
third is known.  In practice, a convenient way to
estimate moments for parameters where little data are
available is to assume that the coefficient of variation is
similar to previously measured values from other data
sets for the same parameter.

c. Correlation.   Pairs  of random variables may
be correlated or independent; if correlated, the like-
lihood of a certain value of the random variable Y
depends on the value of the random variable X.  For
example, the strength of sand may be correlated with
density or the top blanket permeability may be corre-
lated with grain size of the sand.  The covariance
Cov [X,Y]  is  analogous to the variance but measures
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the combined effect of how two variables vary the normal or lognormal distribution which has the
together.  The definition of the covariance is: expected value and standard deviation assumed.  This

which is equivalent to:

In the above equation, f(X,Y) is the joint probability
density function of the random variables X and Y.  To
calculate the covariance from data, the following
equation can be used:

To provide a nondimensional measure of the degree of
correlation between X and Y, the correlation coefficient
D  is obtained by dividing the covariance by theX,Y

product of the standard deviations:

The correlation coefficient may assume values from
-1.0 to +1.0.  A value of 1.0 or -1.0 indicates there is
perfect linear correlation; given a value of X, the value
of Y is known and hence is not random.  A value of
zero indicates no linear correlation between variables. 
A positive value indicates the variables increase and
decrease together; a negative value indicates that one
variable decreases as the other increases.  Pairs of
independent random variables have zero correlation
coefficients.

B-6.  Probability Distributions

a. Definition.  

(1) The terms probability distribution and proba-
bility density function pdf or the notation f (X) refer toX

a function that defines a continuous random variable. 
The Taylor's series and point estimate methods
described herein to determine moments of performance
functions require only the mean and standard deviation
of random variables and their correlation coefficients;
knowledge of the form of the probability density
function is not necessary. However, in order to ensure
that estimates made for these moments are reasonable,
it is recommended that the engineer plot the shape of

can easily be done with spreadsheet software.

(2) Figure B-1 illustrated probability density
functions for the random variables c and N.  A
probability density function has the property that for
any X, the value of f(x) is proportional to the like-
lihood of X.  The area under a probability density
function  is unity.  The probability that the random
variable X lies between two values X  and X  is the1  2

integral of the probability density function taken
between the two values.  Hence:

(3) The  cumulative distribution function CDF or
F (X) measures the integral of the probability densityX

function from minus infinity to X:

Thus for any value X, F (X) is the probability that theX

random variable X is less than the given x. 

b. Estimating probabilistic distributions.  A
suggested method to assign or check assumed
moments for random variables is to:

• Assume trial values for the expected value and
standard deviation and take the random
variable to be normal or lognormal.

• Plot the resulting density function and tabulate
and plot the resulting cumulative distribution
function (spreadsheet  software is a convenient
way to do this).

• Assess the reasonableness of the shape of the
pdf and the values of the CDF.

• Repeat above steps with successively
improved estimates of the expected value and
standard deviation until an appropriate pdf and
CDF are obtained.

c. Normal distribution.  The normal or Gaussian
distribution is the most well-known and widely
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assumed probability density function.  It is defined in and F  = F . To obtain the parameters of the normal
terms of the mean µ  and standard deviation F  as: random variable Y, first the coefficient of variation ofX    X

When fitting the normal distribution, the mean of the
distribution is taken as the expected value of the
random variable.  The cumulative distribution function
for the normal distribution is not conveniently ex-
pressed in closed form but is widely tabulated and can
be readily computed by numerical approximation.  It is
a built-in function in most spreadsheet programs. 
Although the normal distribution has limits of plus and
minus infinity, values more than three or four standard
deviations from the mean have very low probability. 
Hence, one empirical fitting method is to take
minimum and maximum reasonable values to be at
plus and minus three or so standard deviations.  The
normal distribution is commonly assumed to
characterize many random variables where the
coefficient of variation is less than about 30 percent. 
For levees, these include soil density and drained
friction angle.  Where the mean and standard deviation
are the only information known, it can be shown that
the normal distribution is the most unbiased choice.  

d. Lognormal distribution.

(1) When a random variable X is lognormally
distributed, its natural logarithm, ln X, is normally
distributed.  The lognormal distribution has several
properties which often favor its selection to model
certain random variables in engineering analysis:

• As X is positive for any value of ln X,
lognormally distributed random variables
cannot assume values below zero.  

• It often provides a reasonable shape in cases
where the coefficient of variation is large
(>30 percent) or the random variable may
assume values over one or more orders of
magnitude.

• The central limit theorem implies that the
distribution of products or ratios of random
variables approaches the lognormal distri-
bution as the number of random variables
increases.

(2) If the random variable X is lognormally
distributed, then the random variable Y = ln X is
normally distributed with parameters E[Y] = E[ln X]

Y  ln X

X is calculated:

The standard deviation of Y is then calculated as:

The standard deviation F  is in turn used to calculateY

the expected value of Y:

The density function of the lognormal variate X is:

The shape of the distribution can be plotted from the
above equation. Values on the cumulative distribution
function for X can be determined from the cumulative
distribution function of Y (E[Y], F ) by substituting theY

X in the expression Y = ln X.

B-7.  Calculation of the Reliability Index

a. Figure B-2 illustrates that a simple definition
of the reliability index is based on the assumption that
capacity and demand are normally distributed and the
limit state is the event that their difference, the safety
margin S, is zero.  The random variable S is then also
normally distributed and the reliability index is the
distance by which E[S] exceeds zero in units of F :S

An alternative formulation (also shown in Figure B-2)
implies that capacity C and demand D are lognormally
distributed random variables.  In this case ln  C  and ln
D are normally distributed.  Defining the factor of
safety FS as the ratio C/D,  then ln FS = (ln C) - (ln
D) and ln FS is normally distributed.  Defining the
reliability index as the distance by which ln FS
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Figure B-2.  Alternative definitions of the reliability index

exceeds zero in terms of the standard deviation of
ln FS, it is:

b. From the properties of the lognormal
distribution, the expected value of ln C is:

where:

Similar expressions apply to E[ln D] and F .ln D

c. The expected value of the log of the factor of
safety is then:

As the second-order terms are small when the coeffi-
cients of variation are not exceedingly large (below
approximately 30 percent), the equation above is
sometimes approximated as:

The standard deviation of the log of the factor of
safety is obtained as:

Introducing an approximation,

the reliability index for lognormally distributed C, D,
and FS and normally distributed ln C, ln D, and ln FS
can be expressed approximately as:

The exact expression is:

For many geotechnical problems and related deter-
ministic computer programs, the output is in the form
of the factor of safety, and the capacity and demand
are not explicitly separated.  The reliability index must
be calculated from values of E[FS] and F  obtainedFS

from multiple runs as described in the next section.  In
this case, the reliability index is obtained using the
following steps:
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B-8.  Integration of the Performance Function

Methods such as direct integration, Taylor’s series
method, point estimate method, and Monte Carlo
simulation are available for calculating the mean and
standard deviation of the performance function.  For
direct integration, the mean value of the function is
obtained by integrating over the probability density
function of the random variables.  A brief description
of the other methods follows.  The references should
be consulted for additional information.

a. Taylor’s series method.  Taylor’s series
method is one of several methods to estimate the
moments of a performance function based on moments
of the input random variables. It is based on a Taylor’s
series expansion of the performance function about
some point.  For the Corps’ navigation rehabilitation
studies, the expansion is performed about the expected
values of the random variables. The Taylor’s series
method is termed a first-order, second-moment
(FOSM) method as only first-order (linear) terms of
the series are retained and only the first two moments
(mean and the standard deviation) are considered.  The
method is summarized below.

(1) Independent random variables.  Given a
function Y = g(X , X , ... X ), where all X  values are1  2   n    i

independent, the expected value of the function is
obtained by evaluating the function at the expected
values of the random variables:

For a function such as the factor of safety, this implies that
the expected value of the factor of safety is calculated
using the expected values of the random variables:

The variance of the performance function is taken as:

with the partial derivatives taken at the expansion point
(in this case the mean or expected value). Using the
factor of safety as an example performance function,
the variance is obtained by finding the partial deriva-
tive of the factor of safety with respect to each random
variable evaluated at the expected value of that varia-
ble, squaring it, multiplying it by the variance of that
random variable, and summing these terms over all of
the random variables:

The standard deviation of the factor of safety is then
simply the square root of the variance.

(a) Having the expected value and variance of the
factor of safety, the reliability index can be calculated
as described earlier in this appendix.  Advantages of
the Taylor’s series method include the following:

• The relative magnitudes of the terms in the
above summation provide an explicit indica-
tion of the relative contribution of uncertainty
of each variable.

• The method is exact for linear performance
functions.

Disadvantages of the Taylor’s series method include
the following:

• It is necessary to determine the value of
derivatives.

• The neglect of higher order terms introduces
errors for nonlinear functions.

(b) The required derivatives can be estimated
numerically by evaluating the performance function at
two points.  The function is evaluated at one increment
above and below the expected value of  the random
variable X  and the difference of the results is dividedi

by the difference between the two values of X . i

Although the derivative at a point is most precisely
evaluated using a very small increment,  evaluating the
derivative over a range of plus and minus one standard
deviation may better capture some of the nonlinear
behavior of the function over a range of likely values.
Thus, the derivative is evaluated using the following
approximation:
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Figure B-3.  Point estimate method

When the above expression is squared and multiplied
by the variance, the standard deviation term in the
denominator cancels the variance, leading to

where X  and X  are values of the random variable at+  -

plus and minus one standard deviation from the
expected value.

(2) Correlated random variables.  Where random
variables are correlated, the solution is more complex. 
The expression for the expected value, retaining
second-order terms is:

However, in keeping with the first-order approach, the
second-order terms are generally neglected, and the
expected value is calculated the same as for
independent random variables.  The variance,
however, is taken as:

where the covariance term contains terms for each
possible combination of random variables.

b. Point estimate method.  An alternative method
to estimate moments of a performance function based
on moments of the random variables is the point
estimate method.  Point estimate methods are pro-
cedures where probability distributions for continuous
random variables are modeled by discrete “equivalent”
distributions having two or more values.  The elements
of these discrete distributions (or point estimates) have
specific values with defined probabilities such that the
first few moments of the discrete distribution match

that of the continuous random variable.  Having only a
few values over which to integrate, the moments of the
performance function are easily obtained. A simple
and straightforward point estimate method has been
proposed by Rosenblueth (1975, 1981) and is
summarized by Harr (1987).  That method is briefly
summarized below.

(1) Independent random variables.  As shown in
Figure B-3, a continuous random variable X is
represented by two point estimates, X  and X , with+  -

probability concentrations P  and P , respectively.  As+  -

the two point estimates and their probability concen-
trations form an equivalent probability distribution for
the random variable, the two P values must sum to
unity.  The two point estimates and probability con-
centrations are chosen to match three moments of the
random variable. When these conditions are satisfied
for symmetrically distributed random variables, the
point estimates are taken at the mean plus or minus one
standard deviation:

For independent random variables, the associated
probability concentrations are each one-half:

Knowing the point estimates and their probability
concentrations for each variable, the expected value of
a function  of  the random variables raised to any
power M can be approximated by evaluating the
function for each possible combination of the point
estimates (e.g., X , X , X , X  ), multiplying each1+  2-  3+  n-
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result by the product of the associated probability
concentrations (e.g., P  = P P P ) and summing+--  1+ 2- 3- 

the terms.  For example, two random variables result
in four combinations of point estimates and four terms:

For N random variables, there are 2  combinations ofN

the point estimates and 2  terms in the summation.  ToN

obtain the expected value of the performance function,
the function g(X ,X ) is calculated 2  times using all the1 2

N

combinations and the exponent M is 1.  To obtain the
standard deviation of the performance function, the
exponent M is taken as 2 and the squares of the
obtained results are weighted and summed to obtain
E[Y ].  The variance can then be obtained from the2

identity

and the standard deviation is the square root of the
variance.

(2) Correlated random variables.  Correlation
between symmetrically distributed random variables is
treated by adjusting the probability concentrations
(P ±± .... ±).  A detailed discussion is provided by
Rosenblueth (1975) and summarized by Harr (1987). 
For certain geotechnical analyses involving lateral
earth pressure, bearing capacity of shallow founda-
tions, and slope stability, often only two random
variables (c and N or tan N) need to considered as
correlated.  For two correlated random variables
within a group of two or more, the product of their
concentrations is modified by adding a correlation
term: 

c. Monte Carlo simulation.  The performance
function is evaluated for many possible values of the
random variables.  A plot of the results will produce
an approximation of the probability distribution.  Once
the probability distribution is determined in this
manner, the mean and standard deviation of the
distribution can be calculated.

B-9.  Determining the Probability of Failure

Once the expected value and standard deviation of the
performance function have been determined using the
Taylor*s series or point estimate methods, the reli-
ability index can be calculated as previously described. 
If the reliability index is assumed to be the number of
standard deviations by which the expected value of a
normally distributed performance function (e.g.,
ln (FS)) exceeds zero, than the probability of failure
can be calculated as:

where R(-z) is the cumulative distribution function of
the standard normal distribution evaluated at -z, which
is widely tabulated and available as a built-in function
on modern microcomputer spreadsheet programs.

B-10.  Overall System Reliability

Reliability indices for a number of components or a
number of modes of performance may be used to
estimate the overall reliability of an embankment. 
There are two types of systems that bound the possible
cases, the series system and the parallel system.

a. Series system.  In a series system, the system
will perfrom unsatisfactorily if any one component
performs unsatisfactorily.  If a system has n compo-
nents in series, the probability of unsatisfactory
performance of the ith component is p  and its reli-i

ability, R  = 1 - p , then the reliability of the system,i    i

or probability that all components will perform satis-
factorily, is the product of the component reliabilities.

b. Simple parallel system.  In a parallel system,
the system will only perform unsatisfactorily if all
components perform unsatisfactorily.  Thus, the
reliability is unity minus the probability that all com-
ponents perform unsatisfactorily, or
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Table B-1.  Target Reliability Indices

Expected
Performance
Level Beta

Probability of
Unsatisfactory
 Performance

High 5 0.0000003

Good 4 0.00003

Above average 3 0.001

Below average 2.5 0.006

Poor 2.0 0.023

Unsatisfactory 1.5 0.07

Hazardous 1.0 0.16

Note:  Probability of unsatisfactory performance is the probability
that the value of performance function will approach the limit
state, or that an unsatisfactory event will occur.  For example, if
the performance function is defined in terms of slope instability,
and the probability of unsatisfactory performance is 0.023, then
23 of every 1,000 instabilities will result in damage which causes
a safety hazard.

c. Parallel series systems.

(1) Solutions are available for systems requiring
r-out-of-n operable components, which may be
applicable to problems such as dewatering with
multiple pumps, where r is defined as the number of
reliable units.  Subsystems involving independent
parallel and series systems can be mathematically
combined by standard techniques.

(2) Upper and lower bounds on system reliability
can be determined by considering all components to be
from subgroups of parallel and series systems, respec-
tively; however, the resulting bounds may be so broad
as to be impractical.  A number of procedures are
found in the references to narrow the bounds.

(3) Engineering systems such as embankments are
complex and have many performance modes.  Some of
these modes may not be independent; for instance,
several performance modes may be correlated to the
occurrence of a high or low pool level.  Rational
estimation of the overall reliability of an embankment
is a topic that is beyond this ETL.

d. A practical approach.

(1) The reliability of a few subsystems or com-
ponents may govern the reliability of the entire system. 
Thus, developing a means to characterize and compare
the reliability of these components as a function of
time is sufficient to make engineering judgments to
prioritize operations and maintenance expenditures.

(2) For initial use in reliability assessment of
geotechnical systems, the target reliability values
presented below should be used.  The objective of the
Major Rehabilitation Program would be to keep the
reliability index for each significant mode above the
target value for the foreseeable future.

B-11.  Target Reliability Indices

Reliability indices are a relative measure of the current
condition and provide a qualitative estimate of the
expected performance.  Embankments with relatively
high reliability indices will be expected to perform
their function well.  Embankments with low reliability
indices will be expected to perform poorly and present
major rehabilitation problems.  If the reliability indices
are very low, the embankment may be classified as a
hazard.  The target reliability values shown in
Table B-1 should be used in general.


