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ABSTRACT
Smart meters track fine-grained usage of utilities for billing pur-

poses, offer incentives for the adoption of renewable energy, provide

detailed customer feedback, monitor current demand and forecast

future energy consumption/needs. A key impediment to the wide-

spread smart meter acceptance and adoption is the privacy and

security concerns surrounding the identification of users’ house-

hold activities from the frequent logging of utility usage over time,

to the lax privacy preservation practices leading to exposure of the

data and misuse by authorized and/or unauthorized entities.

To address these concerns, we apply differential privacy on real-

world smart metering data and contemplate the practicality and

challenges of this approach. To that end, we consider utility compa-

nies as trusted entities to collect real data and that they can share

differentially private data with third parties.

We design a two-step approach to generate representative pri-

vate time series using a dataset of 2 million time series with 48 time

stamps and offer recommendations on parameter settings in dif-
ferential privacy while considering the feasibility of this approach

given its complexity and the size of the data.

CCS CONCEPTS
• Security and privacy→ Data anonymization and sanitization;

KEYWORDS
Smart Meters, Time Series, Clustering, Privacy Preservation, Dif-

ferential Privacy

ACM Reference Format:
Swapna Thorve, Lindah Kotut, and Mary Semaan. 2018. Privacy Preserving

Smart Meter Data. In Proceedings of The 7th International Workshop on Urban
Computing (UrbComp’18), Jennifer B. Sartor, Theo D’Hondt, and Wolfgang

De Meuter (Eds.). ACM, New York, NY, USA, Article 4, 5 pages. https:

//doi.org/10.475/123_4

1 INTRODUCTION
Smart meter deployment has become a norm: apart from benefiting

utility companies in billing, consumption monitoring and forecast-

ing, it also provides the customer with the granular information

they need to monitor energy use, and plan for conservation. The

granularity-gains and privacy costs to the consumer are known, and
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work exist that offer solutions in answering the dilemma on how

best to preserve confidentiality of information while at the same

time offering the granularity needed to take the most advantage of

affordances brought about by smart metering.

Our work, while considering the application of different pri-

vacy preserving methods on data, also considers the confounding

factors surrounding data release – both from ethical and logical

perspectives. From the ethical standpoint, it has been theoretically

proven that differential privacy [6] can be used to preserve privacy

of sensitive data. Using this guarantee, we attempt the application

of differential privacy – the state of the art in privacy preservation

on real world data.

We utilize smart meter data available at granular scale of half-

hourly (48) time intervals, that provide different challenges that may

not be as visiblewhen considering non-time-series/discrete/counting

data. This is especially evident when applying differential privacy,

a factor that is made visible when considering real-world data.

Given previous work and the state of the art in privacy preserva-

tions and the challenges with differential privacy parameter tuning

for time series data which we discuss subsequently, we offer the

following contributions:

(1) New insights on the challenges of applying differential pri-

vacy on real-world smart meter data

(2) Application of differential privacy on real-world big data set

(3) A Showcase of challenges in parameter tuning followed by

initial recommendations on setting these parameters

2 BACKGROUND
We glance at the evolution of privacy preserving methods, their

applications, and the state-of-art. We limit our scope to privacy-

preserving methods focusing on time-series data in general – with

a specific emphasis on smart meter applications, especially those

utilizing real world data.

2.1 Previous Approaches
Data anonymization is a generic and perhaps a default approach

of privacy preservation: it is intuitive, requiring a part or whole of

personally identifiable information be withheld from third parties,

with multiple research considering different facets of personally

identifying information that encompasses consumption data. As an

approach, it has been proven [19] to be insufficient in preserving

the privacy of user data – a minimal subset of shared data could be

used to make accurate inference about the omitted data.

Aggregation over a number of smart meters is an improvement

over generic anonymization, and offers provably better guarantee

on privacy of data. Approaches to smart metering include ‘level-

ing’, an approach that serve to preserve granularity of data for

https://doi.org/10.475/123_4
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the customer, while applying masking that serves to generalize

appliance-specific data [14], yet preserving the true aggregate for

billing purposes.

Other privacy-preserving approaches include work that consider

utility companies or collecting entities as untrusted parties, and

propose provisions for alternate 3rd party escrow mechanism to

be used to both anonymize data collected from individual smart

meter data for transmission to the utility companies, and to authen-

ticate anonymous meter readings for billing purposes. Different

models have been proposed to achieve this: a smart-grid specific

privacy-preserving database anonymizer was presented by [16],

with distributed incremental data aggregation advanced by [22] –

who presented a model where all smart meters were involved both

in the routing of data from source to collection and in aggregation

by applying symmetric homomorphic encryption.

Considering differential privacy (DP) as a state of art in privacy

preservation, there have been works that utilize this both as a

concept and as an application. Saleheen et. al [18] used DP on phys-

iological time series data (e.g., heart rate, activity data) obtained

from smart phones to protect private behavior of individuals but

also retain reasonable utility to perform research. In a study by Fan

et. al [10], a novel framework, FAST, is developed to release aggre-

gate statistics of time series data based on DP by using adaptive

sampling. Differentially private smart metering data is obtained in

[1] by applying a novel distributed Laplacian Perturbation Algo-

rithm (DLPA) to grouped smart meters. Homomorphic encryption

is further applied to transfer this data to the utility company. Wang

et. al [21] considered individual privacy involved in trajectory pub-

lishing scenario: DP is employed by designing a novel concept of

series-indistinguishability and a correlated Laplace mechanism for

time series.

Given the complexity of smart meters and the larger network,

different proposals have been made as to where to apply differen-

tial private techniques. We group these approaches into two broad

categories depending on whether the utility/collecting service is

considered a trusted party or not. In the case of the collection com-

pany considered an untrusted party, proposals focus on applying

differential privacy at the granular smart meter level [1, 23] in an

effort to ensure that no personally identifiable data is transmitted.

Engel and Eibl [9] worked with DP and smart metering data and

generated a differentially private aggregate time series to represent

the entire dataset followed by smoothing the curve using moving

average filter, which they argued was to improve the utility of the

curve. However, for the case where the collecting entity is trusted,

approaches to apply differential privacy are not strongly presented

in literature.

2.2 Our Approach
From the work considered above, we note the dearth of those that

deal directly with data. Most proposed methods provide theoretical

foundations and mathematical proofs of approaches of preserving

data, but do not offer what effects the application of said approaches

on real-world datasets would look like, which - as we have found,

present unique challenges that are not accounted for in the theoret-

ical recommendations. Our fundamental assumption is that utility

companies have the granular data already, a premise that is held

up by the type of data we use in our analysis, and so we consider

them a trusted entity.

We consider Differential Privacy [6] as the state of art in the

privacy preservation domain. This approach has been proven to

guarantee that the risk to privacy would not increase should the

data be shared and other external data be used to probabilistically

attempt to determine personal information.

We employ clustering on the time series as the first stage of

the two-step process, allowing for a clearer understanding of varia-

tions, peak time consumption and to learn overall patterns in energy

consumption data. Clustering also emphasizes the importance of

preserving the diversity in the energy consumption patterns. Subse-

quently, we apply differential privacy to the output of each cluster

using mean query.

2.3 Assumptions and Limitations
We do not consider methods that perturb data by adding or swap-

ping data as they have an end result of making the resultant data

wrongfully noisy – a fact that has ethical complications. We thus

consider only those methods that preserve the underlying truthful-

ness of the data.

Our approach can be compared to [9], who applied differential

privacy on a small sample of real-world data. We differ broadly in

the size of our dataset – how closely it mirrors the real world, and

how we set and justify the parameters set for applying differential

privacy. Ourmain focus is on how differential privacy can be applied

on time series data for purposes of sharing with untrusted parties.

We consider utility companies as trusted entities to collect real data

and that they can share differentially private data with untrusted

third parties. Importantly, we consider challenges with applying

differential privacy on time series and discuss the challenges of

parameter tuning and the implications on the fidelity of real-world

data.

3 DATASET
For our analysis, we use UK Power Network’s

1
smart metering

data for 5567 households in London. The download was free. Each

entry describes energy consumption readings that were taken at

30 minute intervals at household level as part of the UK Power

Network–led Low Carbon London 2
, spanning the time between

November 2011 and February 2014.

Each household was allocated into a CACI Acorn group (2010

revision
3
) classification index – which measures economic circum-

stances and demographic information for each sector corresponding

to a geographical sector. This classification can then be used tomake

an estimation about the demographic and economics of any given

house. The UK Power Networks claimed that these households

selected represented a balanced sample of the Greater London pop-

ulation. The dataset size is 10GB with approximately 167 million

entries – consisting of half-hourly readings.

We selected 2013 data – as this was the year with the most house-

holds participating, and selected a time-series record consists of

1
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-

households

2
http://innovation.ukpowernetworks.co.uk/innovation/en/Projects/tier-2-projects/

Low-Carbon-London-(LCL)/

3
https://acorn.caci.co.uk/downloads/Acorn-User-guide.pdf

http://innovation.ukpowernetworks.co.uk/innovation/en/Projects/tier-2-projects/Low-Carbon-London-(LCL)/
http://innovation.ukpowernetworks.co.uk/innovation/en/Projects/tier-2-projects/Low-Carbon-London-(LCL)/
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Figure 1: 2-step procedure for generating differentially pri-
vate time series: after pre-processing, time series are clus-
tered using K-Means (step 1) – k=6 the optimal number of
clusters. Differential privacy is then applied to each k using
mean query functions and Laplacian mechanism (step 2).

30-minute interval readings throughout the day for a given house-

hold. Missing or incomplete data accounting for 0.00026% of the

data was discarded.

4 PRIVACY PRESERVATION
We design a two-step approach to generate differentially private

time series for the given smart meter dataset as represented in

Figure 1. We utilize time-series clustering as a first step and the

application of differential privacy to each resulting cluster as the

second step. We formalize the problem as follows:

Given a dataset D of n time series, D = {T1,T2, ...,Tn } where each
Ti is composed of 48 points, Ti = {t1, t2, ..., t48}. We group D into

k partitions, C = {C1,C2, ...,Ck } such that

D =
k⋃
j=1

Cj and Cj ∩Cn = ∅, j , n .

For each cluster Cj , a differentially private time series is generated

such thatT
′
j = fj +Lapλ , whereT

′
j = resultant differentially private

time series ( T
′
j = {t

′
1
, t
′
2
, ..., t

′
48
} ) for a group of time series in

cluster Cj , fj = aggregate query function for cluster Cj , Lapλ =
Laplacian mechanismM .

4.1 Clustering time series
We perform clustering in order to find prominent energy consump-

tion patterns in the time-series dataset [3, 11] and to produce a

meaningful representative. We then utilize this step as a subroutine

for producing differentially private representative time series. We

considered previous work on general time series clustering as well

as those specializing in smart meter data clustering. Work done by

[13] for instance, implemented 11 clustering methods to residen-

tial metering dataset consisting of 10
5
time series, and applied 6

Figure 2: Elbow plot to determine the optimal number of
clusters (k) by employing K-Means. Y-axis shows within-
cluster sum of squares error (WSSE) and X-axis depicts num-
ber of clusters. We choose k=6 for optimal clustering of our
data.

internal validation metrics considering the suitability of the indi-

vidual clustering method type applied. Approach by [5] considered

previous literature and applied content analysis and categorization

to derive energy saving behavior clusters considering 9 attributes

(energy savings, cost, frequency of performance, required skill level,

observability, locus of decision, household function, home topog-

raphy, and appliance topography). Other approaches [2, 4, 12, 15]

also consider and adopt variants of partition-based algorithms in

the process of privacy preservation.

We apply the K-Means clustering method on the dataset of 2 mil-

lion time series using the Apache Spark framework. The Euclidean

distance metric is applied which performs a point-to-point distance

calculation between any two time series. The setup is run for 100 it-

erations while varying the number of clusters, then using the elbow
method we find that the data can be best grouped into six clusters

(k=6) – as shown in Figure 2 and summarized in Algorithm 1. We

use the output of this procedure as the basis for privacy preserving

technique we describe below.

Algorithm 1 Simple K-Means clustering procedure

1: Input : D = {T1,T2, ...,Tn } where each Ti = {t1, t2, ..., t48}.
2: Output : Optimal size of clusters k .

3: procedure ClusterTimeSeries
4: arbitaryClusterSizes ← {2, 4, 6, 8, 10, 12}
5: for each v in arbitaryClusterSizes do
6: Perform k-means clustering

7: centroids[v] ← centroids for v
8: wsse[v] ← within-sum-of-square-error for v
9: end for
10: k ← cluster size formin{wsse}
11: return k
12: end procedure

4.2 Differential Privacy
Differential privacy (DP) uses random noise from amechanism to en-

sure that the adversary fails to guess whether a record is present in

the dataset even if he knows all the records except the one [6]. This
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is achieved by masking the difference between neighboring datasets

to the original query f . The maximal difference on the results of

query f is defined as the sensitivity (∆f), which determines how

much perturbation is required for preserving the original answer.

The privacy budget ϵ parameter controls the privacy guarantee of

themechanismM in use [7, 8]. Utility can be evaluated by consider-

ing the difference between the non-private and the private output:

a smaller distance implying higher utility [20].

A formal definition of differential privacy is given below: a ran-

domized mechanism M gives (ϵ,∆)-differential privacy for every

set of outputs S , and for any neighboring datasets of D and D
′
, if

M satisfies:

Pr [M(D) ∈ S] ≤ exp(ϵ).Pr [M(D′) ∈ S] + ∆ (1)

Algorithm 2 Differential privacy using Laplacian mechanism

1: Input : C = {C1,C2, ...,Ck } and time series in each cluster.

2: Output : k differentially private time series representing each

cluster [T
′
1
,....,T

′

k ] where T
′
j = {t

′
1
, t
′
2
, ..., t

′
48
}

3: procedure GenerateDifferentiallyPrivateTimeseries
4: for each cluster x in optimal k do
5: z ← number of time series in x
6: for every p interval do

7: Aggregate at pth interval, fp,x =

z∑
n=1

tp,n

8: Let tarдet () be the target aggregate function
9: to produce fp,x
10: Let ∆f = 1

z be the global sensitivity for x
11: Let ϵ be the privacy budget

12: LetM be Laplace mechanism Lapλ for adding noise

13: Target aggregate, T
′
p,x = fp,x + Lapλ

14: end for

15: T
′
x =

48∑
p=1

Yp,x

16: end for
17: return [T

′
1
,...,T

′

k ]

18: end procedure

We apply differential privacy to the time series data using Laplace
mechanism M , while utilizing clustering as a preceding step (Algo-

rithm 1 and k=6) in order to generate a representative perturbed

time series for each cluster by using a mean query f . ForM , each

half-hourly interval reading is considered independent. The gener-

ated noisy time series are then compared to the average time series

for each cluster in order to understand the nuances of tuning ϵ and

the utility of the generated time series curves (Algorithm 2).

We experiment with different values of ϵ : those recommended

in previous work (ln2, ln3, 1, 0.1) [9, 18, 20, 21, 23] and others not

considered in previous work (0.01, 0.001, 0.005, 0.0001, 0.0005), and

observe that ϵ is greatly influenced by the number of data points

in the cluster (Figure 3). We proceed using a global sensitivity (
1

N )

where N is the number of time series (data points) in a cluster.

Figure 3: Effect of ϵ on the generated private time series.
Demonstration is shown for cluster 0 and cluster 5. Cluster
0 has 659986 time series whereas cluster 5 has 9587 time se-
ries. ϵ=0.0005 works better for cluster 5 and ϵ=0.0001 works
better for cluster 0. Global sensitivity is 1/N for each cluster.

5 RESULTS AND DISCUSSION
We use the elbow method to determine the best k value. Figure 2

plots the within-cluster sum of squares error (WSSE) – a measure of

the variability of the observations within each cluster and an inter-

nal measure for validating cluster cohesion with respect to cluster

numbers. The cluster centroids present a set of time series that

mimics the important characteristics such as peak time consump-

tion and overall daily demand profile thereby grouping segments of

households with similar demand profiles and preserving prominent

consumption patterns in the dataset.

Next, we apply differential privacy to the output of each cluster

using mean query. We try to understand the effect of number of

data points in a cluster with regards to ϵ and ∆f. Our observation
is that, as the number of data points increases, the ϵ value required

to generate a differentially private time series curve decreases. The

respective value obtained for ϵ for different clusters also describes

the utility of the curve. Due to space constraints, we only showcase

two of the six clusters. We find that the often suggested parameter

values for ϵ did not generate sufficient level of privacy for our

dataset (Figure 3).

To the best of our knowledge, we could not identify literature

offering concrete suggestion about tuning ∆f when considering

large and/or time series datasets. We reason that it is because this

calculation is generally complex and expensive. We experimented

with local sensitivity [9] but it was computationally expensive and

did not generate satisfactory results. In 2017, Rubinstein developed

a sensitivity sampling method [17] which we employed using ‘diff-

priv’ package in R. The values returned by this function and the
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global sensitivity value we consider were almost in the same range

– thus our preference for using global sensitivity in this work.

We believe that it is better to generate representative perturbed

time series for smaller representative groups of a big dataset, than

generating only one single aggregate perturbed time series. These

smaller groups tend to capture the trends of the dataset, while

retaining utility value. Hence, the need for clustering time series in

Step 1.

Researchers as well as utility companies should have a certain

amount of knowledge about the dataset to conduct research, pro-

vide feedback to groups of customers, design incentives to shift

peak demand, etc. The output of such an approach will be valu-

able to these entities while maintaining privacy at an individual

and household level. The application of differential privacy in time

series is also very challenging due to the temporal nature (and

hence dependence and correlation of values). We strongly believe

that the sequential and parallel compositions of differential privacy

mentioned in [6, 20] need to be further examined for tuning ϵ .

6 CONCLUSION AND FUTUREWORK
This work offers a look at how we can assure privacy of time se-

ries data containing sensitive information. We present a two-stage

approach for privacy preservation of smart metering data: cluster-

ing followed by application of differential privacy. This method

generates differentially private demand curves for representative

consumption patterns in the dataset, thus, retaining its value for

further usage by researchers.

We briefly discuss the difficulty of evaluating privacy budget ϵ
and sensitivity ∆f and their effect on time series. We find that ϵ
is dependent on number of data points, hence, obtaining utility

from such a mechanism is a challenging task. Future avenues for

research include: better attribute selection, Laplace mechanism for

correlated time series data, and design of ∆f for large time series

datasets.

Currently, we are considering offering both the privacy cost/benefit

and the ethical implications to utility companies and negotiating

a means of releasing such data to the research community. Given

the preliminary nature and narrow scope of this work in focusing

on the application of differential privacy on real-world data and

addressing initial challenges, we will consider a comprehensive

comparison of performance of various methods discussed in this

work and others in the future.
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