
Toward Feedback Stabilization of Faulty Software Systems:
A Case Study

Stephen Waydo William B. Dunbar
Control and Dynamical Systems

California Institute of Technology
Pasadena, CA 91125

Eric Klavins
Electrical Engineering Department

University of Washington
Seattle, WA 98115

Abstract— Software systems generally suffer from a certain
fragility in the face of “disturbances” such as bugs, unfore-
seen user input, unmodeled interactions with other software
components, and so on. A single such disturbance can make
an entire system hang or crash. We postulate that what is
required to address this fragility is a general means of using
feedback to robustly stabilize these systems. In this paper we
develop a model of an iterative software process, specifically a
nondeterministic, faulty list sorter. Feedback is introduced into
the process to achieve robust stability with respect to incorrect
sorting operations. To keep the computational requirements of
the controllers low, randomization and approximation are used.
Methods by which software robustness can be enhanced by
distributing a task between nodes, each of which are capable
of selecting the “best” input to process, are also explored. The
particular case of a sorting system consisting of a network of
partial sorters, some of which may be buggy or even malicious,
is examined.

I. INTRODUCTION

Software systems are very often not robust to disturbances,
which may come in the form of bugs, unforeseen input,
unexpected interactions with other system components, and
so on. The language of dynamical systems and control theory
is a natural one in which to express the idea of stability,
and in this paper we explore how an iterative software
process could be modeled within this framework. In [6]
we explore a preliminary model of the time/space evolution
of a generic iterative software system and suggest analogs
to the traditional control-theoretical notions of estimators
and controllers that may be used to feedback-stabilize, and
thereby improve, the performance of the system. In the work
here, we explore the example of a faulty list sorter, where
sort operations may or may not (nondeterministically) be
correct. The model is numerically validated and feedback is
shown to improve the faulty sorter’s performance. We then
examine a system wherein multiple sorters that use feedback
to monitor their progress are networked together. Overlap of
partial sort operations, although minimal in some cases, and
the use of feedback together result in the convergence of
fault-free sorters in the presence of a faulty sorter.

The research we report on in this paper is related to the the-
ory of self-checking programs as described in, for example,
[11], [14], [3] except that we are concerned with stability and
disturbance rejection rather than error correcting per se. The
networked sorters example in Section IV resembles in some
respects N -Version Programming [2]. Also similar is the idea
of self-stabilizing protocols [5], [12] wherein a network of

processors executing a self-stabilizing protocol can be shown
to recover from disturbances and arbitrary initial conditions
into a set of legal states. In fact, the same analogy that
we employ here of a pseudo-energy function, or Lyapunov
function, can be used to show the protocols are robust and
stable [9], [13]. We believe the idea of self-stabilization
exactly corresponds to robust control design and hope to
make this and related notions formal in future work. A more
complete list of related references is given in [6]. What has
not been investigated, to the best of our knowledge, is the use
of feedback to control, rather than merely terminate, a faulty
process. The addition of a control input to a program may in
fact require fundamental reworking of the program/observer
paradigm. We hope that the present paper suggests a possible
avenue for such an effort.

Relevant definitions and discussion on the need for ap-
proximation are first given in Section II. In Section III we
investigate a modeling and control approach for stabilization
of nondeterministic sorting algorithms. In Section III-A we
define an appropriate metric on the group of permutations
of n elements and a pseudo-energy function measuring the
sortedness of a list for the purposes of control. Section
III-B provides an analysis of the open-loop dynamics of a
faulty list sorter using a Markov chain model. In Section
III-C we use a simple feedback controller to stabilize the
sorting system in Section III-B. In Section IV we describe
a distributed array of nodes in which each node consists of
a partial sorter and a controller. We investigate the behavior
of the system through simulation. Conclusions and future
directions are given in Section V.

II. PROBLEM DESCRIPTION

A particularly interesting class of programs we investigate
are iterative processes that do not run to completion but
instead provide output after some number of steps and then
use this output as their input for the next set of iterations.
As such programs already incorporate feedback in this sense,
applying control via manipulation of the iterated information
may be a useful step toward correcting aberrant behaviors.

To develop a systems theory perspective of software sys-
tems, we consider defining a state x ∈ X of the system and
a metric d on X , which quantifies the “closeness” of two
system states. For a software system, x may simply be a
snapshot of the memory used by the software. A metric d,
describing the “distance” between two states, is a means by

which we may determine how well the software system is
performing its assigned task. In software systems X is rarely
a metric space (or even a reasonable topological space), and
thus some we may need to resort to a surrogate for d. In
the context of sorting, however, we explore the symmetric
group X = Sn, the group of all permutations of {1, ..., n},
for which we can a define a metric (Section III-A).

For analysis and feedback controller design, it is useful to
define a Pseudo-Energy Function V : X → N of the system
state, with the set {x | V (x) = 0} defining the goal states. In
this paper, V is an increasing function of the distance of the
current state to a unique goal state (the sorted list) defined
by V (x) = 0. The pseudo-energy function can be thought of,
roughly, as a Lyapunov Function [8] for the system. Several
pseudo-energy functions are defined in Section III-A.

The state x of a software process may be enormously
complicated. In fact, the computational cost of determining
V (x) may be equivalent to the cost of executing the software
process to completion. For this reason, approximations of the
pseudo-energy functions are required.

III. SORTING LISTS

In this section we describe the set of lists and the metrics
and pseudo-energy functions that can be defined on them. A
model of the evolution of a pseudo-energy function is given
and numerically validated. To monitor a piece of software
on-line, it is critical that the control tools require minimal
(relative to the software) computational complexity. As such,
we comment on the complexity of the functions defined and
use approximations in computing the pseudo-energy function
used for stabilization of the model. In our simulations, we
observe an improvement in closed-loop behavior as more
computations are allotted to the controller.

A. Metrics and pseudo-energy functions for List Sorting

We make the simplifying assumption that all lists gen-
erated by partial sorting are equal when viewed as sets.
A faulty sorter or disturbance may unsort the list, but the
assumption requires that the list may not change as a set. A
list L = [L[1], ..., L[n]] drawn from the set {1, 2, ..., N} is
a sequence of n ordered and distinct elements. We further
assume that M = n: the set of all lists of length n is then the
symmetric group Sn of all permutations of {1, ..., n}. A list L
is sorted if L[i] < L[j], for all i < j, and we denote the sorted
list as L∗ = [1, 2, ..., n]. A metric for sortedness quantifies
the distance between any two lists in a given group. Pseudo-
energy functions, in the context of sorting, refer to functions
from Sn → N that rank lists by sortedness. For example, a
(trivial) pseudo-energy function might output 0 if the list is
sorted and 1 otherwise. Pseudo-energy functions can be used
to prove the correctness of a particular sorting algorithm,
e.g. Bubblesort [10]. From the control analysis perspective,
a metric is likely to prove useful in verifying properties of
the closed-loop behavior of a sorter/controller agent. The

function of the controller as described above requires the
pseudo-energy for any given list. We now give an example
pseudo-energy function and metric for list sortedness.

Definition 3.1 (Total Inversion Function): The total in-
version function VTI of a list L is

VTI (L) ,

n
∑

i=1

n
∑

j=i

〈L[i] − L[j]〉

where

〈x〉 ,

{

1, x > 0
0, otherwise.

In words, VTI gives the total number of pairs that are out of
order, counting 1 for each pair out of order, with a maximum
value of

(

n
2

)

. Determining VTI is O(n2) and VTI (L) = 0 iff
L = L∗.

We now define two vectors that will be used in the metric
we give below.

Definition 3.2 (Total Inversion Vectors): The total inver-
sion vector q : Sn → {0, ..., n − 1}n has n components
[q1(L), ..., qn(L)]T , where the kth component is defined by

qk(L) =

n
∑

j=k

〈L[k] − L[j]〉.

The ordered total inversion vector q
o : Sn → {0, ..., n −

1}n has n components [qo
1(L), ..., qo

n(L)]T , where the L[k]th

component is defined by

qo
L[k](L) =

n
∑

j=k

〈k − L[j]〉.

In words, qo
i is the number of elements less than i, located in

{L[1], ..., L[n]}, to the right of i. The definition of q
o is based

on [4] and references therein, which discuss the construction
of a (total) inversion list from a given permutation. The
reason for the use of the word “ordered” in defining q

o

is that its construction depends upon the location of each
L[k] relative to its value; consequently, the definition does
not generalize to operating on lists. On the other hand,
component k in the q vector corresponds to the i = k
summation term in the expression for VTI . As such, q is
already well-defined for operating on lists, rather than being
restricted to permutations. Note that the nth component in q

and the 1st component in q
o are always zero. We now define

a metric based on the ordered total inversion vector.
Lemma 3.1: Given the function d : Sn ×Sn → R defined

by
d(L1, L2) , ||qo(L1) − q

o(L2)||,

where || · || is any norm on R
n, (Sn, d) is a metric space.

A proof is given in [6]. In this case, it follows from the
definitions that VTI (L) = d(L,L∗). Other metrics are
possible, such as the Kendall distance K and Spearman’s
footrule distance F , defined in [1] for N = n. Comparisons
to d are made in [6].

B. Open-loop Behavior

To explore the issues involved in stabilizing and improving
the performance of a sorting system, we consider a model of
the simplest imaginable (buggy) sorting system. The sorter
is a dynamic system whose state at step k is the list L(k).
The pseudo-energy at time k is taken to be the value of the
total inversion function of the list

V (k) , VTI (L(k)),

which for a list of length n can vary from 0 (no pairs are out
of order) to Vmax =

(

n
2

)

(all pairs are out of order). At each
time step, the sorter picks an adjacent pair of list entries.
We suppose that this is a “correct” operation (i.e. the chosen
pair is out of order) with probability p. The sorter then swaps
the pair with probability w. If the list is already completely
sorted or unsorted (V = 0 or Vmax), the sorter simply swaps
some adjacent pair with probability d. L(k) is thus a random
variable, and V (k) is a random variable that is a function of
L(k). The probability distribution of V (k + 1) is dependent
only on the distribution of V (k), and so it can be modeled
using a Markov chain. Define the state transition matrix T
with its (i, j)th element given by

Ti,j , P [V (k + 1) = j | V (k) = i].

Denoting a possible value for V (k) by q, a state transition
matrix of dimension (m+1)×(m+1), where m = Vmax, is
obtained. Note that swapping an adjacent pair (with distinct
values) will always increment or decrement VTI by 1. The
state transition probabilities are then

Tq,q = (1 − w)

Tq,q−1 = pw, 1 ≤ q < m

Tq,q+1 = (1 − p)w, 1 ≤ q < m

T0,1 = w

Tm,m−1 = w

Tq,q±δ = 0, ∀ δ > 1.

The left eigenvector v of this matrix corresponding to
eigenvalue 1 (vT = v) is called the (neutrally) stable left
eigenvector. It describes the long-term distribution of the
pseudo-energy value V (k). Following the method of [7], we
have the following proposition.

Proposition 3.1: The neutrally stable left eigenvector v of
the state transition matrix T is given by v = [v0 . . . vm]T ,
where v0 = 1,

vi =
(1 − p)i−1

pi
, 1 ≤ i < m, vm =

(1 − p)m−1

pm−1
.

The proof is straightforward and is given in [6]. Normalizing
v we obtain the long-term probability distribution v′ of V as

v′ =
v

η
, η ,

m
∑

i=0

vi.

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45
Open−loop sorting performance, n=10

Number of sorter iterations

V
T

I

p = 0.3

p=0.6

p=0.9

Predicted V
fp

Markov chain expectation
Actual performance

Fig. 1. Comparison of actual sorter performance to model.

The weighted sum of the entries of v′ is the asymptotic
expected value of V , which we call the fixed point pseudo-
energy Vfp , limk→∞ E[V (k)]. We have

Vfp =

m
∑

i=0

(i)v′(i) =
pm − (1 − p)m[1 + 2m(2p − 1)]

2(2p − 1)[pm − (1 − p)m]
.

Naturally, with higher probability of correct sort opera-
tions, the more likely the list will be sorted (V approaches 0).
Figure 1 is a plot of the Markov chain-predicted time history,
the predicted Vfp , and a time average of 10 actual sorting runs
for a list of length 10. The actual sorter performance closely
matches that predicted by the Markov chain analysis.

C. Closing the Loop

Underlying the following approach is the assumption that
we are allowed to control the number of iterations the
software performs and when the iterations start. The above
Markov chain model can be extended to show the benefit
of including a simple controller. We now model the same
sorter along with an approximate checker that computes an
approximation V̂ of V . After each iteration k, the checker
picks l random pairs and calculates V̂ (k), the number of sub-
sampled pairs that are out of order. The checker then rejects
the sorting step if V̂ (k) ≥ V̂ (k − 1). Although checking is
here more expensive than a single sort iteration (O(l2) versus
O(1)), we investigate cases for small and large l to observe
the tradeoff. Also, the restriction to checks between single
sort iterations permits tractable analysis, as shown. In the
network sorting example in the next section, we also explore
cases where checking operations are cheaper than the sort
operations permitted between checks.

The accuracy of the checker, or its ability to predict the
current pseudo-energy, is here derived. The sample space of
the checker consists of

(

n
2

)

pairs. Again, we use V (k) ,

VTI (L(k)). If V (k) = b, the sample space of the checker
consists of b out of order pairs and

(

n
2

)

− b in order pairs.
For V̂ to be equal to some value c, the checker must pick c
out of order pairs and l − c in order pairs. The probability
that the checker does so is

P [V̂ = c | V = b] =

[(

b

c

)(
(

n
2

)

− b

l − c

)]

/

[(
(

n
2

)

l

)]

.

In the following, we denote V (k) (or V̂ (k)) as Vk (V̂k).
Two probabilities are used to characterize the checker –
the probability r1 that V̂ decreases when V does and the
probability r2 that V̂ does not decreases when V increases.
The value of r1 is a function of b and l as

r1(b, l) = P
[

V̂k < V̂k−1

∣

∣

∣
Vk−1 = b, Vk = b − 1

]

.

Because V̂k and V̂k−1 are separate computations, they are
independent random variables, and

P [V̂k−1 = c1, V̂k = c2 | Vk−1 = b, Vk = b − 1]

= P [V̂k−1 = c1 | Vk−1 = b] · P [V̂k = c2 | Vk = b − 1]

=

[(

b

c1

)(

m − b

l − c1

)(

b − 1

c2

)(

m − b + 1

l − c2

)]

/

[

(

m

l

)2
]

,

where m =
(

n
2

)

, c2 < c1. Summing the above expression
over all c1, c2 gives the needed probability

r1 =

(

m

l

)−2 m
∑

c1=1

(

b

c1

)(

m − b

l − c1

)

∗

c1−1
∑

c2=0

(

b − 1

c2

)(

m − b + 1

l − c2

)

.

Figure 2 is a plot of r1 as l ranges from 1 to
(

n
2

)

for a list of
length 10 with V = 23 ≈

(

n
2

)

/2. Similar reasoning leads
to the probability r2 as

r2(b, l) = P [V̂k ≥ V̂k−1 | Vk−1 = b, Vk = b + 1]

=

(

m

l

)−2 m
∑

c2=0

(

b + 1

c2

)(

m − (b + 1)

l − c2

)

∗

c2
∑

c1=0

(

b

c1

)(

m − b

l − c1

)

.

The state transition probabilities are very similar to the open-
loop case, with the addition that the system may now reject
sorter steps (correctly or incorrectly) according to the above
probabilities. Using the same definition of the state transition

5 10 15 20 25 30 35 40 45
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Checker accuracy, n = 10, b = 23

l

r 1

Fig. 2. Theoretical checker accuracy

matrix T as before we have

Tq,q = (1 − w) + pw(1 − r1) + (1 − p)wr2, 1 ≤ q < m

Tq,q−1 = pdr1, 1 ≤ q < m

Tq,q+1 = (1 − p)w(1 − r2), 1 ≤ q < m

T0,0 = (1 − w) + wr2

T0,1 = w(1 − r2)

Tm,m = (1 − w) + w(1 − r1)

Tm,m−1 = wr1

Tq,q±δ = 0, ∀ δ > 1.

Work is currently in progress to develop a closed-form
solution for or approximation to the stable eigenvector of
the closed-loop transition matrix following the methods used
above. Until such a solution is found, numerical methods can
be used to predict v′ and Vfp .

Figure 3 is a plot of the Markov chain-predicted time
history, the predicted Vfp , and a time average of 10 actual
sorting runs for a list of length 10 and a sorter with p = 0.4.
The open-loop performance is shown along with that of
checkers with l equal to 20, 30, and 40. Note that Vfp drops
quickly once l becomes larger than

(

n
2

)

/2 ≈ 23; further
increasing l increases the rate at which q approaches Vfp .
The actual sorter performance again closely matches that
predicted by the Markov chain analysis. Note that in all
closed-loop cases Vfp = 0, but lower values for l resulted in
much slower convergence rates.

In the above discussion, only sorter iterations were taken
into account when judging convergence rates, in which case
larger values of l will clearly always improve convergence
time. If one plots the closed-loop performance in Figure 3
as a function of the total number of iterations, convergence
rates of V̂ still improve with increasing l. The reason appears

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45
Closed−loop sorting performance, n=10, p=0.4

Number of sorter iterations

V
T

I

open loop, V
fp

 = 42.5

 l = 20

 l = 30

 l = 40

Markov chain
Actual performance

Fig. 3. Comparison of actual sorter performance to model.

to be that this sorter makes more bad decisions than good
ones, on average. The Markov chain-predicted closed-loop
time history in terms of sort and total iterations when
good decisions are more frequent (p = 0.6) is explored
numerically in [6]. In this case, l = 10 resulted in fewer
total steps than l = 30 or 40 to converge. It may be that
there is some optimal l (as a function of p) that will result in
the fastest total convergence time. This is an issue we would
like to explore in considerably more detail, especially in the
case where the sorting accuracy is not know a priori and l
must be adaptively tuned in some way.

IV. A NETWORK OF SORTERS

In this section we consider a fully connected, four node
network of sorters, each of which is equipped with a pseudo
random number generator thereby making random choices
possible. The objective is that the network converge (defined
below) on L∗, which is defined to be in increasing order from
left to right. The operation of the network is as follows:

• Each node (sorter) is initially given the same list of
length n, with elements from the set {1, ..., N}, N > n.

• The partial sort operation on each node randomly picks
j ordered pairs, with the first element of each pair to the
left of the second element, and swaps them if they are
out of order with some probability. After all partial sorts,
each node transmits its current list to all other sorters it
is connected to in the network (all other sorters in this
case).

• Once the initial partial sort and transmission has oc-
curred, each node repeatedly performs the pick and
partial sort operations subsequently. The pick operation
computes the approximate pseudo-energy V̂ for each
incoming list and selects the list with the smallest V̂
value to be partially sorted. The approximation of V̂ is

quantified by the constant κ ∈ {1, ..., n}, which is the
length of an array window randomly extracted from each
input list. Note that randomness in the array window
extractions means a node that makes the correct sort
decisions all of the time could eventually sort the list
by using its own list for subsequent operations.

• Define the output of the network at iteration k as the list
(or state) of the node with the lowest pseudo-energy at
iteration k. A network is said to converge if the pseudo-
energy of its output converges to a value Lc.

The stability and expected value of Lc, desired to be the
sorted version of the list, are the main indicators of the
performance of the network. We are particularly interested in
the network performance in situations where one or more of
the sorters is imperfect and κ is fairly small for computational
reasons. Will the output of bad sorters propagate through the
network or will the pickers be good enough to weed out bad
lists? We investigate the performance here by example.

In the following, (N,n, j) = (100, 30, 10) and the sorter
iteration histories shown are actually an average of 50
separate runs, all with a different randomly chosen initial
list (picker iterations are not shown). When all sorters make
correct decisions all of the time, all four sorters (and thus the
network) converge to the sorted list for κ = 5 and κ = 24,
with faster convergence for larger κ (see figures in [6]). To
explore the effect of a faulty sorter, node 4 is given a bad
sorter that flips a coin and if it is heads, swaps the randomly
chosen ordered pair; otherwise, the pair is kept in the original
order. The corresponding pseudo-energy histories are shown
in Figure 4 for κ = 5 and κ = 24, where again we average
over 50 runs, all with different initial lists. The figure shows
that for a better approximation of the true pseudo-energy,
i.e. for larger κ, the fault-free sorters converge on average
independently of the faulty sorter. For κ = 5, convergence
suffers as the faulty sorter’s list is more likely to be chosen
by the good sorters more frequently. We suspect that as the
number of iterations increases the chances of the fault-free
sorters to converge improves, for the following reason. As the
number of iterations increases, the correctly sorted lists from
sorters 1-3 becomes substantially more sorted than sorter 4’s
list, which (on average) maintains its initial unsortedness. As
a result, the approximate pseudo-energies of the four lists
within pickers 1-3 suggests with increasing frequency that
lists 1-3 are more sorted and thus tends to chose among
those lists for subsequent operations.

V. CONCLUSIONS AND FUTURE WORK

We have attempted to put the problem of making software
robust to certain kinds of disturbances into a dynamical
systems and control framework by investigating the example
of software that sorts lists. We defined several metrics and
pseudo-energy functions for potential use in stabilizing and
analyzing software processes that perform sorting. Further,
the case of a single sorter operating in open and closed-

0 50 100 150 200 250
0

50

100

150

200

250

Approx Pseudo-Energy History,

Iterations

 = 5

Faulty Sorter No.4

0 50 100 150 200 250
0

50

100

150

200

250

Approx Pseudo-Energy History,

Iterations

 = 24

Faulty Sorter No. 4

Fig. 4. Approximate pseudo-energy history for four sorters in fully connected network; Sorter 4 is faulty.

loop was thoroughly examined, and closing the loop was
shown to dramatically improve the accuracy of a faulty sorter.
Simulation for a network of sorters was also presented, where
approximation and randomization were important compo-
nents. We plan to further extend the analysis of the closed
loop sorter dynamics as well as those of the networked
sorters. The utility and construction of metrics and pseudo-
energies as used on lists above for more general software
systems will also be explored.

Underlying our approach is the assumption that we are
allowed to control the number of iterations the software
performs and when the iterations start. It may be of interest
to develop approaches that use feedback in software envi-
ronments where the iterations cannot be so controlled and
stabilization must occur in real-time while the state of the
software system evolves, as is the case in traditional control
problems, e.g. mechanical systems. Such approaches will
also be explored in the future.

Acknowledgments

The authors with to thank Richard Murray and Jason
Hickey for their suggesting several of the problems we
consider in this paper and Natarajan Shankar for his advice
and suggestions on relating this work to other, similar, fields.
We also thank our reviewers for suggesting further useful
references. Partial support for this work was provided by
the DARPA SEC program under grant number F33615-98-C-
3613 and by AFOSR grant number F49620-01-1-0361. The
first author is supported in part by the Fannie and John Hertz
Foundation.

VI. REFERENCES

[1] M. Ajtai, T.S. Jayram, R. Kumar, and D. Sivakumar. Approx-
imate counting of inversions in a data stream. In 34th ACM
Symposium on Theory of Computing, Montral, Qubec, Canada,
2002.

[2] A. Avizienis. The Methodology of N-Version Programming.
John Wiley & Sons, New York, 1995.

[3] M. Blum and S. Kannan. Designing programs that check their
work. Journal of the Association for Computing Machinery,
42(1):269–291, 1995.

[4] A. Bogomolny. Various ways to define a permuta-
tion. Online: http://www.cut-the-knot.org/do_
you_know/Perm.shtml.

[5] E. W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Communications of the ACM, 17(11):643–
644, November 1974.

[6] W.B. Dunbar, E. Klavins, and S. Waydo. Feedback con-
trolled software systems. CDS technical report 2003-002,
California Institute of Technology, 2003. Online: http:
//caltechcdstr.library.caltech.edu/.

[7] W. Feller. An Introduction to Probability Theory and Its
Applications. J Wiley and Sons, 1957.

[8] H. A. Khalil. Nonlinear Systems. Printice Hall, 2nd edition,
1996.

[9] E. Klavins. A formal model of a multi-robot control and
communications task. In Conference on Decision and Control,
Hawaii, 2003.

[10] M. L. Littman. CPS130 course notes - sorting(5), Fall 1997.
Online: http://www.cs.duke.edu/mlittman.

[11] R. Rubinfeld. A Mathematical Theory of Self-Checking, Self-
Testing and Self-Correcting Programs. PhD thesis, University
of California, Berkeley, 1996.

[12] M. Schneider. Self-stabilzation. ACM Computing Surveys,
25(1), March 1993.

[13] Oliver Theel. An exercise in proving self-stabilization through
Ljapunov functions. In International Conference on Dis-
tributed Computing Systems, Phoenix, AZ, 2001.

[14] H. Wasserman and M. Blum. Software reliability via run-time
result-checking. Journal of the Association for Computing
Machinery, 44(6):826–849, November 1997.

