A Formalism for the Composition of

Loosely Coupled Robot Behaviors

Eric Klavins and Daniel Koditschek
Artificial Intelligence Laboratories
Department of Electrical Engineering and Computer Science
University of Michigan
1101 Beal Avenue, Ann Arbor, M1 48109-2110
{klavins,kod } @eecs.umich.edu

Abstract

We address the problem of controlling large distributed robotic systems such as factories. We intro-
duce tools which help us to compose local, hybrid control programs for a class of distributed robotic
systems, assuming a palette of controllers for individual tasks is already constructed. These tools,
which combine backchaining behaviors with Petri Nets, expand on successful work in sequential
composition of robot behaviors. We apply these ideas to the design of a robotic bucket brigade and
to simple, distributed assembly tasks.

Contents

1

Introduction
1.1 Overview o o e e e e e e

Background and Related Work

2.1 The Product Assembly Graph oo
2.2 Petri Nets o o e e e
2.3 Distributed Manipulation and Cooperative Robotics
2.4 Control Theory o e
2.5 Compositional Control
2.6 The Minifactory e

Gear Nets
3.1 Sources and Sinks L e e

Transient Machine Nets

Examples
5.1 The Bucket Brigade
5.2 Assembly

Compiling from the Product Assembly Graph
Conclusions

Appendix I: Dynamic Systems

Appendix II: Petri Nets and Partial Orders

References

11
18

19

25
25
30

31

32

34

35

38

1 Introduction

One of the basic limitations in engineering systems is our rudimentary understanding of large
scale, complicated, engineered systems such as factories. We do have tools, in control theory for
example, for constructing elegant and precise components which react with their environments in
simple and provably correct ways, and we also have tools for compiling gigantic logical systems,
such as computer operating systems or central processing units. We currently only have a limited
understanding of how to compose situated systems, such as robots and other objects, which sense
and actuate in the real world directly, with each other into more complicated systems. With such
compositional tools we could, in principle, synthesize quite complicated, yet completely understood,
dynamic systems from simple systems. The systems in which we will be particularly interested in
this paper are automated factories.

Many simulation based design tools exist so that factories can be designed with as little re-
configuration in hardware as possible. The idea is that the factory designer can design and test a
virtual factory in software and hopefully discover and solve problems in candidate designs before
beginning the costly process of putting together an actual factory, with robots, conveyer belts,
power and control cables, and other supporting hardware. In general, the cost of fixing a design
flaw is much greater once the factory has been built than before it was constructed. However, the
cost of designing the layout of the factory, the logic and control of its robots, and communication
and coordination procedures between components, remains almost as high. This is because the pro-
cess of translating the formal specification of the product, in terms of its geometry and assembly
procedures, into a factory which assembles the product remains a craft practiced only by experts
in factory layout and control software programming and lacks a complete set of formal methods for
designing factories as well as verifying factory designs. These problems have been noted in other
systems as well:

Hand coding functions for maintaining the system’s internals traditionally requires the
programmer to reason through system wide interactions, along lengthy paths between
the sensors, control processor and control actuators. This reasoning requires think-
ing about the behavior of a hybrid system, composed of complex real-time software
constructs, distributed digital hardware and continuous physical processes.

— Brian C. Williams, [30]

Thus, the problem of automating this process is difficult and poorly understood, and the tasks
of designing factories and of reconfiguring factories to accommodate product changes are slow. A
higher cost of getting a product to market, and more importantly a longer time to market, is the
main effect of this lack of automation.

We would like to be able to understand more completely, in order to further automate the factory
design process, is a theory of distributed, modular control of robotic systems. Such a theory must
include elements of logical control, continuous control, communication and concurrency issues, and

a compositional semantics for factory components blended in a way that facilitates the automatic
synthesis of factory designs — from layout to control — from the most basic description of the
product as possible. We view the synthesis procedure as a sort of compilation of a factory from
a syntactic description of the product via an assembly graph. This requires a solid foundation in
composing factory components — actually, controlled hybrid dynamic systems — that respects the
common needs of factory design including: decentralized control, modularity, resistance against
disturbances both physical and logical, and of course speed and efficiency.

Of course, a completely automatic factory synthesis procedure is a long way off. In order to
simplify these basic steps toward our goal, we abstract away to more fundamental research prob-
lems. Essentially, the question is this: What are the fundamental tools for compiling distributed,
concurrent processes (factories) from syntactic representations of processes (product descriptions)?
Or, said another way, how can we construct cooperative systems of robots to perform tasks which
have been represented syntactically? Such tools must be concise, formal, provably correct, compo-
sitional, and scalable. The resulting distributed process must be correct and robust.

We address the problems of concurrency and composition of behaviors in this paper by intro-
ducing a formalism which subsumes the work in sequential composition. We define a way in which
simple Petri Nets can contain a more general form backchaining robot behaviors. We call the
resulting nets Threaded Petri Nets, or TPNs. We also describe a simple net composition method
which lends itself well to the kinds of decentralized assembly tasks encountered in manufactur-
ing systems. This method allows us to compose many single robot programs into decentralized,
concurrent programs for groups of robots that are guaranteed not to deadlock. Finally, we give
several increasingly complicated examples of how this formalism may be used to automatically
construct provably correct distributed robotic systems: a robot bucket brigade, a simple assembly
arrangement, and the beginnings of a factory compiler.

1.1 Overview

In Section 2 we discuss the context of this research and related work. In Section 3, we introduce
our method of composing simple Petri Net cycles, called gears, into a class of Petri Nets called gear
nets. Gears represent single robot behaviors, and gear nets represent the safe composition of many
robot behaviors. We prove that our composition method produces live Petri Nets. In Section 4,
we add to the Petri Net a way to keep track of certain sequential components which correspond to
the actions of robots and the paths of parts in a distributed manipulation setting. In Section 5 we
present two examples of how our formalism can be used to model certain simple arrangements of
robots. Then, in Section 6, we show how we can build a compiler which synthesizes simple “toy”
factories, from product assembly descriptions, which we can prove correct using these tools.

We also include two appendices. In the first, we review some basic notions from control theory.
In the second we provide the basic definitions pertaining to Petri Nets and partial order theory.
The latter appendix is recommended reading even for those with experience in Petri Nets because
of a slight deviance from the usual notation.

(glue) @Que) (glue)
(mat) (ate)

@ed (e @eld) (weld)
(may @) Gartd (matd)

E @i

(a) (b)

Figure 1: (a) A product assembly graph. (b) A work flow graph where the two lowest mate
operations have been identified and the glue operation has been parallelized.

2 Background and Related Work

In this section we review research related to synthesizing factories and we present, briefly, some of
the foundations upon which the present work is built.

2.1 The Product Assembly Graph

The product assembly graph, or PAG, is the starting point of our problem. Every product has a PAG
which encodes how the product is put together. The PAG for a product is actually a tree. The root
node represents the assembled product, the leaves represent the raw materials, or atomic parts, and
nodes represent operations on subassemblies which produce compound subassemblies. See Figure
1(a) for an example. A closely related concept is the work flow graph, WFG, which encodes more
details about the methods involved in assembling the product. In a WFG, for example, we may
specify that some operation be done in parallel, if it is a lengthy operation. Figure 1(b) shows a
WEFG obtained from the PAG in in Figure 1(a). In general, the WFG is obtained after careful
examination of existing manufacturing methods and subsequent optimizations of the methods. In
Section 6, we will discuss how some aspects of the process of optimizing a PAG to obtain a WFG
are automated in our formalism.

Programs such as Archimedes [12] exist which take as input a CAD description of a product
and produce a PAG for the product. Most of these algorithms operate by virtually disassembling
the product, removing the easiest to remove piece first, to obtain an assembly tree. Information
about the trajectory of the subassemblies is noted, so that it may be used to construct motion
controllers later, by careful attention to the geometry of the product. Beyond that, work by

Wilson, [31], annotates the PAG with information about what tools to use and how they should
be controlled, thereby bringing the PAG one step closer to being directly usable by the factory
designer. Many other research groups have contributed various optimizations and augmentations
of the basic algorithms to this field. The general focus, it seems, has been to provide feedback
to the designer of the product about how design changes might lead to manufacturing changes —
information that is very important to the marketability of the product. Less research has been done
on translating the PAG, or the WI'G, directly into a layout and program for a factory, although the
STAAT program [28] produces elementary conveyer belt layouts, for instance. Some researchers
have programmed workcells (six degree of freedom robot arms, for example), that can interpret
some PAGs as programs for assembling the product. These workcells are slow and impractical
at present, however, and more importantly, they do not take advantage of the distributed and
parallel nature of assembly. A notable step in the direction of concurrency is the thesis of Bruce
Romney, [27], in which assembly and fixturing (holding the subassembly in place), are considered as
concurrent activities and planned for accordingly. In most implementations, however, a topological
sort of the PAG is used to choose a linear sequence of assembly steps implying a purely sequential
assembly process. In contrast, we will see that the larger, distributed robotic systems available to
us will allow us to take advantage of the parallel nature of the assembly graph.

Another approach to synthesizing assembly controllers is given in [16]. For simple situations,
there is an automatic method for constructing a control law which guides a single robot to assemble a
product from its parts based on the notion of an artificial energy landscape wherein the configuration
of least energy is the one in which the product is assembled. It is not at all obvious how this
method can be extended to three dimensional systems with orientable parts. In this paper we take
the view that the product assembly graph (PAG) of a product corresponds to a sort of discrete and
parallelized version of such a potential function. The individual steps of the assembly — the nodes
in the assembly graph — may be given by artificial potential field controllers, but the overall logic
of the assembly is given by the PAG. This allows us to use multiple robots, more like what might
be seen in a high volume factory setting.

In this paper we introduce a method for annotating the PAG, as though it were a parse tree,
with many sequential processes. Then we will compose the processes according to the structure of
the tree to produce a concurrent process which may be directly interpreted as a description of a
complete working factory. We intend that this representation of the product be used directly to
construct a factory thereby bypassing the time consuming process of programming the individual
robots in the factory.

2.2 Petri Nets

One of the most basic tools for analyzing and designing factories, and in general specifying concur-
rent systems, has been the Petri Net. A good introduction is the book by Wolfgang Reisig, [23]. A
summary of the essential definitions can also be found in Appendix II of this paper. Petri Nets are
used to model everything from parallel processing computers and distributed systems to baroque

(a) (b)

Figure 2: (a) An example of a Petri Net with tokens representing a marking. (b) A possible next
marking.

style counterpoint, and the literature on the subject is vast. Furthermore, there are many types of
Petri Net, seemingly one for every field to which they have been applied. We will limit ourselves
to a very simple kind of Petri Net, the condition/event net, which has been studied extensively, as
well as a subclass of these nets called marked graphs. We will augment the interpretation of a state
(or marking) of a net with information about the continuous dynamics of the factory. In particular,
when a condition holds in a run of our nets, we will take that to mean that some subset of the
robots in the corresponding factory is functioning under a certain controller corresponding to the
condition. An example of a condition/event net is shown in Figure 2.

We introduce the most basic definitions in this section and refer the reader to Appendix II for
a slightly more detailed introduction. A simple Petri Net (or Condition/Event Net) is a graph
consisting of conditions (or places), which are represented by circles, and events (or transitions),
which are represented by squares. There may be a directed edge only between a condition and an
event or between an event and a condition. A marking is a set of conditions that are said to hold
during that marking. A marking thus gives the state of the system. A transition may fire in some
marking if the conditions before it are represented in the marking and the conditions after it are
not. The result is a new marking where the conditions before the transition are removed and the
conditions after it are added to the marking. Figure 2 shows an example of this process.

We adopt a somewhat unconventional notation for Petri Nets which we believe is slightly more
concise for our purposes. To the best of our knowledge this notation is introduced in [11]. A Petri
Net is given by a pair (T, P) where T is a finite set of transitions and P C 27 x 2T is the set of places
of the net. A place is thus represented by the transitions that come before it and the transitions
that come after it. We write [ay, ..., a; b1, ...,b;] € P to denote that {{a1, ..., a;}, {b1,...,b;}} € P.
In the case that all places are of the form [a;b], the net can be viewed simply as a graph where the
transitions are nodes. Such a structure is called a marked graph and is studied in [7]. We will use
some of what is known about marked graphs in Section 3 where we develop a class of Petri Nets
which are composed of cycles, which we call gears.

Much of the research in Petri Nets is about analyzing nets to determine if they are live (every

transition can eventually fire) and safe (no undesirable marking is reached). In contrast, we are
concerned with building nets up from simple, sequential components, so that the resulting nets are
guaranteed to have certain properties such as safety and liveness. People who have looked into
composing Petri Nets are Kindler, [15] and Park et al., [21]. Kindler’s work focuses on ensuring
that the operational semantics of the components of a net compose as the nets do. Park et al.
synthesize marked graphs for factories from sequential function charts. Our compositional method
is also quite similar to those found in work on bottom-up synthesis of Petri Nets, especially [17]
where simple Petri Nets are combined along paths and invariants of the resulting net are obtained
from the constituent nets.

2.3 Distributed Manipulation and Cooperative Robotics

The manipulation of an object by more than one robot is an aspect of the fields of distributed
manipulation and cooperative robotics. In distributed parts manipulation the emphasis tends to
be on large numbers of simple, and usually tiny, actuators, such as MEMS ciliary structures [29] or
air jets [3]. The programming of these arrays is usually done with programmable force fields [13]
where each actuator in a rectangular array is assigned a direction to “push” so that the resulting
array of directions has an equilibrium point in some desired place. Although the emphasis here
is on parts feeding and not on assembly, the work is headed in that direction. Switching between
force fields in a controlled manner and concurrent control will need to be addressed eventually.

In cooperative robotics, the emphasis is on coordinating the behaviors of a small number of large
robots such as mobile robots, or robot arms. Many researchers have investigated this area and we
will mention only a few. Khatib and his group at Stanford, for example, have developed techniques
for controlling pairs of mobile robots equipped with robotic arms in the context of manipulating
and carrying objects [14]. The emphasis is on the dynamics of manipulation and stability. Another
interesting line of research is reported in [18] where the authors do on-line control of two robot
arms in a shared workspace. The arms must avoid each other and obstacles while removing parts
from a conveyer belt. In this paper two types of deadlock are considered — so called computational
deadlock (which we will call logical) and physical deadlock. Logical deadlock occurs when one robot
is waiting for another which is waiting for another and so on some cycle of mutual waiting and
is akin the the kind of deadlock which can occur in an operating system environment. Physical
deadlock occurs when a robot or subassembly are physically oriented in such a way that some other
robot can not proceed with its task. Of course, if the physical space of the factory is correctly
modeled, physical deadlock is really just another kind of logical deadlock wherein physical spaces
are considered shared resources. The emphasis in [18] is on coordinating high level plans, however,
as it is in much research on coordinated robotics. In the present research, however, we consider
the bottom up synthesis of simple behaviors into an already coordinated, reactive, concurrent set
of behaviors for the robots involved.

We will require the coordinated behavior of many robots as they go about the task of assembling
products. Since communication and computational resources are at a premium in manufacturing

settings, our robots will have to switch between partner robots so that control remains local. The
local control of small groups along with the switching between groups must be done in such a way
as to ensure that the system is live and that the product assembly processes are maintained.

2.4 Control Theory

In our formalism, robots will operate under continuous feedback control with discrete switching
between control functions. In fact, we assume that the low level controllers for the devices we use
exist already: our focus will be on switching among controllers taken from an already constructed
palette of controllers.

The simplest way to specify the dynamics of a robot is with the formula

i:f(‘r?u)

where z : R — (' is the state of the robot, C' is the set of states the robot may take, @ is its rate of
change (i.e. fl—“]f) and u is the control input. In reactive control, u is a function of = and so the robot
must know its own state via sensors of some kind. Thus, the formula says that the change in z is
a function of the state z and the controllable input «. When a robot with state z is cooperating

with with another robot with state y, we have a system like

(#,9) = fz,y, us, uy)

where u;, a function of z and y, is the input controllable by the first robot and u,, also a function
of x and y, is the input controllable by the second robot. In such a system, obviously, there must
be some way for each robot to estimate the state of the other robot. We will provide for this kind
of state sharing with an ideal communications link between the robots and an ideal sensor system
and we will not consider the problem of state estimation in this paper. In the obvious way, this
may be extended to the case of any number of robots and any other nonactive objects. Sometimes,
to simplify matters, we consider the case where f(z,u) = u. In the appendix, we elaborate on these
definitions and present other fundamental definitions of the field of dynamic systems and control.

In a factory situation especially, robots must switch between different controls (e.g. different
fucntions u of z). Discrete switching between continuous dynamics fall under the general field of
hybrid control. There are several formalisms for hybrid control systems. Here we will review one
of the most common and then explain how the present research relates to it. A Hybrid Automaton,
introduced in [1], is a discrete graph with information about continuous dynamics attached to the
nodes and edges. Essentailly, to each node v a predicate on the state variable, such as z < 1 is
given and an equation for the rate of change, such as @ = z 4+ 1 is given. If the discrete state of
the system is v, then as long as the predicate for v is true, then & will correspond to the equation
for v. As soon as the predicate on z is false, the state changes to a neighbor of v in the graph
whose predicate is true for z. In this manner, a piecewise continuous trajectory of the system can
be given and some analysis can be done. Systems such as thermostats and train crossing gates are

specified and proved correct, in [10] for example, by combining the above with model theory and
modal logic.

In our formalism, we will also be concerned with discrete modes of control — the dynamics in
different modes only changes because u changes. Essentially, we will consider a mode to be given by
a goal, or attracting equilibrium point (z,04; such that f(z 041, 2) = 0) and a domain of attraction,
that is, the set of all states for which u eventually drives the system to z,,,;. We denote by G and
D the goal set (usually a small open set around the goal point) and the domain of a controller.
These notions are described formally in Appendix I. In Section 5.1 we will give a simple example of
how such controllers can be designed. Once the control modes are designed, modes may be strung
together in such a way that the goal of one controller is in the domain of the next, as in [6] where
different juggling behaviors are composed. One of the contributions of the present paper is the
extension of this idea of backchaining controllers to concurrent systems.

2.5 Compositional Control

Preimage backchaining was introduced into the motion planning literature in [19] as a method
of sequentially composing motion strategies. In [5] this method was extended to robot juggling
in work that serves as the basis of our current research. The idea is to start with a palette of
controllers @4, ..., ®, for a robot. Suppose ®; has domain Dy and goal G. Order the palette by
setting ®; > ®; (read ®; prepares ®;) whenever §; C D;. If the palette is suitably designed, then
a switching strategy may be obtained which drives the robot to a goal from any initial condition
in (J_; D;. In the work on juggling, this technique was used to switch between catching, juggling,
palming and tossing behaviors, resulting in a quite sophisticated overall behavior. In this paper
we expand these ideas to include the notion of concurrent composition of behaviors for the case of
several robots in a shared workspace.

One quality we would like our factory to have is smoothness of motion. We recognize that
humans perform tasks with a fluidity that roboticists can only poorly approximate. We believe
that the road to building such robots is paved with a theory of composing control laws or more
generally, dynamic systems in various ways. We have already discussed the sequential composition,
but this is just the beginning. More elusive is the parallel composition of controllers of coupled
systems. In the present paper, we consider loosely coupled systems and discrete composition.
Although, we do not claim to have a theory of dynamic, smooth concurrent systems, we do believe
that we are headed in that direction. In this section, we will review the important thread of research
in robot juggling.

In [4], Biihler and Koditschek present a 2-dimensional juggling robot: a 1 degree of freedom
arm leaned against a wall capeable of bouncing a ball repeatedly to some specified height. They
also experimented with two balls at once. Later Rizzi and Koditschek built a three degree of
freedom arm capable of bouncing a ball in three dimensions, [26]. As if this wasn’t enough, Rizzi
then expanded this work to control two balls at once, [25]. To accopmplish this, Rizzi essentially
combined two copies of a one ball juggle in parallel using notions of urgency and ball phase to

control the two balls so that they (1) did not hit each other and (2) were attracted toward being
180° out of phase. Although the juggler proved to be experimentally sound with this task, a
theoretical treatment remains elusive.

To explain the relavance of the research just described, consder the following situation. Suppose
we have two robots, say C7 and C3 which carry subassemblies from place to place in a factory and
that we have a third robot G whose job it is to put some glue on any subassembly brought to it
by Cy or C5. Since Cy and C5 have other things to do as well, the strategy for G is to attempt to
never keep either C'y or Cy waiting. We propose that to do this, it must “juggle” between the task
of servicing €'y and C;. We belive that the present research is the discrete version of this problem.

2.6 The Minifactory

Finally we review what has actually been the inspiration for the present research all along. At
the Microdynamic Systems Laboratory at Carnegie Mellon University, a modular, reconfigurable
robotic factory system, called the Minifactory, is being developed, [20], [22], along with a consider-
able software support and simulation system, [9]. The Minifactory project is a collection of modular
robots and other components which, in theory at least, may be assembled quickly and programmed
almost as quickly into a factory which can assemble some small product, usually electronic and
very precisely specified. In practice, many of these details have yet to be worked out.

The main structure in a Minifactory is a set of platens which serve as the factory floor. On
the platens, robots called couriers float on bearings of air and move around in the factory with
subassemblies on their backs. These couriers are very precise and can navigate the platens to
within a micron’s accuracy. Mounted above the platens are various types of manipulators and
parts feeders which can insert parts and perform other simple operations on the subassemblies
being carried about by the couriers. FEach robot is controlled separately by its own computer
running a real time operating system and the computers are connected to each other in a sort of
parallel or distributed architecture by high speed ethernet switches, also provided by the minifactory
architecture. See IMigure 3 for a picture of an example minifactory. Note that the couriers replace
the conveyer belts in a traditional factory, allowing fewer restrictions on the paths of subassemblies
between manipulators.

The simulation software and programming environment for the Minifactory is called the Archi-
tecture for Agile Assembly, or AAA. AAA provides a fairly complete simulation of the factory and
lets the user easily reconfigure, move and edit the programs of robots within the factory. However,
at this point, the programming of robots is a difficult, time consuming process. It is based on an
object oriented communications system and factory reservation areas as shared objects. Fairly low
level knowledge of how the robots are controlled is needed to program them successfully. Current
work on AAA includes constructing a palette of controllers from which the programmer may choose
low level behaviors and on augmenting the simulation and user interface.

The minifactory idea poses many challenges. First of all, there is no general and formal method
by which concurrent robotic systems, which may block each other logically and physically as we

10

overhead
manipulat;:-N

parts feeder

bridge ——/
base unit
™~

B

Figure 3: A schematic of a part of a Minifactory taken from [22].

mentioned in Section 2.3, can be constructed. What is required is a provably correct means of
constructing robot programs so that the global behavior of the factory is ensured. Second, in order
for the Minifactory paradigm to be viable, a much simpler method of obtaining programs and
layouts for the robots in the factory, other than the creativity of the specialist, must be found.

3 Gear Nets

In this section we consider how to compose sequential Petri Net components, each representing the
behavior of a robot, in such a way that the resulting net represents the combined behavior of the
robots. Such a thing is called a compositional semantics. 1t requires an sort of standard interface
for combining nets in such a way that the semantics (what the net does) of the resulting net can be
obtained in exactly one way from the semantics of the components. Here we give a compositional
semantics for a very simple class of Petri Nets called gear nets, which are a kind of marked graph.
These simple nets form the basis for a more complete structure which we introduce in Section 4.
Gear nets only describe the discrete states of the robots involved in the factory and do not include
information about the state of any partially assembled products or about the low level dynamics
of the factory. First we describe gears, then gear nets and their relation to marked graphs, and
finally the properties of gear nets which allow us to compose gears.

The simplest thing a robot in a factory can do, besides remain idle, is to cycle repeatedly

11

get

wait part wait
send glue
part wait part

O—0

Figure 4: A gear corresponding to a simple, sequential program for a factory robot.

through some set of behaviors. A robot might, for example, (1) pick up a part at a parts feeder,
(2) bring the part to a station to be glued to another part, (3) take the result to a manipulator
to be added to some other subassembly and then start the sequence again. Thus our most basic
Petri Net component is a cycle, which we choose to call a gear, and which represents the sequential
program that a robot repeatedly executes during a run of a factory. Formally, we have

Definition 3.1 A k-gear is a net (T, P) where T = {to,...,tx—1} and P = {[t;;tix1] | 1 € Z/k}.
m C P is a legal marking for a k-gear if |m| = 1.

(Recall the definition of a Petri Net given in Appendix II). Figure 4 depicts a gear corresponding
to the example just given. The places of a gear correspond to the control mode of the robot.
Obviously, given an initial state (control mode), a gear has only one kind of process, namely a
linearly ordered one. We point this out with the following property and will make use of it later in
this section when we compose the processes of gears to obtain a concurrent process.

Property 3.1 Any process for a gear is totally ordered.

Notice that the control modes of the gear shown in Figure 4 tell only what the single robot in
question is doing while, in fact, the robot must coordinate with the controller of the glue station
and with the manipulator in order to function correctly. Thus, the program of the robot must be
synchronized with the programs of other robots. Of course, the programs of other robots are also
given by gears. What is needed is a means by which gears are composed, so that any control modes
that any robots must execute in synch with each other, are identified. Furthermore, it is important
that each robot involved in a control mode wait, before entering the mode, for the other robots
involved. With these constraints in mind, we are led to a definition of a gear net as the union of
gears. However, we must be careful. Not any union will do. One problem is that arbitrary unions
of cycles can introduce spurious cycles into the unions, possibly resulting in deadlock situations.
See Iligure 5 for an example of this. Therefore, our definition is more careful.

12

Figure 5: A union of gears that is not a gear net.

Definition 3.2 A gear net is defined recursively:
1. A gear is a gear net.

2. If (T, P) is a gear net and (S,Q) is a gear then (T'US, PUQ) is a gear net as long as the
following conditions hold:

(a) Let (Th, P1), ..., (Tk, Px) be the set of gears in (T'US, PUQ) which intersect (S,Q). Then
ﬂle P; ={[a;b]} and ﬂle T; = {a,b} for some transitions a and b;

(b) there exists a transition ¢ € S — T such that [c;a] € Q.

A legal marking for a gear net is one in which each gear in the net is marked exactly once.

Since all places in a gear net are of the form [z; y], gear nets are a kind of marked graph. See Figure
6 for an example of the construction of a gear net in which the inductive nature of the definition is
illustrated. Note that a legal marking gives the state of every gear in the gear net. This corresponds
to the fact that each robot is in exactly one state in its program. Conditions (a) and (b) require
that gears be added with a “standard interface”. This ensures that the nets remain deadlock free.
Before we prove this, and also justify the added definition of legal marking, we point out some facts
about marked graphs noted in [7]. First, define a marking m to be live if there is a transition e
such that ®e C m. We have

1. If (S,Q) is a cycle in a marked graph and m —% m’ then |m N Q| = |m' N Q|. That is,
transition firing does not change the size of markings on cycles.

2. A marking m of a marked graph is live if and only |m N Q| > 0 for all directed cycles (5, Q)
in the graph.

3. If m is live and m —% m’, then m’ is live.
Next we prove that gear nets are live. To do so we need an auxiliary result which states that we

do not add spurious cycles as we build up gear nets in Definition 3.2.

13

Figure 6: The iterative process of constructing a gear net from simple gears.

Proposition 3.1 If (T, P) and (S,Q) are as in Definition 3.2 and (S, Q") is a gear contained in
(T'US,PUQ), then either (S",Q") = (S,Q) or (5',Q’) is contained entirely within (T, P).

Proof: Suppose that (S’,Q’) is not contained entirely in (7, P). Then there is some transition in
(S,Q) that is also in (S, Q). Thus, the transition ¢ which is unique to (5, Q) and which precedes «
in the definition must be in (S’,Q’). Since a® = [a;b] (otherwise the definition fails), (', Q') must
contain the path ¢,a,b. Now, after b must come some transition in (5,) since the cycle (5',Q’)
must return to ¢ which is unique to (S, Q). It follows that (S’,Q’) = (5,Q). O

Next we have our first main result, from which it follows that gear nets are deadlock free.
Proposition 3.2 Fvery gear net has a legal marking.

Proof: The result is obvious for simple gears. Note that by the previous proposition, we need only
consider the gears we add in the definition when we go to the inductive step. Now suppose that
(T, P) is a gear net which has a legal marking m and (S5, Q) is a gear for which the definition of
gear net holds. If mN@Q = 0, then take any p € Q — P. It follows that m U {p} is a legal marking
for (TUS, PUQ). Otherwise, m must mark (5, Q) exactly once, by condition (1) of the definition,
so m is a legal marking of (TUS,PUQ). O

These propositions, together with the facts about marked graphs that we presented, are enough to
show that gear nets are deadlock free. We know there is one legal marking for any gear net. By

14

fact (1), legal markings lead to legal markings. Fact (2) gives us that gear nets are live under legal
markings. Thus, we have:

Theorem 3.1 (Liveness) Gear nets are deadlock free under legal markings.

The next Theorem says that gear nets are reversible. This means that any initial (legal) marking
we may choose is reachable via detached sets of events from any other legal marking. Formally, say
that for a Petri Net (7', P) and a marking m, define the set R(m) to be the set of all markings m’
such that there exists a sequence of markings mq, ..., my with mg = m and m; = m’ and a sequence
of detached sets of events (g, ..., G_1 such that

mo —Go Gk mpg .
Then we have

Theorem 3.2 (Reversibility) Given an initial marking mg of a gear net (T, P), mg € R(m) for
all legal markings m of (T, P).

Proof: We proceed by induction on the form of the gear net. Certainly a gear is reversable given
any initial marking. Now suppose that (7', P) and (5,@)) are as in the definition of gear net and
that mg is the initial (legal) marking of (7', P) U (S,Q). Then there are legal markings my, ..., my
of (T, P) and detached sets of events G, ..., Gx—1 such that

moN P —Go mi -GGk mr=mnN2~FP

for any marking m of (7, P) U (S,Q). That is, moN P € R(m N P). Now we can construct a
sequence from this sequence to show that mg € R(m). Suppose that p is the single place in mgN Q.
Add it to all markings m4 through m;, where GG; contains a (from the definition). If [c : a] (that is,
p # [c 1 a]) is not in m;, then we can find a sequence of transitions ¢y, ...,¢; € S to take ¢ to [c: a].
Then

m; U {p} =" ... =" m;U{[c:a]}

“patches up” the sequence. Further such adjustments to the rest of the sequence eventually lead
back to m. Thus, mg € R(m). O

Now that we have shown that gear nets are deadlock free and reversible, are we guaranteed that
factories so composed are correct? We are as far as the logic of the programs is concerned. However,
we will also need to consider the dynamics of the gear net (the processes they admit), so that we
can introduce parts lines later in Section 4. It turns out the the kind of processes (semantics) that
a gear net admits is directly related to the way the net was composed (syntax). In the rest of this
section we elaborate on this. In [15], Kindler presents a compositional semantics for Petri Nets
based on the idea that the semantics of a Petri Net is given by the set of closed (complete) processes
for that net. Here we present a less sophisticated idea enabled by the fact that our gear nets are

15

so simple. Noting the fact that each gear has a linear process — recall Property 3.1 — we simply
“glue” the processes for gears together in a way similar to the way we glued the gears themselves
together.

For course, before we can assert that we have a process for a gear net, we must be certain that
gear nets are contact free. This is given to us by the definition of a legal marking and by fact
(1): if a gear net were to admit contact under some marking m, then there would be a gear (5, Q)
|@ N'm| > 1, which is a contradiction.

Now, suppose we have a gear net (7, P) and a gear (5,()) such that (T"U S, PU Q) is a gear
net with intersection {a,b,[a;b]}. Say that (U, Ki,01) is a process for (T, P). Also say that
(Uz, Kq,03) is a process for (S,Q) with as many occurrences of [a;b] as (Uy, K1, 01) and minimal
element mapping to a place unique to (S,)). We assume these two processes are disjoint. Then
we can construct a process for (T'U S, PUQ) as follows.

Definition 3.3 For a process (U, K, o) and an element a € U UK, define the occurrence of a as

occ(a) ={bCa : a#bAo(b)=0c(a) }|

Definition 3.4 For any i,j € {1,2}, any « € U; UK;, and any b € U; U K;, say that a ~ b
whenever o;(a) = 0;(b) and occ(a) = occ(b).

We can then look at the equivalence classes of ~ as a process for (T'U S, PUQ). Formally, denote
by [z] the equivalence class of z with respect to ~. We construct a net (U, K, o) as follows

U = (Uuly)/ ~
K = {3 e{,2}Adac[z]nU;ATbe [y]NU,; Ala;b] € K}
o(la]) = oi(a)

where 7 in the definition of o is chosen such that a € U; U K;. U is just the set of equivalence
classes of ~ restricted to transitions. K is the set of all pairs from U which contain pairs in one of
the original processes. Finally, since o;(z) is the same for all z in any particular equivalence class,
we may simply choose one of the representatives from the class and use the o; that corresponds to
it for the whole class.

The rest of this section is devoted to proving that this is a process for (T"U S, PU Q). First we
have a property of the occurrence number of an element of a process.

Property 3.2 If (U, K, 0) is a process for a Petri Net (T, P) and [z;y] € K, then occ(z) < oce(y).

Proof: Let A={aCz|a#zAoc(a)=o0(z)}. Then occ(z) =|A|. If « € A and [a;b] € K, then
o(b) = o(y) since processes preserve the flow relation. Now, the set B = {b|Ja € A,[a;b] € K} is
the same size as A. We claim that occ(y) = |B| or |B| 4 1. If there is no b such that b © A A, then
B ' ={b|b#yAno(b) =0(y)} = B. Otherwise, B = BU{b} where b is the single element such
that b C A\ A. O

Next, we show that (U, K, o) is an occurrence net which amounts to showing it is acyclic.

16

Lemma 3.1 If (U, K,0) is constructed from (Uy, K1,01) and (Uz, Kq,03) and ~ as above, then
(U, K,0) is an occurrence net.

Proof: That | *[p]| < 1 and |[p]*| < 1 is obvious from the definition of (U, K,). We must prove
that (U, K, o) is acyclic, which we do by contradiction.

To that end, suppose that [tg], ..., [tx] are transitions forming a simple cycle. First we will show
that it must be the case that occ([t1]) = ... = occ([tr]). We know there are z1, 2}, z9, 2%, ..., Tk, 2},
such that for each 7, z;,2! € [t;] and [z!;2,11] € Ky U K, where the subscripts are taken modulo
k. Thus,

oce(z1) < oce(zg) < ... < oce(zy) < oce(xy)

from which it follows that occ([t1]) = ... = oce([t]).

Now, because (Uy, K1, 01) and (U, K3, 02) are processes, the cycle can not be contained entirely
within either, and thus there must be a path [t;],...;[t;] in the cycle with [t;] N U; # @ for
i € {1,...,1}. Furthermore, we can suppose that o([t;]) = o([t;]) = b (where b is as in the
definition of gear net). Now, since the occurrence number of all the elements in the path is the
same, it must be that ¢;, ~¢;, and so [t;,] = [¢;]. It follows that [t;], ..., [t;] actually forms a cycle
when restricted to (Us, K3, 02) which is a contradiction. O

Now we are ready for the main result:
eorem 3.3 (U,K,0) is a rocess for (U , U).

Proof: We have already shown that (U, K,o) is an occurrence net. We must show the e tra
conditions on o.

First, if is aslice of (U, K, o), then o| isin ective. To prove this, suppose that o([z]) = o([])
but [z] # [] for some [z],[] € . Without loss of generality, we may assume that [z] N K; # (
and []N Ky #0. ut the only way this can be so is if o([z]) = o([]) = [;b] where [;b] is as in
the definition of gear net. Now, clearly, all elements which map to [;b] are linearly ordered (since
they are in (Us, K9, 03) for e ample), and thus [z] and [] can not be in the same slice which is
contradiction.

econd, if is aslice then o() is a legal marking. To prove this, notice that there is only one
element [z] € such that [z] N Ky # 0, for otherwise would not be a slice. Now since o({[z]})
marks (,), it follows that o() marks (,)e actly once. Now, if o([z]) =[;b] then o() is
a legal marking for (,) and otherwise o({[z]}) is a legal marking for (,).

Third, o(*[p]) = *o([p]) and o([p]*) = o([p])°®. This is straightforward and we will show, as an
e ample, the inclusion o(*[p]) ®o([p]). ay o([]) € o(*[p]). Then [] € *[p]. We can choose
i € {1, }such that there are elements p’, '€ K; and p’ € [p] and "€ []. Thus, [’;p'] € K; which
implies that [o(");o(p)] € ;. ut then [o([]);o([p])] € i ore uivalently o([]) € *o([p]).

These three properties along with emma .1 give the desired result. O

Figure illustrates this theorem by showing a gear net and a gear, their corresponding processes
and the composition of each pair.

SRR R DR L3N I
e e e

O—=0—=0—-0-0—0 000000003000 -

Parts
Feeder

NLf \,/—\. 2\
Z3) 7 7
\!/
trans; 3
‘W
\ N/
) NN

waity

\

0:(\

0:('\

o

1

0 >/©

[[l
1l

il

| :

1 J

() robot 3
O

[

robot 2

il

D

1

robot 1

O

robot robot with part

({(I+

2
workspace

{)
e
;

robot \ [;

ut

robot with

!

‘o

@

Output

drop

NCY
e N\
N hold, \/ hold,
| \x \ AN P V4 K/ |
7 e\ [7ay N
n '
pick; mate picky
AN Parts 1
Feeder wait, A1 waity
yara vl ||| VAN Pars
/N i AL Feeder
in holds
= — =

part

courier

N
2

pick

N
A

N

7]

ourier

Q

PICK

courier
with part — elder

1

/]

7

weld

AN
7

1

e

courier
with part

elder

WELD

courier
with part

courier courier

mate

/ h

AN|
Z

o
courier courier
with part with part

courier

MATE

courier ~ part

NN N
F’o— X

N\
/]

courier
with part

DROP

drop

Output
Buffer

out

PART PART

.............

...........................

pick

Parts
Feeder

Oy,

K

............................

4
Parts O/

Feeder

