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Abstract

In this paper we define a class of graph grammars that can be used to model and direct parallel robotic

self-assembly and similar self-organizing processes. We give several detailed examples of the formalism and

then focus on the problem of synthesizing a grammar so that it generates a given, prespecified assembly. In

particular, to generate an acyclic graph we synthesize a binary grammar (rules involve at most two parts),

and for a general graph we synthesize a ternary grammar (rules involve at most three parts). In both cases,

we characterize the number of concurrent steps required to achieve the assembly. We also show a general

result that implies that no binary grammar can generate a unique stable assembly. We conclude the paper

with a discussion of how graph grammars can be used to direct the synthesis of robotic parts floating in a

fluid or for self-motive robotic parts.

1 Introduction

Engineering processes in the realm of the very small presents us with the daunting problem of manipulating and

coordinating vast numbers of objects so that they perform some global task. Because of the potentially enormous

quantities of objects involved, uniquely addressing and manipulating each one is impossible. There are of course

examples of sophisticated machines, such as the ribosome or the mechanical motor in the bacterial flagellum, that

seem to be built in bulk spontaneously our of large numbers of simple interacting components. One hypothesis

for how this occurs is that the simple small components self-assemble into more complex aggregates which, in

turn, self assemble into larger aggregates or function as simple machines. The goal of the present work is to

understand how the interactions between the components of a system can give rise to coordinated behavior

in a self-organizing (i.e. decentralized and unsupervised) way. In particular, we suppose that the components

themselves are (very) simple robots, whose general capabilities we will specify in the body of this work.

Our starting point is the idea of conformational switching [29]: Each component (robot, molecule, particle,

etc.) exists in one of several conformations or shapes. When two components come into close proximity, they

attach or not based on whether their conformations are complimentary. If they do attach, their conforma-

tions change (mechanically for example), thereby determining in what future interactions the components may

partake.
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Figure 1: The particle interaction model considered in this paper. (1) Two part with labels a and b (2)

occasionally collide. If their labels correspond to a rule of the system (Definition 3.4), then (3) the parts stick

(Definitions 3.2 and 3.3) and their labels change (to c and d in this example) according to the rules. Otherwise,

(4) the particles simply bounce off of each other. In their new states, the parts may stick to yet other parts (or

release other parts to which they were previous attached) so that aggregates form.

As in other work [28, 15], we consider the conformation of a part or robot as corresponding to a discrete

symbol, and we model an assembly as a simple graph labeled by such symbols. Vertices in these graphs represent

robots, and the presence of an edge between two robots represents the fact they are attached. A rule is a pair

of labeled graphs and a grammar is a set of such rules interpreted as follows. If a subset of robots together

with their labels and edges matches the first part some rule, then the subset may be replaced by the second

part of the rule to achieve a new state of the system. That is, we use the rule to rewrite a part of the current

graph. Continuing to apply rules one may produce a class of trajectories whose properties one might want to

guarantee.

We are mainly in interested in the situation where the parts decide in a distributed fashion whether and how

to execute an assembly rule. In this sense, a graph grammar defines a distributed algorithm, but not one that

works on a fixed-topology network. Instead, the fact that the processors are located on robotic parts means

that the network topology changes as the robots move through their environment.

A main motivation for the theory presented in this paper is a robotic testbed under construction at the

University of Washington wherein programmable parts execute local rules to form global assemblies. Figure 2

is a photograph of a prototype trangular “programmable part.” On each edge of the part is a magnetic latching

mechanism and an infrared (IR) transceiver. The battery-powered part is controlled by an onboard micro-

controller programmed according to rules of the sort presented in this paper. Many such parts are floated on

an air table as in Figure 3(a) and experience essentially random motions. When two parts collide, their default

behavior is to attach to each other. Only then may they communicate over their IR link. By sharing their

internal states, the parts may decide whether to remain attached (when an assembly rule matches their states)

or to dis-attach (when no assembly rule matches their states). Using the theory presented in this paper, this

basic interaction protocol can be used to form complex assemblies of parts, such as those shown in Figure 3(b)

(see also Example 4.3). The point of the testbed is to demonstrate the feasibility of the approach described

in this paper. With relatively simple devices and a formal algorithmic and synthesis approach, we are able to
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Figure 2: A robotic “programmable part”. Each edge of the trangle may attach via a magnetic latch to another

part. Once attached, the parts may decide to remain attached or may dis-attach by rotating a permanent

magnet, which disengages the latch.

control this system to self-assemble into a variety of forms. We discuss breifly how this is done with graph

grammars in Example 4.3. We plan to report on the details of the latching meachnism, stirring algorithms, rule

sets specific to the programmable parts and other experimental results in a separate paper.

The main problem we consider in this paper is the synthesis problem, defined roughly as follows. Given a

specification S (i.e. a logical statement about trajectories) and an initial configuration of robots G0, define a

grammar Φ so that all trajectories arising from G0 via the application of rules in Φ meet the specification S. The

specification may require that some cyclic process occur among the robots (as for example in the locomotion of

Metamorphic Robots [6, 20, 23]) or that some undesirable set of configurations be avoided (for example, certain

network configurations may lead to unstable dynamics in a control system [11]). In particular, we address the

following synthesis problem: Given an arbitrary graph H define Φ so that only copies of H emerge as stable

components of the system. For example, one might desire that the robots all form rings of 10 robots, or arrange

themselves into a long line. This problem is stated more concisely at the end of Section 3.

Specifically, the contributions of this paper are as follows. In Section 3 we introduce a class of graph grammars

suitable for describing distributed assembly. We give a set of detailed examples that elucidate the definitions

and demonstrate the capabilities of the formalism in Section 4. We next examine some basic properties and

limitations of graph grammars. In particular, in Section 5 we prove a theorem about the impossibility of

assembling a unique stable graph using rules consisting of acyclic graphs (to be defined). We also explain how

to view graph grammars as describing a concurrent process in Section 6 and associate to each trajectory of

a system a canonical trajectory that captures the number of concurrent steps required to assemble a given

component. Then in Section 7 we describe two algorithms that take a graph G and produce a grammar Φ such

that the only stable assemblies of Φ are isomorphic to G. In first algorithm requires that G is acyclic, and the

second algorithm (which uses the first) works for any given graph. We show the algorithms are correct and also

explain how quickly the desired graphs can be assembled. In Section 8 we discuss how assembly rules can be

implemented in a distributed fashion by simple communication protocols and finally, in Section 9, we introduce
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Figure 3: (a) An initial configuration of programmable parts on an air table. The parts are stirred by air jets

(not shown) so as to produce collisions. (b) An assembly of programmable parts after the assembly process has

completed. A complete final assembly and several partial assemblis are shown.

a physical model — based on programmable parts floating passively in fluids — that can be used to implement

a graph grammar.

2 Previous and Related Work

Conformational switching was first described as a symbolic process for self assembly by Saitou [28], who con-

sidered the assembly of strings in one dimension. Berger et al. showed that a conformational switching model

could mimic the assembly of virus capsids in simulation [2]. Self assembly as a graph process has been described

by Klavins [15], although the graph grammar formalism is new to this paper, and a rule synthesis procedure

for trees was given that is somewhat more complex than the one described in Section 7. A method for using

potential fields and a certain deadlock avoidance scheme to implement local rules with a group of mobile robots

was also described [15]. The proof of Theorem 5.1 is topological, utilizing tools from covering space theory

(see e.g., [13]). The notion of concurrency we use in this paper is similar to that of processes as described by

Reisig [26] and our notion of concurrent equivalence is directly related to Abrams’ and Ghrist’s work on State

Complexes [1].

Graph grammars were introduced [10, 7] more than two decades ago and have been used to describe a broad

array of systems, from data structure maintenance to mechanical system synthesis. Graph grammars come in

many flavors. The variety we use in this paper is called Graph Rewriting Systems on Induced Subgraphs (IGRS)

by Litovsky et al. [21] (The requirement that rules are applied on induced subgraphs is equivalent to our

requirement in Definition 3.2 that witnesses be monomorphisms). Our results about the reachable and stable

sets being closed under covers are related in spirit to the results of Courcelle that the classes of graphs that can

be recognized by local computations (i.e. by an appropriate graph grammar) must be closed under covers [8].

The study of graph grammars usually takes place in a much different context than in the present paper, as

can be seen by examining the somewhat different names usually given to the objects we define in this paper: The
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initial graph is often called the axiom, trajectories are called derivations, re-write rules are called productions

and so on. The terminology in the present work is meant to correspond more closely to the dynamical systems

literature. Graph grammars are, of course, a generalization of the standard “linear” grammars used in automata

theory and linguistics and thus (incidentally), can perform arbitrary computation. The use of graph grammars

to model distributed assembly, to the best of our knowledge, is new.

There are many other models of self assembly besides graph grammars, a complete list of which is beyond

the scope of this paper. But, for example, several groups [35, 3] have explored self assembly using passive tiles

floating in liquid. The tiles attach along complimentary edges (due, for example, to capillary forces or the

hybridization of complimentary strands of DNA) upon random collisions. A simple dynamical model of the

physics of tile assembly has been described [16]. Somewhat similar to the stable set in this paper (Definition

3.8), the identification of “unique” assemblies has been explored [31]. There is also other work on supplying

assembling robots with state information [5, 14, 30], although not in a graph-theoretic context, and also initial

work by other groups [34] on building a self-assembling robot similar to that described in the introduction to

this paper. Tile systems can in fact be used to perform arbitrary computations [33] and are best understood

as two or three dimensional symbolic processes. Another approach uses geometrical constraints on part-part

interactions to model, for example, the assembly of proteins into spherical shells called capsids [2]. The addition

of simple processing to each part, similar in capability to that assumed in the present paper, is considered in

models of the assembly of the T4 bacteriophage [32].

3 Definitions

3.1 Rules and Systems

In this section we provide the basic definitions related to our notion of a graph grammar. We save examples

for Section 4. The reader may wish to read the examples in Section 4.1 concurrently with this section to help

ground the definitions.

A simple labeled graph over an alphabet Σ is a triple G = (V,E, l) where V is a set of vertices, E is a set of

pairs or edges from V , and l : V → Σ is a labeling function. We restrict our discussion to simple labeled graphs

and thus simply use the term graph. We denote an edge {x, y} ∈ E by xy. We denote by VG, EG and lG the

vertex set, edge set and labeling function of the graph G or by V , E and l when there is no danger of confusion.

We usually use the alphabet Σ = {a, b, c, ...}.
In this paper, a graph is a model of the network topology of an interconnected collection of robots, vehicles

or particles. In most examples, a vertex x corresponds to a robot, or, more exactly, the index of a robot in an

indexed set. The presence of an edge xy corresponds to an attachment (via a physical and/or communication

link) between robots x and y. The label l(x) of robot x corresponds the state of the robot and will be used to

keep track of local information in a self-organizing algorithm.

Definition 3.1 A rule is a pair of graphs r = (L,R) where VL = VR. The graphs L and R are called the left

hand side and right hand side of r respectively. The size of r is |VL| = |VR|. Rules whose vertex sets have one,

two and three vertices are called unary, binary and ternary, respectively.
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If (L,R) is a rule, we sometimes denote it by L ⇒ R to emphasize its use as a rewrite rule or grammatical

production. We also represent rules graphically as in

b

ca


 JJ ⇒

e

fd


 JJ

,

where the relative locations of the vertices represent their identities. In the above rule, for example, V = {1, 2, 3}
and vertex 1 is labeled by lL(1) = a in the left hand size and by lR(1) = d in the right hand side.

We may refer to rules as being constructive (EL ⊂ ER), destructive (EL ⊃ ER) or mixed (neither constructive

or destructive). A rule is called acyclic if its right hand side contain no cycles (n.b., the left hand side of an

acyclic rule may contain cycles).

In this paper, a rule describes how a (small) sub-collection of an aggregate of robots can change its local

network topology and states. In particular, if an induced subgraph of a graph G matches the left hand side L

of a rule (L,R), that subgraph may be replaced by the right hand side R. The size (number of vertices) of a

rule is a measure of “how local” it is: A unary rule can be executed by a robot without any communication.

A binary rule requires the cooperation of two robots via one communication event. Larger rules require even

more communication, since a larger group of robots must somehow realize that they collectively match the left

hand side of a rule. Typically, one prefers to use small rules. Also notice that the rules depend only on the

labels (or states) of the robots and not on their underlying indices in the graph. That is, the indices we use

for underlying vertex set V do not give particular robots any special properties. The following definitions make

formal the notion of rule application.

A homomorphism between graphs G1 and G2 is a function h : VG1
→ VG2

which preserves edges: xy ∈
EG1

⇔ h(x)h(y) ∈ EG2
. A monomorphism is an injective homomorphism. An isomorphism is a surjective

monomorphism: in this case, G1 and G2 are said to be isomorphic. A homomorphism h is said to be label

preserving if lG1
= lG2

◦ h.

Definition 3.2 A rule r = (L,R) is applicable to a graph G if there exists a label-preserving monomorphism

h : VL → VG. In this case, the function h is called a witness. An action on a graph G is a pair (r, h) such that

r is applicable to G with witness h.

Definition 3.3 Given a graph G = (V,E, l) and an action (r, h) on G with r = (L,R), the application of (r, h)

to G yields a new graph G′ = (V,E′, l′) defined by

E′ = (E − {h(x)h(y) | xy ∈ L}) ∪ {h(x)h(y) | xy ∈ R}

l′(x) =

{
l(x) if x 6∈ h(VL)

lR ◦ h−1(x) otherwise.

We write G
r,h−−→ G′ to denote that G′ was obtained from G by the application of (r, h).

Remark: The vertex set V of the the graph G in the above definition remains the same upon the application

of a rule. Only the presence or absence of edges and the labels on the vertices change.

A set of rules (i.e. a grammar) defines an algorithm for a group of robots to follow. We suppose that each

robot has a copy of the rule set initially and that by communicating with other nearby robots they can decide
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in a distributed fashion if there is some applicable rule and, if so, apply it. Continuing this process changes

the states of the robots and their connections to other robots. The result is a system with a well defined set of

behaviors, or trajectories. These are the objects we examine in this paper.

Definition 3.4 A system is a pair (G0,Φ) where G0 is the initial graph of the system and Φ is a set of rules

(called the rule set or grammar).

We sometimes refer to a system simply by its rule set Φ and frequently suppose that the initial graph is the

infinite graph defined by

G0 , (N,∅, λx.a) (1)

where a ∈ Σ is the initial symbol (here λx.a is the function assigning the label a to all vertices). The idea is to

model systems with vast numbers of robots or parts all of which have the same initial internal state.

Definition 3.5 A trajectory of a system (G0,Φ) is a (finite or infinite) sequence

G0
(r1,h1)
−−−−−→ G1

(r2,h2)
−−−−−→ G2

(r3,h3)
−−−−−→ ...

If the sequence is finite, then we require that there is no rule in Φ applicable to the terminal graph. We denote

the set of trajectories of a system by T (G0,Φ).

We denote a trajectory by, for example, σ ∈ T (G,Φ) and use the notation σj to mean the jth graph in the

trajectory.

Remark: Many authors call G0 the axiom and σ ∈ T (G0,Φ) a derivation when the goal is to study the

language generated by the grammar. By our choice of terminology in the present paper we intend to emphasize

the dynamical properties of grammars. For example, the grammars we define can exhibit non-trivial limit-cycles

(as in Example 4.5).

Definition 3.5 defines what many authors call the interleaving semantics of a concurrent system [4]. In this

model, actions cannot occur simultaneously. However, a set of successive actions that operate on disjoint parts

of a graph may be interleaved in any order and still produce essentially the same behavior. In Section 6 we

provide an alternate characterization of trajectories that better accounts for concurrency. In either case, we

see that the pair (G0,Φ) defines a non-deterministic transition system whose states are the labeled graphs over

VG0
. Non-determinism arises due to the fact that, at any given step, several rules in Φ may be simultaneously

applicable, each possibly via several different witnesses. Our goal is to reason about all such behaviors of a

given system.

3.2 Reachable Graphs

Given a system (G0,Φ) of robots and rules, one naturally wishes to know (1) what types of aggregates can be

built and (2) which of these are “finished products” with regards to the rule set.

Definition 3.6 A graph G is reachable by the system (G0,Φ) if there exists a trajectory σ ∈ T (G0,Φ) with

G = σk for some k. The set of all such reachable graphs is denoted R(G0,Φ).
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For assembly problems, we are particularly interested in the connected components of reachable graphs, as

these correspond to aggregates of robots that are connected by physical or communication links. Recall that

a graph G is connected if any pair of vertices can be connected by a sequence of edges in G. The connectivity

relation partitions any graph into connected components.

Definition 3.7 A connected graph H is a reachable component of a system (G0,Φ) if there exists a graph

G ∈ R(G0,Φ) such that H is a component of G. The set of all such reachable components is denoted C(G0,Φ).

A reachable component may be temporary. That is, there may be some rule in Φ that operates on part of

it. Other components are permanent: once they show up in a trajectory, they remain forever.

Definition 3.8 A component H ∈ C(G0,Φ) is stable if, whenever H is a component of Gk ∈ R(G0,Φ) via a

witness f , then H is also a component via f of every graph in R(Gk,Φ). The stable components are denoted

S(G0,Φ) ⊆ C(G0,Φ). Reachable components that are not stable are called transient.

In other words, the stable components are those that no applicable rule can change. Note, however, this

does not mean that a stable component may not take part in an action, merely that it is left unchanged by it.

We illustrate these definitions with several examples in Section 4. In Section 7 we will describe rule-synthesis

algorithms that solve the problem of how to assemble a unique stable component:

Problem 3.1 (Rule Synthesis for Assembly) Given any graph H and an initial graph G0, find a set of (preferably

small) rules Φ such that S(G0,Φ) = {H}.

4 Examples

4.1 Paths and Cycles

In this section we illustrate all the definitions in Section 3 by examining a simple system that assembles paths

and cycles from individual parts. Define a constructive rule set by

Φ1 =





a a ⇒ b− b, (r1)

a b ⇒ b− c, (r2)

b b ⇒ c− c. (r3)

We have named the rules r1, r2 and r3. Recall that we use the position of the vertices in the presentation of

the rules to denote the re-labeling. For example, the first rule in Φ corresponds to

L = ({1, 2},∅, λx.a) and

R = ({1, 2}, {12}, λx.b)

We suppose that the rule set is used by a very large set of robots all initially labeled by the symbol a. Thus,

the initial graph is defined by Equation (1). At first, the only applicable rule is r1 since initially no vertices

are labeled by either b or c. After r1 is applied, both r1 and r2 are applicable. The rule r3 eventually becomes

applicable as soon as two unconnected vertices labeled b arise.
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Figure 4: A trajectory of the system defined in Example 4.1. The relative positions of the nodes denote the

identities of the nodes and do not change after each rule application. The rules used are shown above the arrows.

For convenience (in the discussion in Section 6.3) the actions are numbered sequentially by the integers 1, ...,

8 appearing below the arrows.

An example trajectory of (G0,Φ1) is shown in Figure 4. In the figure, the relative positions of the nodes

denote the identities of the nodes and do not change after each rule application. The names of the rules used

in each action are shown above the arrows. Witnesses are not shown because they can be inferred from the

diagram.

From the figure, it is apparent that the grammar produces paths Pk starting and ending with vertices labeled

b and with internal vertices labeled c, except for the length-one path, which is labeled a. The grammar also

produces cycles Ck with all vertices labeled by c. This can be proved by explicitly constructing a sequence of

actions that realizes any given component.

No other components are reachable, which can be shown by induction: The initial graph contains only P1.

If at any point in a trajectory only paths and cycles have been produced then the application of any rule in

Φ can only: make P2 from two copies of P1 (using r1); make a path of length Pj+1 from copies of Pj and P1

(using r2); make a path of length Pj+k from copies of Pj and Pk (using r3); make a cycle Ck from a copy of Pk

(using r3). Thus we have:

Proposition 4.1 C(G0,Φ1) = {P1, P2, P3, ...} ∪ {C3, C4, C5, ...}.

The stable components of (G0,Φ) are the cycles, since no rule in Φ has a left hand side with a vertex labeled

c. The paths are all transient.

Proposition 4.2 S(G0,Φ1) = {C3, C4, C5, ...}.

9



PSfrag replacements

aa

a

a

a

aa bbb

c dd

e f

g

g

b1

d1d1d1

f1 b2 f2

g1g1

b3 f3

r1−→ r2−→ r3−→

r4−→ r5−→ r6−→

Figure 5: An example trajectory of the system defined in Section 4.2.

4.2 A Uniquely Stable Cycle

In the previous example, all cycles were stable components. There is, in fact, a fundamental limitation, as

Theorem 5.1 implies (Section 5): a rule set containing only binary rules cannot have a stable set consisting

of exactly one cycle. However, using larger rules we can “stabilize” a cycle of a particular size. For example,

consider the following rule set.

Φ2 =





a a ⇒ b− c, (r1)

a c ⇒ e− d, (r2)

a e ⇒ g − f, (r3)

d

fb


 JJ ⇒

d1

f1b1


 JJ

, (r4)

f1

gb1


 JJ ⇒

f2

g1b2


 JJ

, (r5)

b2 − f2 ⇒ b3 f3. (r6)

Once again, we take the initial graph to be G0, defined in Equation (1).

An example trajectory for Φ2 is shown in Figure 5. The three constructive binary rules yield chains of length

4. The two ternary rules “triangulate” the cycle. The last rule removes the first triangulating edge to yield a

copy of the cycle C4, which is the unique stable graph of the system.

Proposition 4.3 S(G0,Φ2) = {C4}.

If instead of the “scaffolding” rules above, we simply used the rule

b g ⇒ b1 − g1,

to close P4, then C4 would indeed be stable, but so would C8, C12 and so on. This is because, for example, two

copies of P4 could combine to form C8 via two applications of the above rule.

In Section 7, we describe a general procedure for building cyclic graphs via triangulation.
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Figure 6: Two reachable components of the grammar described in Section 4.3.

4.3 Rules for Programmable Parts

The triangular programmable parts shown in Figures 2 and 3 each have three latches with which they can

connect to other parts. We associate a label with each of these latches. The state stored by the micro-controller

is then a triple of labels, and communication between parts must compare a pair of triples against a rule set.

As an example, define a simple rule set with the following rules:

PSfrag replacements
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This presentation uses the “wildcard” symbols * and # to stand for either b or c. Thus, the second line above

is a schema representing two rules and the third line is a schema representing four rules. The symbols a, b and

c are used in a way similar to that in Example 4.1. The symbol x is used to effectively “turn off” an edge.

In Figure 6 we shown two reachable components of this grammar, with the actual geometry of the parts

shown as well. Note that the orientation of the graphs in the above rules is not specified (i.e. the x can be either

immediately clockwise of the binding edge or counter-clockwise (part (a) of the figure) because graphs define

only topology. In an actual implementation, however, one can easily guarantee that the x is always clockwise of

the binding edge (part (b) of the figure). In this paper we do not address this problem or the (difficult) problem

of geometry in general.

In general, any physical implementation of a graph grammar will require careful reasoning about the resulting

geometric embedding of the rules, a subject we hope to report on in a future paper.
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Figure 7: An example trajectory of the ratchet defined in Section 4.4.

4.4 A Ratchet

A rule set need not define a simple assembly process. For example, consider the following rule set.

Φ3 =





a− c ⇒ d e, (r1)

b

ge


 JJ ⇒

b

hc


 JJ

, (r2)

b− h ⇒ f − b, (r3)

d− f ⇒ g − a. (r4)

A trajectory of Φ3 is shown in Figure 5. The sequence starts with a cycle of robots labeled by a, b and c attached

to substrate of robots labeled g (i.e. this structure defines G0 for this example). As illustrated in the figure,

the rule set “ratchets” the cycle along the substrate. The ternary rule is used to prevent the “loose” stage of

the ratchet (in the second graph in the trajectory) from attaching to the wrong substrate vertex (i.e. the rule

forces the vertex labeled e to attach to the next g in the sequence).

If the substrate of vertices labeled g is infinite (or circular), then S(G0,Φ) = ∅. The reachable components

are all isomorphic to those shown in Figure 7. We plan to focus on cyclic and other more general processes

defined by graph grammars in a future paper.

4.5 Bubble Sort

Graph grammars are commonly used to describe distributed algorithms in a fixed network topology. In fact, it

is rare to find a rule with a disconnected left hand side in the graph grammar literature [27]. In this section,

we illustrate a very simple and traditional distributed algorithm for sorting an array. Although perhaps not

particularly useful in robotics, the example hopefully gives the reader an idea of the possibilities of our approach.

We suppose that each robot in a chain has a unique id and an integer in an array to be sorted. The robots

are initially arranged in order of increasing id, but their array values are not in order. Robots may trade their

values with neighboring robots when doing so improves the order of the array.
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To describe this algorithm as a graph grammar, we use the alphabet Σ = N×N where (id, val) ∈ Σ denotes

the process identifier and current value of a process. The initial graph G0 is any graph of the form

(1, v1)− (2, v2)− ...− (n, vn)

where vk ∈ N. Without loss of generality, we suppose the underlying vertex set is {1, ..., n} arranged so that

lG0
(k) = (k, vk). The rule set is defined by

Φsort = {(i, x)− (i+ 1, y) ⇒ (i, y)− (i+ 1, x) | i ∈ N and x > y}.

Each step in a trajectory of (G0,Φsort ) increases the order of the array. This can be shown by considering

the “Lyapunov function”

V (G) =
∑

i,j

[valG(i), valG(j)].

In this expression, val(i) is the value of vertex i (i.e. if lG(i) = (i, x) then valG(i) = x) and [x, y] is equal to 1

if x < y and is equal to 0 otherwise. If σ ∈ T (G0,Φsort ) then the sequence

V (σ1), V (σ2), ..., V (σm)

is strictly decreasing to 0, where the array is sorted. Thus, we have the following.

Proposition 4.4 The single stable component of (G0,Φsort ) is

(1, x1)− (2, x2)− ...− (n, xn)

where {x1, ..., xn} = {v1, ..., vn} and xi ≤ xi+1.

4.6 Other Examples Not Covered in This Paper

In this section we briefly mention interesting grammars and systems we or others have considered but whose

full consideration is beyond the scope of this paper.

Graph Recognizers A graph recognizer [21] for a class of graphs G is a grammar Φ containing rules that

do not add or delete edges and with the following property: If G ∈ G then all trajectories of (G,Φ) arrive at a

copy of G with each vertex labeled by a and if G 6∈ G then all trajectories of (G,Φ) arrive at a copy of G with

each vertex labeled by b. For example, the class of k-regular graphs, the class of 2-colorable graphs and the

class of graphs with a given fixed diameter can be recognized this way. However, other classes, such as the class

of planar graphs cannot be recognized [21]. This related to the fact that planar graphs are not closed under

coverings (see our discussion of coverings in Section 5), a difficulty with the “local” nature of graph grammars

discussed in more detail by Courcelle and Métevier [8].

Distributed Algorithms Distributed algorithms, such as consensus and leader election, that are often ex-

pressed in terms of somewhat sophisticated I/O automata [22] can be easily expressed in graph grammars as

well [21]. This opens up the possibility of easily combining such algorithms with the self-organization algorithms

we describe in this paper — that is, using the same formalism.
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Planar Tilings Graph grammars as we have described them here are oblivious to the geometry of the robots or

parts on which they operate. An important geometric question is: When are the reachable graphs of a grammar

planar? Planarity of the reachable set is desirable when, for example, the grammar is to be implemented with

flat robots (or tiles) that can connect only via their edges. We have begun to explore this problem and have

proved several simple results [12]: (1) one can tile arbitrarily large portions of the plane with a finite grammar

(finite number of rules); (2) there exist aggregates of tiles in the plane that cannot by uniquely stabilized by

any finite grammar. However, the connection between graph grammars and their geometrical realizations is, for

the most part, uncharted territory.

Self-Replication In other work, we focus on the design of a rule set that can replicate any suitable labeled

“seed” graph [19]. The products of the replication, being identical to the seed, continue to replicate until all

“raw materials” are used up. The main point is that the desired behavior is not encoded in the rules of the

system, but is instead encoded by the seed assembly. In the grammar we designed for self replication [19], we

assume that the initial seed graphs are strings of, for example, the form

s1 − a1 − b1 − a1 − a1 − t1,

consisting of an initial vertex labeled s1, a terminal vertex labeled t1 and an internal (and arbitrary) string of

symbols labeled by a1 or b1. The rest of the initial graph consists of unconnected copies of the “raw materials”:

a0, b0, s0 and t0. During the course of the replication, each part type can be in one of several “conformations”

(denoted by, for example, a0, a1, a2, ...). In all, 21 symbols and 38 rules are used in the grammar. In the

above cited paper, we prove the grammar is correct by explicitly constructing the reachable set and its dynamic

structure.

5 Properties

It is intuitively clear that a grammar containing only binary rules cannot “distinguish” between a cycle of

length 2N , and two identical cycles of length N (cf. [21]). This has implications to the problem of constructing

uniquely stable components. We extend this intuition in to a much larger class of rule sets. Given a system

(G0,Φ), we bound the size of the reachable and stable sets using a basic topological tool: covering space theory.1

A clear and comprehensive introduction to these classical techniques can be found in the text by Hatcher [13,

pp. 60-68].

Definition 5.1 Given a graph G, an n-fold cover of G is a graph G̃ such that, equivalently:

1. There exists a label-preserving n-to-1 homomorphism p : V (G̃) → V (G) that preserves degree (i.e., the

image of an degree k vertex is a degree k vertex).

2. There exists a label-preserving n-to-1 continuous map p : G̃ → G (where G and G̃ are thought of as 1-d

cell complexes) which is a local homeomorphism.

1We have simplified the definitions and suppressed most of the explicit topological terminology for the sake of clarity.
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Figure 8: Two examples (above) of covers of a graph (below). The cover on the left is a 3-fold cover; that on

the right is 2-fold.

The latter definition is the standard one in covering space theory; the former is particular to graphs and

easier to verify. It is straightforward to demonstrate that these two definitions are equivalent. Examples appear

in Figure 8. Note that in the case of a trivial 1-fold cover, p is an isomorphism.

Theorem 5.1 For (G0,Φ) an acyclic rule set, C(G0,Φ) is closed under covers. In particular, C(G0,Φ) contains

infinitely many isomorphism types of graphs if it contains any graph with a cycle.

Proof: Since we use tools from covering space theory in this proof, we will consider graphs to be topological

objects: 1-d cell complexes in particular. All maps between graphs will be continuous maps, and covering

projections will be local homeomorphisms as in the second half of Definition 5.1.

Assume that H ∈ C(G0,Φ) is a component of σk for some trajectory σ = (σi, (ri, hi)). Consider any n-fold

covering projection p : H̃ → H of this component. We will reverse the trajectory σ and lift this disassembly

procedure to build a trajectory σ̃ with H̃ a component of σ̃nk.

Denote by σ̃nk the graph consisting of the disjoint union of H̃ with n disjoint copies of the complement

σk −H (see Figure 9). Define the projection pk : σ̃nk → σk via p on H̃ and via the obvious projection of the

complementary copies.

The image of the right hand side of the kth rule hk(Rk) is a subtree of σk. Since the rule set is acyclic, the

lifting criterion [13, pp. 61-62] is automatically satisfied, and it follows that the inverse image R̃k := p−1
k (Rk)

is a disjoint union of isomorphic copies of Rk.

Replace each copy of Rk in R̃k with its left hand side Lk, reversing the assembly step. There are n such

replacements to be performed; any order is acceptable.2 Denote by σ̃(k−1)n the graph obtained after all n

replacements, and denote by L̃k the disjoint union of n copies of Lk within σ̃(k−1)n. Define a new projection

map pk−1 : σ̃(k−1)n → σk−1 to be (1) pk on the complement of L̃k; and (2) the natural projection L̃k → Lk

2These n rules are commutative, see Section 6.
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Figure 10: A rule with this left hand side can de-stabilize the covers in Figure 8 even though it does not apply

to the (stable) graph being covered.

identifying the disjoint copies. This graph σ̃(k−1)n is clearly an n-fold cover of σk−1 via pk−1 since labels and

indices are preserved.

Continue this procedure inductively, lifting Ri to R̃i, replacing it in parallel with copies of Li, and then

defining the projection map pi−1 : σ̃(i−1)n → σi−1. This terminates in a covering projection p0 : σ̃0 → σ0. Since

σ0 = G0 and the lift of any discrete set is again a discrete set, we have that σ̃0 is isomorphic to G0. Thus,

σ̃ ∈ T (G0,Φ) and H ∈ C(G0,Φ).

In the case where H possesses a cycle, one has that there are infinitely many non-isomorphic covers (corre-

sponding to subgroups of the fundamental group of H: see [13, Thm. 1.38]). 2

The stable set, S(G0,Φ) ⊂ C(G0,Φ), is, however, not necessarily closed under n-fold covers. Indeed, there

may be additional rules in Φ which have “large” connected regions of H̃ in their left hand sides. If the left hand

sides are sufficiently large, then these rules can apply to covers even though H itself is inert. See Figure 10.

The following is a sample of the type of result that can be obtained using covering space theory.

Theorem 5.2 Assume that Φ is an acyclic rule set, and that the stable set contains a component H ∈ S(G0,Φ)

but not any of its covers. Then for each edge e ∈ E(H), there exists a rule in Φ whose left hand side contains

a copy of every edge of some cycle in H passing through e.

Proof: Consider the 2-fold cover of H lifted along the edge e; that is, take two copies of H, snip each copy of

e, and chain them end-to-end to form the connected graph H̃, as in Figure 8[right] using the subgraph e − f .

One checks that p : H̃ → H is indeed a covering projection.

Theorem 5.1 implies that H̃ is a component of some Gk ∈ R(G0,Φ). By hypothesis, this component is not

stable; hence there is some rule (r, h) ∈ Φ applicable to H̃. Consider the image p(h(L)) of L in H. If this image

were isomorphic to h(L), then (r, h) would be applicable to H, contradicting the fact that H is stable. But it
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follows from the lifting criterion that the only subgraphs of H that do not lift to isomorphic copies in H̃ are

those having a loop in H passing through the edge e. 2

Corollary 5.1 If Φ is an acyclic rule set all of whose left hand sides have no edges, then S(G0,Φ) is closed

under covers.

Proof: Since the left hand sides have no edges, there can be no long chains to wrap around loops in a cover. 2

These results are best interpreted as topological bounds on the maximal amount of communication required

to build a unique stable graph. Additional results and extensions to non-acyclic rules or to initial graphs different

than G0 are possible if one carefully tracks cycles.

6 Concurrency

6.1 Interleaved Versus Concurrent Trajectories

A graph grammar essentially describes a (non-deterministic) parallel algorithm or dynamical system. Two

actions can be executed in parallel if they operate on disjoint parts of whatever is the current graph: that is,

if they are physically independent of one another. In Definition 3.5, however, we give what is traditionally

called an interleaved semantics for trajectories [4] where we suppose nothing truly parallel ever happens, but

rather that any two actions that could occur in parallel are ordered in time somehow to create two different

trajectories. From the point of view of concurrency, then, two trajectories as we have defined them could really

be representatives of the same behavior.

In this section, we relate the interleaved semantics with a more faithful concurrent or partial order semantics

[25]. Concurrency allows us, for example, to reason more naturally about the number of steps required to

assemble a structure with a given graph grammar. The definition we give is similar to that found in the Petri

Net literature [26], Higher Dimensional Automata, [24] and State Complexes [1].

Definition 6.1 Let A = {a1, ..., ak} with ai = ((Li, Ri), hi) be a set of actions each applicable to a graph G.

The set A is called commutative if for all i and j

hi(Li) ∩ hj(Lj) = ∅.

If A is commutative with respect to G0 and G0
r1,h1−−−−→ ...

rk,hk−−−−→ Gk, then we write G0
A−→ Gk.

When A is commutative, we are justified in writing G
A−→ G′ since the graph G′ is independent of the order in

which the actions in A are applied. Using this notion, we form the set of concurrent trajectories of a system.

Definition 6.2 A concurrent trajectory of a system (G0,Φ) is a (finite or infinite) sequence

G0
A1−−→ G1

A2−−→ G2
A3−−→ ...

where Ai+1 is a commutative set of actions applicable to Gi for each i. If the sequence is finite, then we require

that there is no rule in Φ applicable to the terminal graph.
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One can compress an interleaved trajectory by applying several consecutive but physically independent

actions simultaneously (under the working assumption that all rules execute in unit time). Conversely, any

concurrent trajectory can be transformed into an interleaved trajectory by simply choosing some ordering of

the elements within each commutative step Ai.

We call two concurrent trajectories similar if they can be transformed into the same interleaved trajectory,

and hence model essentially the same behavior. Clearly, similarity is an equivalence relation. We argue that

within each equivalence class, there is a canonical representative which is optimal with respect to parallelizability.

6.2 Left-Greedy Concurrent Trajectories

Recall that a partial order (P,�) is a set P with an order relation � that is reflexive, antisymmetric and

transitive [9, ch. 1]. An element x ∈ P is minimal if there does not exist an element y ∈ P with y � x and

y 6= x. The set of all minimal elements of (P,�) is denoted min(P,�).

There is a natural partial order associated with any trajectory σ ∈ T (G0,Φ). Suppose that

σ0
a1−−→ σ1

a2−−→ ...
ak−−→ σk

is an interleaved trajectory where ai = ((Li, Ri), hi). Let P = {1, ..., k} and define a relation < by

i < j ⇔ i ≤ j and hi(Li) ∩ hj(Lj) 6= ∅.

The partial order relation � is then given by the reflexive and transitive closure of <. This partial order gives

rise to a canonical concurrent trajectory as follows.

Definition 6.3 Let σ ∈ T (G0,Φ) denote a trajectory with partial order (P,�). Define

A1 = {ai | i ∈ min(P,�)}
A2 = {ai | i ∈ min(P −A1,�)}

...

Aj+1 = {ai | i ∈ min(P −
j⋃

i=1

Ai,�)}

...

Then the left-greedy concurrent trajectory arising from σ is defined to be σ where σ0 = σ0 and

σ0
A1−−→ σ1

A2−−→ ...
Aj−−→ σj .

We denote the set of all left-greedy trajectories of a system by T (G0,Φ).

Note that the left-greedy concurrent trajectory obtained from a given interleaved trajectory is certainly not the

only concurrent trajectory that can be formed. However, these trajectories perform as many commutative steps

as possible as early as possible, hence the name. They are both ‘canonical’ and ‘optimal’ as we demonstrate

below.
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Lemma 6.1 An arbitrary concurrent trajectory

σ0
A1−−→ σ1

A2−−→ ...

is left-greedy if and only if for every i and every a ∈ Ai+1, the collection Ai ∪ {a} is not commutative.

Proof: This follows directly from Definition 6.3. 2

Theorem 6.1 Any finite concurrent trajectory (or prefix of an infinite trajectory) is similar to a unique left-

greedy concurrent trajectory.

Proof: We begin with existence. Let

σ0
A1−−→ σ1

A2−−→ ...
An−−→ σn

be a concurrent trajectory. If σ is not in left-greedy form, then there is some step i and some action a ∈ Ai+1

for which Ai ∪ {a} is commutative, by Lemma 6.1. Form a trajectory σ′ by shifting the action a from Ai+1 to

Ai. (If Ai+1 is now empty, then it is deleted, and the sequence is re-indexed.) Shifting an action clearly does

not change the similarity class of the trajectory. This shifting strictly decreases the quantity
∑
i i · |Ai|; thus,

repeating the process terminates in a trajectory which, by Lemma 6.1 is left-greedy.

To prove uniqueness, suppose σ has two different left-greedy forms

β = β0
A1−−→ β1

A2−−→ ... and ρ = ρ0
B1−−→ ρ1

B2−−→ ...

and suppose that Ai = Bi for i = 1, ..., k but that Ak 6= Bk. Then, without loss of generality, there is some

action a ∈ Ak − Bk. Because the two trajectories are similar and because Ak−1 = Bk−1, it must be the case

that a ∈ Bk+1. But then Bk ∪ {a} is commutative (since it is a subset of Ak), which is a contradiction. 2

Corollary 6.1 The left-greedy form of a trajectory has the minimal number of steps (commutative sets of

actions) among all trajectories in its similarity class.

Proof: The left-greedy path minimizes the quantity
∑
i i · |Ai| within its similarity class. 2

Remark: These two results together are a restatement, in the language of partial orders, of geometric results

about paths in cubical complexes [1]. The notion of similarity corresponds to homotopy of paths in a certain

cubical complex, and the left-greedy trajectories correspond normal forms for geodesics on these spaces.

This motivates the following:

Definition 6.4 For H ∈ C(G0,Φ) a reachable component, the assembly time τH(σ) of H in the trajectory

σ ∈ T (G0,Φ) is the smallest integer i such that H is a component of σi (or ∞ if there is no such integer). The

best case assembly time of H is the minimum of the set

{τH(σ) | σ ∈ T (G0,Φ)}.

The worst case assembly time of H is the maximum of the set

{τH(σ) | σ ∈ T (G0,Φ) and H occurs in σ}.
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Figure 11: (a) The partial order associated with the trajectory in Figure 4. The sets of commutative actions

A1 through A3 as in Definition 6.2. (b) The left-greedy concurrent trajectory associated with the trajectory in

Figure 4.

Note that a given reachable component H may not occur in every trajectory. If this is the case, we could

have declared its worst case assembly time to be∞. However, in the above definition, we only consider the worst

case among those trajectories that assemble H, and so perhaps we should use the term “worst case realizable

assembly time.” We believe this is a more useful and informative number for characterizing the assembly time

of a component with respect to a given grammar.

6.3 Chains and Cycles Revisited

To illustrate the notions of concurrency and assembly time, we revisit the example system that assembles paths

and cycles, described in Section 4.1. In Figure 4, the actions in a trajectory of this system are numbered

1, 2, ..., 8.

The partial order associated with the trajectory in Figure 4 is shown (as a Hasse Diagram) in Figure 11(a).

The commutative sets A1, A2 and A3 from Definition 6.2 are also shown. The associated concurrent trajectory

is shown in Figure 11(b). If this trajectory is called σ, then from the figure it can be seen that, for example,

the assembly time τP3
(σ) of P3 is 2. Also, the assembly time τC6

(σ) of C6 is 3.

In general, the best case assembly time for Pk (with k > 2) is 2 steps since we could use rule r1 in parallel

to make k/2 copies of P2 and then use rule r3 in parallel to join these copies of P2 into a copy of Pk. The best

case assembly time for Ck is similarly 2 steps or 3 steps depending on whether k is even or odd, respectively.

If we consider only those trajectories in which Pk occurs, then we see that the worst case assembly time is

k: Rule r1 is used to make P2 and then r2 is used repeatedly. Similarly, the worst case assembly time for Ck,

in those trajectories in which it occurs, is also k steps.

Proposition 6.1 In the system (G0,Φ1), the best case assembly time for Pk is 2, the best case assembly time

for Ck is 2 if k is even and 3 if k is odd. The worst case assembly time for both Pk and Ck is k.

20



Algorithm 1 MakeTree(V,E)

Require: T = (V,E) is an unlabeled tree

1: if V = {x} then

2: return (∅, {(x, a)})
3: else

4: choose xy ∈ E
5: let (V1, E1) be the component of (V,E − xy) containing x

6: let (V2, E2) be the component of (V,E − xy) containing y

7: let (Φi, li) = MakeTree(Vi, Ei) for i = 1, 2

8: let u, v be new labels

9: let Φ = Φ1 ∪ Φ2 ∪ { l1(x) l2(y) ⇒ u− v }
10: let l = ( l1 − {(x, l1(x))} ) ∪ ( l2 − {(y, l2(y))} ) ∪ {(x, u), (y, v)}
11: return (Φ, l)

12: end if

7 Synthesis Algorithms

In this section we consider the self assembly problem: Given a graph G, find a rule set Φ such that S(G0,Φ) =

{G′} and G′ ' G., where G0 is defined by equation (1). We first describe an algorithm that constructs a rule

set to assemble a given tree (i.e. an acyclic graph) and then use it to build an algorithm that constructs a rule

set to assemble an arbitrary graph.

7.1 Trees

We define in Algorithm 1 a recursive procedure MakeTree that, given any tree T , produces a set of binary

rules ΦT so that S(G0,ΦT ) = {T} (up to isomorphism and not including labels). The procedure takes as an

argument an unlabeled tree (V,E) and returns a pair (Φ, l) where Φ is a rule set and l is a labeling function on

V . For convenience, the function l is here denoted by subset of V × Σ.

The base case of the procedure (lines 1-2) labels the singleton graph with the label a. For the recursive step,

an edge (x, y) is chosen and MakeTree is called recursively on the two components that result from removing

(x, y) from E. The recursive calls return rule sets Φ1 and Φ2 and labeling functions l1 and l2. The rule set Φ for

(V,E) is constructed from these in line 9 and the labeling function l is constructed in line 10. The construction

uses two new labels u and v that we suppose have not been used before by any recursive call to MakeTree.

Theorem 7.1 Let (Φ, l) = MakeTree(V,E) where (V,E) is an unlabeled tree. Then S(G0,Φ) = {T}.

Proof: By general induction on the size of T . 2

Notice that the MakeTree procedure defines an acyclic assembly graph as shown, for example, in Figure 12.

The structure of this graph essentially defines the partial order associated with any trajectory of the resulting

system (G0,Φ). In some cases, the assembly graph is balanced and the concurrent assembly time of (V,E),

using Φ, is O(log |V |). However, in other cases the assembly graph cannot be balanced (as with, for example, a
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Figure 12: An example assembly graph produced by the MakeTree procedure.

star graph consisting of a root vertex connected directly to all other vertices). In this case, the assembly time

of (V,E) is O(n) since none of the rules produced by MakeTree commute. In either case, we may state:

Theorem 7.2 Let (Φ, l) = MakeTree(V,E) where (V,E) is an unlabeled tree. The best and worst case assembly

times of T in the system S(G0,Φ) are both O(|V |).

Of course, the best and worst case assembly times may be considerably better, depending on the structure

of the input graph. For example, MakeTree will produce a rule set that assembles the chain Cn in O(log n)

steps as long as the edge chosen in step 4 partitions the tree into approximately equal parts.

Note that the procedure MakeTree(V,E) produces exactly |V | − 1 rules and uses 2|V | − 2 labels.

7.2 Arbitrary Graphs

Given a graph G, Algorithm 2 defines a function MakeGraph that produces a rule set ΦG such that S(ΦG) = {G}
using rules that are at most ternary in size. A priori, this would appear to be difficult, given the constraints

of Theorem 5.2. The ingredient that makes this low-communication synthesis possible involves building a

temporary “scaffold” to close each cycle.

The procedure begins in lines 1-2 by finding a maximal spanning tree T = (V,ET ) for (V,E) and constructing

a rule set Φ for this tree using MakeTree. We choose r (for root) to be a vertex on the first edge chosen in

the call to MakeTree. In a trajectory, when r is eventually labeled by l(r), we can be certain that the tree is

assembled and that we may begin to close the cycles.

The loop in lines 6-13 adds rules to Φ that, in effect, triangulate the spanning tree until the resulting

graph contains a subgraph isomorphic to G. At each step, ES denotes the edges that have been used in this

triangulation.

The triangulation procedure, defined by Triangulate and called in lines 7-8 of MakeGraph, is as follows. For

each chord uv ∈ E − ET we find a shortest path in (V,ES) from r to u, and form ternary rules that add edges

from r to each successive vertex along this path. We then update ES to include these edges, and then repeat

the procedure for a minimal path from r to v. Then in lines 9-10 of MakeGraph we add an edge from u to v,
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Algorithm 2 MakeGraph(V,E)

Require: G = (V,E) is an unlabeled connected graph

1: let T = (V,ET ) be a maximal spanning tree of (V,E)

2: let (Φ, l) = MakeTree(V,ET )

3: let r be a vertex on the first edge chose by MakeTree

4: let x = l(r)

5: let ES = ET

6: for all uv ∈ E − ET do

7: let (Ψi, ES , x) = Triangulate((V,ES , l), r, u, x)

8: let (Ψi, ES , x) = Triangulate((V,ES , l), r, v, x)

9: let y be a new label

10: let Φ = Φ ∪Ψ1 ∪Ψ2 ∪





a

l(v)l(u)


 JJ ⇒

b

l(v)l(u)


 JJ





11: let ES = ES ∪ {uv}
12: let x = y

13: end for

14: for all v ∈ V do

15: if rv ∈ ES − E then

16: let Φ = Φ ∪ { x− l(v) ⇒ x l(v) }
17: end if

18: end for

19: return Φ

which can be done with a ternary rule since r will be connected via the scaffolding to both u and v. Note that

if the distance from r to v in Triangulate less than 3, the loop on line 5 will not execute so that no rules are

added.

After each new rule is added, we change the label on the root node, ensuring that the rules can only be

applied in the order given. The triangulation for one chord cannot begin until the triangulation for the previous

one is complete (i.e. none of the triangulation rules commute). After the loop on lines 6-14 has finished, the

resulting rule set will have a single graph in its stable set, and this graph will contain a subgraph isomorphic

G. The rules added by the loop on lines 14-18 serve to remove the excess edges between the root node r and

the other vertices. The left side of each of these rules contains a label that only appears on the root node after

the entire triangulation process is complete. In effect, the label on the root node tracks the progress towards

completion of the triangulation. After all the rules given in lines 14-18 have been applied, the resulting graph

will be isomorphic to G. As shown above, this graph will be the only element of the stable set for Φ. An

example trajectory illustrating this procedure is shown in Figure 13.

This discussion constitutes the following:

Theorem 7.3 Let (Φ, l) = MakeGraph(V,E) where G = (V,E) is an unlabeled graph. Then S(Φ) = {G}.

23



Algorithm 3 Triangulate(G, r, v, x)

Require: G is a labeled graph, r, v ∈ VG and x is a label

1: let Ψ = ∅
2: let w = x

3: let E = EG

4: let (v1, . . . , vn) be a shortest path in G from r to v

5: for i = 2 to n− 1 do

6: let z be a new label

7: let Ψ = Ψ ∪





l(vi)

l(vi+1)a


 JJ ⇒

l(vi)

l(vi+1)b


 JJ





8: let E = E ∪ {rvi+1}
9: let w = z

10: end for

11: return (Ψ, E′, w)
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Figure 13: A partial trajectory arising from the MakeGraph rules for a particular graph. Once the spanning

tree is formed (first graph), the root vertex (labeled d initially) is used to form a scaffolding. First the path from

the root to the vertex v (labeled by h in this example) is triangulated (productions labeled r1). Then the path

from the root to the vertex u (labeled by k in this example) is triangulated (productions labeled r2). The loop

is then closed (in the production labeled r3) and finally the scaffolding edges are removed (in the production

labeled r4, which consists of six actions).

The MakeGraph rules produces an essentially a serial process, once the spanning tree has been assembled. If

there are |E| edges in the input graph, then rules for adding c , |E|−n+ 1 of them will created by MakeGraph

(the rest are created by the MakeTree rules). The end-vertices of each chord are, in the worst case, a distance

O(|V |) apart in the graph (V,ES) in lines 7-8 of MakeGraph. Thus, O(c|V |) rules will be added for each

chord. Since these rules do not commute, the assembly times of the rules Φ produced by MakeGraph are easily

characterized:
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Theorem 7.4 Let Φ = MakeGraph(V,E) where (V,E) is an unlabeled connected graph with |E| = c+ |V | − 1.

The best and worst case assembly times of (V,E) in the system S(G0,Φ) are both O(c|V |).

The algorithm of course does not give an optimal rule set for any given graph. However, it does demonstrate

the triangulation approach to closing cycles, some variation of which will be needed by any rule set that assembles

a single stable cyclic graph.

8 Communication

In the above sections, we assumed that the robots (or parts) do not have unique identifiers or any other

qualities that distinguish them from other robots or parts with the same labels and local network topologies.

This assumption along with the fact that we usually suppose that all vertices in our initial graphs have the same

label is the main reason that binary rules do not suffice for many problems. However, if we suppose that each

robot has a unique identifier (e.g. an IP address), then we can get away with smaller rules. In this section we

explore first how a simple communication protocol between robots can implement binary rules and then how

adding unique identifiers allows us to simulate larger rules (in our example ternary rules) with a set of binary

rules. The result is a higher level communication protocol for implementing ternary rules.

8.1 Communication Protocols for Binary Rules

It is a simple matter to implement a binary rule set with a communications protocol that does not use unique

identifiers. To see this, suppose that each robot can (1) store its label; (2) attach to or detach from other robots;

(3) communicate with nearby robots. The main assumption we make is that robots can distinguish which other

robots they are talking to using some scheme. like: “send a message to the robot on my right” or “receive a

message from the robot connected to port 7”.

To implement a binary grammar Φ, a robot i first chooses a nearby robot j with whom to communicate and

sends it a message containing l(i). If i and j are attached, then robot j checks to see if the left hand side of

some rule in Φ matches l(i) − l(j), otherwise it checks to see if the left hand side of some rule in Φ matches

l(i) l(j). If robot j finds a match, it updates its label according to the rule and sends a message to i to the

effect that it should change its label according to the rule. Furthermore, if the right hand side of the rule has

an edge, robot j also communicates to i that they should attach to each other (or stay attached), otherwise

they should detach (or not attach in the first place). Finally, if robot j does not find a rule that matches, it

does not change its label and sends i a message that it should not do anything. Notice that at no time do the

robots communicate the indices i and j, which are simply used above to explain the protocol.

We have implemented this communication protocol using the Computation and Control Language (CCL)

[17] in a large scale simulation of the system described in Section 9.2. It is easily adapted to the situation where

messages may be lost, as may be the case with the hardware platform we are building. We plan to report on

this effort in more detail in a future paper.
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8.2 Binary Rules for Ternary Rules

Using an infinite set of symbols and an infinite set of rules, we can, for example, implement ternary rules with

a set of binary rules. We do this by constructing binary rules that essentially implement a multi-hop version of

the original ternary rule. Note that Corollary 5.1 tells use that we cannot do this with a simple graph grammar

containing a finite set of rules.

We, therefore, from the original alphabet Σ, we introduce a new, infinite set of labels of the form x : i : S

where x ∈ Σ, i ∈ N and S ⊂ N. The symbol x denotes the original label from Σ and the number i denotes the

unique identifier of the part. The set S consists of a set of other identifiers that have committed to executing

a given ternary rule3. For example, suppose we wish to implement, with binary (and unary) rules, the ternary

rule r defined by

a

bc


 JJ ⇒

a′

b′c′


 JJ

. (2)

We can do so with the following rules:

Φr =





b :k :∅− a :j :∅ ⇒ b :k :j − a :j :k (S1)

c : i :∅− a :j :∅ ⇒ c : i :j − a :j : i (S2)

b :k :∅− a :j : i ⇒ b :k :j − a :j : ik (S3)

c : i :∅− a :j :k ⇒ c : i :j − a :j : ik (S4)

c : i :j b :k :j ⇒ c : i :jk − b :k : ij (S5)

a :j : ik ⇒ a′ :j :∅ (S6)

b :k : ij ⇒ b′ :k :∅ (S7)

c : i :jk ⇒ c′ : i :∅ (S8)

We have, in fact, specified an infinite set of rules: Eight for each triple (i, j, k) ∈ N3, with i, j, k distinct.

The set S in the new labels denotes the state of a protocol for executing r. For example, the symbol b :k :∅
is the state of a robot k labeled by b that has not started to execute r. The symbol b : k : j is the state of a

robot k that has initiated execution of r by communicating with a robot j labeled by a. The symbol b : k : ij

denotes a robot that has proceeded through the execution of r by communicating with robots i and j labeled

by a and c respectively. Notice that in the rule (S5), where the edge between c and b is actually added, we

require that c and b are connected to the same robot j labeled with a. This restriction is possible since the parts

have unique identifiers. Without these identifiers, it could be that the robots labeled b and c are connected to

different robots labeled a. It follows that for any G

R(G,Φr) = R(G, {r}) and S(G,Φr) = S(G, {r}).

This does not contradict Theorem 5.1 since, by assigning unique identifiers to robots, we violate the hypotheses

of having an infinite supply of identically labeled vertices as the start graph G0. In fact, the in the initial graph

for the new system, we would suppose that each robot i is initially labeled by a : i :∅.

There are two possible concurrent trajectories that can arise from the rules in Φ applied to the appropriate

initial graph (one matching the left hand side of the original ternary rule). Either rule (S1) can be applied first

3We use the notation ijk (or jki, etc) to represent the set {i, j, k}.
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Figure 14: The partial orders associated with the two possible trajectories from Φr.

or rule (S2) can be applied first. The resulting concurrent trajectories, shown in Figure 14 both have length

four. Thus, we can conclude that it is possible to implement a ternary rule in four concurrent binary steps.

This (the number four) is in a sense the cost of a ternary rule in terms of the basic currency of binary rules.

9 Physical Models of Assembly

We describe briefly several physical robotic systems that can implement graph grammars to self-organize. Each

of the following sub-sections is only an overview meant to convince the reader that graph grammars can be

easily employed in a variety of robotic systems. A complete description of the systems is beyond the scope of

this paper, however. In the future, we plan to report on these efforts in great detail.

9.1 Self-Motive Robots

In previous work [15] we showed how to use graph grammars as a basis for multi-robot formation forming

(without explicit grammatical structures). To each robot i we associate two sets: The set Ai of robots j such

that either i is “attached” to j or the graph l(i) l(j) matches a rule in Φ, and the set Ri of the robots where

no rule matches. We then define an artificial potential function Ui of the form

Ui =
∑

j∈Ai
Uattract (xi, xj) +

∑

j∈Ri
Urepel (xi, xj)

where xk is the position of robot k. The function Uattract is defined so that −∇xiU(xi, xj) has the set ||xi−xj || =
R as an attractor. The function Urepel is defined so that −∇xiU(xi, xj) has the set ||xi − xj || = 0 as a repellor.

Here R is the desired distance between “attached” robots. Each robot i simply follows the negative gradient

of Ui to move toward robots in Ai and away from robots in Ri. When two attracting robots come in close

proximity, they execute the appropriate rule and change their states. This has the effect of changing Ak and

Rk, and therefore Uk, for each k.

If the number of robots is finite, then deadlock can occur in the above system due to groups forming

incompatible subassemblies. We thus add the rule

(V,E, l)⇒ (V,∅, λx.a)
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(a) (b)

Figure 15: (a) Snapshots of a simulation of Equation 3 with disk-shaped parts and a complete communications

protocol implementing the paths and cycles rule set from Example 4.1. The location of the part and its label

(a, b or c) is suggested by the gray level used. The force due to stirring is modeled as the sum of five divergent

force fields focused in different locations on the plane (which may result from jets perpendicular to the plane of

the figures). The magnitudes of the components of the field oscillate out of phase. The parts start out evenly

distributed and eventually form chains and cycles. (b) A snapshot of a system that builds trusses. The rule set

that produces these structures and several other examples are described elsewhere [18].

for each (V,E, l) ∈ C(G0,Φ) − S(G0,Φ). With low probability, robots randomly choose to disassociate using

this rule. Note that this rule may be large. A simple consensus algorithm can be implemented by the robots in

each component to decide whether to execute the rule.

9.2 Stirred Robotic Parts

We now introduce a model of “robotic” assembly that requires less capable robots, in that they do not need

to be able to move themselves. Instead we suppose that large number of robotic parts float in a stirred fluid.

Upon colliding (by chance), two parts will latch onto each other or not based on whether their current labels

match the left hand side of a rule in Φ (See Figure 1). If they do latch together, then they change their labels

according to the rule. A similar scheme works for mixed or destructive rules (see Section 8).

To model this system, we suppose that each part i with position xi has a latch variable Li,j ∈ {0, 1}
associated with every other robot j. When the parts come in close proximity, they communicate their current

labels to each other in an attempt to find an applicable rule. If one is found, they both set their latch variable

for the other to 1 and change their labels. Otherwise the latch variable is set to 0 and the parts bounce off each

other. The dynamics of robot i are

mẍ = F1(xi, t)− cẋi +
∑

j 6=i
Li,jLj,iF2(xi, xj) (3)

where F1 is a time varying force field that models the effect of the fluid on the part and

F2(xi, xj) , −∇xiU(xi, xj)− b
ẋi(xj − xi)
||xj − xi||

(xj − xi)
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is a damped nonlinear spring, with spring potential U , modeling the latching mechanism. We suppose that U

has a minimum at ||xi−xj || = R as before. In other work [16] we describe, for example, how such a mechanism

would work using capillary forces.

We have explored the behavior of the above model in simulation using the rule systems we explored in this

paper. Figure 15(a) shows snapshots of a system of parts using the rules in Example 4.1 and Figure 15(b) shows

a snapshot of a system using a more complex rule set.

We are currently constructing a physical instantiation of this model with triangular “programmable parts”,

as described in the introduction to this paper (see Figures 2 and 3 and also so Example 4.3). Each part employs

a graph grammar rule set in essentially the above fashion using a simple microcontroller mounted on its back

and simple magnetic latches for attaching and detaching. The parts float on an air-table and are stirred by

overhead controllable blowers. The main differences between the platform we are building and the above model

are (1) that when two parts collide, they stick to each other by default and (2) that the parts a polygonal instead

of being point-masses. Once parts are attached, they can easily communicate (via IR transceivers in our case)

and implement any applicable rules, or detach if there are not any applicable rules. This obviates the need for

the robots to sense their local surroundings. We will report on this effort in an upcoming paper.

10 Discussion

We have defined a class of graph grammars that describe self organizing robotic systems. We focused on the

properties of the reachable and stable graphs that rule sets produce. We noted in Section 5 that acyclic rule

sets (those without cycles in their right hand sides) cannot produce a unique stable cyclic graph and are thus

less powerful than more general, cyclic rule sets. We then presented two algorithms to synthesize rule sets for

arbitrary trees and graphs as unique stable outputs. Topological results inform these algorithms: cyclic rules are

used for the general case. Using the notions of concurrency described in Section 6, we determined the number of

time-steps required to assemble the desired graph using these synthesized rule sets. In Section 8 we introduced

infinite rule sets that can, with binary rules, implement ternary cyclic rules. To work around Corollary 5.1, we

added a unique identifier to each node, in a similar fashion to symmetry-breaking methods found in distributed

algorithms [22]. Finally, we discussed how graph grammar rules can be used as a basis for robot assembly by

describing two physical models appropriate to the task.

The methods we propose show that algorithms for collective tasks, here distributed self-assembly of a pre-

specified structure, can be engineered. The model is one of controlling the local interactions of a system so

that global properties result. We believe that similar methods will be applicable to other systems and may

potentially provide a predictive model for distributed tasks observed in nature.

There are many natural problems in our model to be explored more completely in the future:

Assembly Complexity For any given graph G, which grammar Φ(G) assembles G as a unique stable com-

ponent in the fewest number of concurrent steps in the worst case? A constructive description of Φ would be

vastly preferable to the algorithm of Section 7.
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Rule Set Optimization Given a collection of graphs S, find the ‘smallest’ rule set Φ such that S(G0,Φ) = S.

Smallness can be measured in terms of number of rules, sizes of rules, and/or numbers of labels required.

Other Synthesis Problems The specification in the synthesis problem is probably better described using

a temporal logic formula F on trajectories of graphs. The formula F could describe the assembly problem we

have posed here, or it could describe, for example, the ratchet in Example 4.4. The synthesis procedure, given

F and an initial graph G0 is then to find Φ so that (G0,Φ) |= F (i.e. so that every trajectory σ ∈ T (G0,Φ)

has the property F ). A related problem is the control problem: Given F and (G0,Φ), find additional rules Υ

so that (G0,Φ ∪Υ) |= F . That is, determine rules Υ that regulate the behavior of the original rules Φ so that

they meet some desirable performance criterion F .

Stochastic Models The model we have described here is suitable for situations wherein interactions between

parts have deterministic outcomes. This assumption is not valid in many situations of interest, for example,

where the “robotic parts” are in fact single molecules. Thus, the rules in Φ need to be annotated with rates or

probabilities. The result is the study of stochastic processes arising from a given grammar instead of trajectories.

Geometry Although it is easy in some cases to embed a grammar onto a physical, geometrical robot, our

model is not geometrical. However, geometry is crucial in most self-assembly processes from meso-scale tile

assembly to the formation of supra-molecular aggregates. Also, even if it may somehow be possible to encode

a finite set of labels in the conformation of a part, the infinite set of identification symbols we propose to

recover binary rules is untenable. However, a set of appropriately shaped parts (using a graph grammar or

not) can easily form a uniquely stable, cyclic graph. We believe the interplay between symbolic descriptions of

self-assembly and geometric descriptions is worth considerable study.

Physical Instantiations Finally, a main focus of our future research will be to design devices capable of

executing the graph grammars, although there are at present many existing platforms (multi-robot swarms and

multi-vehicle systems for example) that could easily use graph grammars for formation forming and other tasks.

The use of a graph grammar in these situations would be coupled with control of motion, perhaps as suggested

in Section 9. In our own labs, we have already begun to design approximately 10cm robot “programmable

parts” with magnetic latches, MEMs scale parts that bind using capillary forces, and we are also exploring ways

to implement grammatical systems on the molecular scale.
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