
Locally Interacting Hybrid Systems with Embedded Graph Grammars

John-Michael McNew Eric Klavins

Department of Electrical Engineering
University of Washington

Seattle, WA 98195
{jmmcnew,klavins}@ee.washington.edu

Abstract— In many cooperative control methods, the network
topology in¤uences the evolution of its continuous states. In
turn, the continuous state may in¤uence the network topology
due to local restrictions on connectivity. In this paper we
present a grammatical approach to modeling and controlling
the switching of a system’s network topology, continuous con-
trollers, and discrete modes. The approach is based on embedded
graph grammars, which restrict interactions to small subgraphs
and include spatial restrictions on connectivity and progress.
This allows us to direct the behavior of large decentralized
systems of robots. The grammatical approach also allows us to
compose multiple subsystems into a larger whole in a principled
manner. In this paper, we illustrate the approach by proving
the correctness of a cooperative control system called the load
balanced multiple rendezvous problem.

I. INTRODUCTION

Large scale networked systems such as automated highway
systems, air-traf£c control systems, and cooperative robotic
systems present unique modeling and control challenges.
Sensory, communication, or computational limitations often
require that a desired global behavior is produced using only
local control of each robot, node, or subsystem. Further-
more, these subsystems often exhibit complex interactions
between their continuous modes, network topology, and
logical modes.

In this paper, we introduce the notion of an embedded
graph grammar which extends the graph grammar model
[1] from a purely topological construct to one that includes
geometry, continuous dynamics and local conditions on the
evolution of those dynamics. We present this model through
an example that also highlights a hierarchical and systems-
oriented approach to using graph and embedded graph
grammars. Methods such as the composition of grammars,
structured labeling and lexicographic ordering of Lyapunov
functions on grammars allow us to design grammars in a
principled manner.

After brie¤y discussing related work, we present a moti-
vating example called the load balanced multiple rendezvous
problem. Section IV de£nes embedded graph grammars and
discusses our use of temporal logic on graph transition
systems. Sections V through VII present grammars and
controllers designed to address each of the subtasks in the
example. In Section VIII, we compose these elements to
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create an embedded graph grammar and prove it meets the
desired speci£cation.

II. RELATED WORK

Researchers are currently uncovering rich connections
between graphs, information ¤ow, and formation control
[2],[3],[4]. Local restrictions on communication may induce
arbitrary switching in the network. In light of this, Ji and
Egerstedt [5] design graph-based controllers that maintain
connectivity as robots rendezvous. Jadbabaie et al. [6] ap-
proach the issue differently, constructing controllers that are
stable under arbitrary switching sequences.

Klavins [7] examines the notion of explicitly controlling
the graph structure by describing the self-organization of
robot formations as a graph process. Klavins, Ghrist, and
Lipsky[1] introduce graph grammars to assemble any pre-
speci£ed graph from an initially disconnected graph. By
restricting rewrites to small subgraphs, graph grammars
provide a useful method to program the concurrent behavior
of large decentralized systems of robots [8], [9]. Olfati-Saber
[10] investigates controlled switching in robot formation
using a global hybrid automata.

However the interplay between all these elements (infor-
mation ¤ow, hybrid switching, local restrictions on sensing,
and continuous dynamics) in cooperative control remains
largely uncharted territory. Our goal is to introduce embedded
graph grammars as a single graph-centric model containing
all these elements.

III. MOTIVATING EXAMPLE

Consider a group of networked robots with range lim-
ited communication executing formation control on Mars
in search of ice. Simultaneously, a number of robots sense
ice. We call these robots bases. A reasonable goal would
be to route other robots (commuters) in essentially equal
numbers to the base locations while maintaining connectivity
in the overall system. The problem is complex, containing
elements of well known formation control problems such
as multiple-leader rendezvous, connectivity maintenance, and
load balancing.

As shown in Figure 1, our solution to the problem is
to compose three distributed algorithms that, when run in
parallel, result in the desired global behavior. These are:
Distributed Cycle Removal (DCR), which removes cycles
from the graph; Load Balancing (LB), which distributes
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Fig. 1. Subtasks in the load balanced multiple rendezvous problem. a) An initial state. (b) Cycle removal. (c) Load Balancing. (d) A £nal state.

commuters equally among the bases; and Connectivity Main-
tenance and Rendezvous (CMR), which maintains con-
nectivity while allowing commuter robots to rendezvous
at the appropriate base. The solution combines controlled
switching of a locally restricted network and continuous
spatial dynamics. Labeled graphs and their realizations in
continuous space are a natural model for such systems.
So in Section IV we develop the formal de£nitions of
embedded graph grammars and in Section IV-E we return
to this example and formally specify the Load Balanced
Multiple Rendezvous Problem(LBMR). We then propose a
embedded graph grammar to solve the problem and prove
its correctness through composition.

IV. EMBEDDED GRAPH GRAMMAR DEFINITIONS

A. Graphs and other Notation

For clarity, we introduce some notation. If Σ is a set of
labels, a labeled graph is the quadruple (V,E, l, e) where V
is a set of vertices, E is a set of edges, l is the vertex labeling
function that maps vertices into Σ, and e is the edge labeling
function that maps edges into Σ. We denote by G the space of
labeled graphs and by Ḡ the space of unlabeled graphs. Often
the label set Σ is a cartesian product of atomic label spaces
we refer to as £elds. We often name £elds. For example the
system introduced in Section IV-E has a node label space
given by Σ = {base, unknown} × N × N × N where the
£elds are named (mode, owner, dist, degree). We use dot
notation to indicate the values of label £elds for speci£c
robots. For instance i.owner = 10 indicates that robot i has
the value 10 in its owner £eld.

If S is a set of vertices, G[S] denotes the subgraph of
G induced by S. For any graph G the neighborhood of a
vertex i ∈ VG is denoted NG(i) and the closed neighborhood
is denoted NG[i] = NG(i) ∪ i. When G is a digraph, we
denote the out- neighborhood by N+

G (i). We denote the ¤oor
function by �x�.

De£nition 4.1: A function f is well de£ned with respect
to an equivalence relation ∼ if x ∼ y implies f(x) = f(y).

B. Embedded Graph Transition Systems

Consider a system of N communicating robots, each with
an identical state space X .

De£nition 4.2: An embedded graph γ is a pair γ = (G,x)
where G is a labeled graph and x : V → X is a realization
function. The space of all embedded graphs is denoted Γ.

Embedded graphs model the network topology, discrete
and continuous states of an interconnected collection of
robots, vehicles or particles in the following manner. A

vertex i ∈ V indicates the index of the ith robot. The
presence of an edge ij ∈ E corresponds to a physical and/or
maintained communication link between robots i and j. The
vertex label l(i) keeps track of local information and also
indicates the operational mode of robot i. The edge label,
e(ij), contains information maintained by two connected
robots. The realization function x assigns to each robot a
continuous state or realization in the state space X .

We write Gγ , xγ , Vγ , and Eγ to denote the labeled graph,
continuous state, vertices, and edges associated with an
embedded graph γ. If S ⊆ Vγ , then the embedded graph
induced by S, γ[S], is given by the pair (G[S], x|S ).

An embedded graph transition system is a triple (γ0,A, u)
where γ0 is an embedded graph describing the initial state,
A ⊆ Γ × Γ is the embedded graph transition relation and
u : V ×Γ → TX is the vector £eld describing the continuous
¤ow. In the systems we consider (γ1, γ2) ∈ A implies xγ1 =
xγ2 , thus an embedded graph transition system describes a
hybrid system where the discrete (or jump) states are labeled
graphs and the continuous states are realization functions.

De£nition 4.3: A trajectory is a map σ : R
≥0 → Γ such

that there exists a sequence τ0, τ1, τ2, ... where
1) xσ(t) is continuous.
2) τk ≤ τk+1 and if the sequence has any £nite length

N , τN � ∞.
3) For all t, t′ ∈ [τk, τk+1), Gσ(t) = Gσ(t′).
4) τi 
= ∞ and i > 0 if and only if there exists a

transition((G,x∗), (H,x∗)) ∈ A such that (G,x∗) =
limt→τi

σ(t) and σ(τi) = (H,x∗).
5) For all i ∈ V and t ∈ [τi, τi + 1), d

dtxσ(t)(i) =
u(i, σ(t)).

We denote the set of nondeterministic trajectories of a
system by T (γ0,A, u). When the dependence on σ is clear
we will often write γ(t) to mean σ(t), x(t) instead of
xσ(t), and Gk instead of Gσ(τk). Embedded graph transition
systems allow the control of the evolution of the geometry,
network connectivity and logic variables of a system. How-
ever, their direct implementation is undesirable because the
global graph matching problem is computationally intense
(especially from a distributed point of view), the model lacks
local restrictions on sensing and communication, and the
transition relation is not permutation invariant.

C. Locality and Embedded Graph Grammars

By explicitly including notions of locality in our model,
we can address the issues above by ensuring

1) Graph matching involves only a small subset of ver-
tices,
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2) The ¤ow and transition relations use only the in-
formation available to robots via local sensing and
communication, and

3) The ¤ow and transition relation are permutation invari-
ant.

The £rst choice facing a system designer who will use
embedded graph grammars is the construction of a prox-
imity function, ψ, describing local restrictions on sensing
and communication. A proximity function takes embedded
graphs as inputs and returns a digraph ψ(γ) where an edge
ij is in Eψ(γ) if robot i can sense and (if it chooses)
communicate with j. A proximity graph is shown in Figure 2.
We call the out neighborhood of i, N+

ψ(γ)(i) the proximity

neighborhood. We call the set of vertices Fγ(i) � {j ∈
Vγ | j ∈ NGγ

(i) ∩ N+
ψ(γ)(i)} the friends of i. In keeping

with existing graph literature we write F [i] to mean F (i)∪i.
We say an embedded graph γ is edge-consistent when every
edge ij in Eγ is also in Eψ(γ). We denote by D the set
of all edge-consistent embedded graphs. And denote by
DG0 = {γ ∈ D | Gγ = G} the subset of edge-consistent
graphs with the topology of G.

(b)(a)

⇀

Fig. 2. Proximity Graphs. (a) Robots with range limited communication.
(b) The resulting proximity graph is the disk graph.

De£nition 4.4: Consider the pairs (A, γ) and (B, ρ) where
γ and ρ are embedded graphs and A ⊆ Vγ and B ⊆ Vρ.
We de£ne the point of view equivalence relation [11] ∼ by
(A, γ) ∼ (B, ρ) if there exists a bijective map h between the
proximity neighborhoods

⋃
i∈A Nψ(γ)[i] and

⋃
j∈B Nψ(ρ)[j]

such that
1) For all i ∈ A, h(i) ∈ B,
2) For all k ∈

⋃
i∈A Nψ(γ)[i], xγ(k) = xρ(h(k)), and

3) For all i ∈ A, h is a label preserving isomorphism
between Gγ [F [i]] and Gρ[F [j]].

We say a controller u : V × Γ → X is locally imple-
mentable if it is well de£ned with respect to the point
of view equivalence relation ∼. As shown in Figure 3
when the vertex set contains only one element, A = {i},
the information available to compute the control u(i, γ) is
restricted to the embedded graph induced by the friends of
i, γ[F [i]] (obtained via communication) and the continuous
states (obtained via sensing) of the proximity neighbors of
i.

The formation of new links and the updating of the
robots labels is executed on a local scale by the use of
guarded rules. A guard g is a function g : P(V ) × Γ →
{true, false}. A guard g is locally checkable if it is well
de£ned with respect to point of view equivalence relation,

1, a

2, b

3, b

4, c

5, c

(a)

a

b

c

∗

(b)

Fig. 3. Friends and Neighbors from the point of view of vertex 1.
(a) An embedded graph, γ. Solid lines indicate edges in the embedded
graph and dashed lines indicate proximity edges. The numbers are vertices
and the letters are vertex labels. (b) Locally implementable information
available to vertex 1. Vertex information is not available due to permutation
invariance. Vertices with proximity edges and embedded graph edges from
1 are in the friends of 1, F (1). Vertex 1 can access label, edge, and state
information in F (1). The vertex marked with an asterisk is in the proximity
neighborhood, Nψ(γ)(1), thus only its continuous state is accessible. Note
that the embedded graph is not edge-consistent because although at some
time vertex 3 established an edge with 1, currently 3 lies outside the
communication range of 1.

∼ and g(A, γ) = true implies ψ(γ[A]) is connected. A
guarded rule, r = (g, L,R), is a pair of labeled graphs
over some small vertex set VL = VR and a locally checkable
guard function g. Given a rule, a witness is a label preserving
subgraph isomorphism mapping VL into Gγ . If a witness is
found and if g(h(VL)) = true, the rule is applicable via an
action (r, h). Formally, the application of an action (r, h) on
an embedded graph γ = (G,x) produces a new embedded
graph γ′ = ((V,E′, l′, e′), x) de£ned by

E′ = (E − {h(i)h(j)|ij ∈ EL}) ∪
{h(i)h(j) | ij ∈ ER}

l′(i) =
{

l(i) if i 
∈ h(VL)
lR ◦ h−1(i) otherwise.

e′(ij) =
{

e(ij) if i /∈ h(VL) or j /∈ h(VL)
eR ◦ h−1(i)h−1(j) otherwise.

That is, we replace h(L) (which is a copy of L) with h(R)
in the graph Gγ . We write γ

r,h−−→ γ′ to denote that we obtain
G′

γ′ from Gγ by applying action (r, h).
Consider the rule (gr, L,R), given by

gr :

1, c

3, b2, b
�� �� ⇀

1, d

3, d2, d
�� �� (1)

where the guard function g(A, γ) is true if the set of vertices
A checking the rule only have neighbors in A, that is
∪i∈ANψ(γ)(i) = A. Figure 4 demonstrates the application
of this rule to an embedded graph.

We often display rules in tables and use schema to rep-
resent multiple rules with a single diagram. Figure 5 shows
four rules. In rule r1 of Figure 5, the pair of £eld names
(owner, dist) appears above the transition arrow, indicating
that the pairs labeling the vertices in the left and right
graphs have values corresponding to those £elds. For rule
r1 to be applicable we must £nd a label preserving subgraph
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1, b 1, b2, b 2, b

3, c 3, c

4, c 4, c

5, b 5, b6, b 6, b

7,b

8, c

9,b
7,d

8,d

9,d

⇀

Fig. 4. Application of the rule in Equation 1. (a) An embedded graph, γ.
The mapping h1 � {1 �→ 1, 2 �→ 2, 3 �→ 3} is a subgraph isomorphism
but does not preserve labels, so the rule is not applicable. The mapping
h2 � {1 �→ 4, 2 �→ 6, 3 �→ 5} is a label preserving subgraph isomorphism,
however the guard is false because ∪i∈{4,5,6}Nψ(γ)(i) = {3, 4, 5, 6} �=
{4, 5, 6}. The mapping h3 � {1 �→ 8, 2 �→ 7, 3 �→ 9} shown in bold is a
witness that satis£es the guard so the rule is applicable here. (b) Applying
the action, (r, h3) replaces the subgraph G[h3(VL)] with the graph h3(R)
shown in bold.

isomorphism, h, mapping the left graph L into G such that
if h(1).owner = m and h(2).owner = n, then the guard
n > m is satis£ed. Label £elds not displayed in a rule are
not changed if that rule is applied.

An embedded graph grammar system (EGG) is a quadru-
ple (γ0,Φ, ψ, u) where γ0 is an embedded graph representing
the initial state, Φ is a set of locally checkable guarded rules,
ψ is a proximity function and u is a locally implementable
controller. We denote the trajectories of a local embedded
graph grammar by T (γ0,Φ, ψ, u). An embedded graph tran-
sition ((G,x), (H,x)) is consistent with a rule r if there
exists a witness h such that (r, h) is applicable to (G,x) and
G

r,h−−→ H . We denote by A(r) the set of transitions consistent
with rule r. If Φ is a set of rules, A(Φ) = ∪r∈ΦA(r). The
relationship between the trajectories of an embedded graph
grammar and embedded graph transition system trajectories
is given by

T (γ0,Φ, ψ, u) = T (γ0,A(Φ), u).

D. Temporal Logic and Proof Techniques

By a proposition, we simply mean a subset of embedded
graphs, P ⊆ Γ. An embedded graph γ satis£es a proposition
P , denoted γ |= P , if γ ∈ P . We often construct propositions
that only refer to the topological elements of embedded
graphs. Given a logical statement on graphs P , the indicator
function I(P ) evaluates to 1 if the statement is true and
0 otherwise. The LTL speci£cation eventually always P ,
written FGP , means for every sequence in T (γ0,Φ, ψ, u)
there exists some k (not necessarily the same) such that
for all n ≥ k, Gn ∈ P . When this is true we write
(γ0,Φ, ψ, u) |= FGP . We often prove an eventually always
speci£cation by constructing a discrete Lyapunov function.

De£nition 4.5: Let � be an ordering on R
n with an

unique zero element. A discrete Lyapunov function for the
system (γ0,Φ, ψ, u) is a function V : G → R

n such that
a. V is a positive decreasing function over all trajectories,
b. V � 0 implies that at least one action (r, h) is

eventually applicable, and
c. V(Gk) = 0 implies that for all future graphs Gn,

V(Gn) = 0.

Theorem 4.1: Let (γ0,Φ, ψ, u) be any system where the
set of reachable labeled graphs is £nite. Let P be a propo-
sition on graphs and V be a discrete Lyapunov function for
the system (γ0,Φ, ψ, u) such that V(G) = 0 implies G ∈ P .
Then (γ0,Φ, ψ, u) |= FG P .
Different literatures have different ¤avors of this theorem.
For example, the theorem (and its proof) expressed in the
temporal logic of actions can be found in [12].

E. Load Balance Multiple Rendezvous Revisited

We now have the formal language to express the LBMR
problem. Let X = R

2. Let ij ∈ Eψ(γ) if and only if ||xγ(i)−
xγ(j)|| < ∆. Suppose B denotes the set of robots labeled
base, H ⊇ B denotes the set of vertices in a path between
two bases (informally called highway robots) and C = V \H
(informally called commuters). If i ∈ B we denote the subset
of commuter robots with an edge to i by Ci. De£ne the
proposition for load balancing by

PLB = {γ ∈ Γ | ∀i ∈ B, |Ci| = � |C|
|B| �.} (2)

De£ne the proposition for distributed cycle removal by

PDCR = {γ ∈ Γ |Gγ is a connected tree}. (3)

Finally, let PCMR denote the set of embedded graphs where
an edge between a base i and commuter j implies that xi =
xj . We can now formally state the load balanced multiple
rendezvous task.

Task 4.1: Design an embedded graph grammar
(γ0,Φ, ψ, u) such that for all trajectories σ, the graphs are
connected, edge-consistent and

lim
t→∞σ(t) ∈ PDCR ∩ PLB ∩ PCMR.

We introduce a locally implementable controller u in sec-
tion V, and two grammars ΦDCR and ΦLB in sections VI
and VII. The embedded graph grammar (γ0,ΦDCR ∪
ΦLB , ψ, u) de£nes an algorithm that removes cycles, con-
verting highway robots to commuters. It then routes com-
muters to the bases along the highways. This method does
not require maps or even a global coordinate system. For
proof simplicity, we assume that |F |

|B| evaluates to an integer,
noting our grammar converges to an invariant set when this
is not the case.

V. CONNECTIVITY MAINTENANCE

We introduce a locally implementable controller u similar
to the one de£ned in [5].

A. Control Law

Suppose E1 denotes the set of edges ij where either
i.mode = base or j.mode = base but not both and j is
in F (i). Let E2 be the set where neither are bases and j is
in F (i). De£ne the function

Uij(γ) =
{

1
2 (∆ − ||xi − xj ||)−1 if ij ∈ E2

(∆ − ||xi − xj ||)−1 if ij ∈ E1.

and de£ne the total potential function by

U(γ) =
∑

ij∈E2∪E1

Uij(γ). (4)
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r1) n > m : (m, j)

(n, i)(n, i)

(n, i)(n, i)

⇀

⇀

⇀

⇀ (n, i + 1)

r2) i < j + 1 : (n, j) (n, i + 1)

n �= 0r3)

r4)

(n, i)(n, i)(n, i)(n, i)

i = k ∧ j = i + 1 :
(n, i)(n, i)

(n, j)(n, j)

(n, k)(n, k)

(owner, dist)

(owner, dist)

(owner, dist)

(owner, dist)

Fig. 5. Rule set for distributed cycle removal, ΦDCR. The boolean statement to the left of the colon is the guard. If a match of the graph on the left side
of the transition arrow is found that also satis£es the guard, it can be replaced with the graph on the right side. The label £elds involved are (owner, dist)
and the light dashed lines in the fourth rule indicate that an edge may or may not be present.

The controller u is de£ned by

u(i, γ) =
{

0 i.mode = base
−∇xi

U i.mode = unknown
(5)

where

−∇xi
U =

∑
j | j∈F (i)

xj − xi

(||xi − xj || − ∆)2||xi − xj ||
.

Since the controller depends only on F (i) it is locally
implementable.

B. Convergence

We must show that if we £x a graph G and implement the
control law u on any edge-consistent graph γ(t), then γ(t′)
is edge-consistent for all t′ ≥ t. Additionally, we must show
that x(t) converges to safe con£gurations in which if the
rules introduced in section VII insert edges, the embedded
graph remains edge-consistent.

Proposition 5.1: Suppose γ is any connected edge-
consistent graph and that G(t) = G for all t′ ≥ t. Then
the continuous state x(t) of the system evolving under u
converges to the set of limit points M = {xγ | γ ∈ DG and
U̇(xγ) = 0}. Furthermore any point in M is a £xed point.

Proof: Without loss of generality, suppose one base
i has coordinates xi = (0, 0). Let Ω0 = {xγ |xγ ∈
DG0 U(x) ≤ U(x0)}. Ω0 is closed and bounded by
r = |G|∆. Since U̇ = −∂U

∂x

T ∂U
∂x ≤ 0, then by LaSalle’s

invariance principle [13] every solution converges to M .
Furthermore since whenever U̇ = 0, then ẋ = 0, it follows
that any x ∈ M is a £xed point.

Additionally, γ(t′) must be edge-consistent for all t′ ≥ t
since Uij → ∞ as ∆ − ||xi − xj || → 0.

We call any vertex i where degree(i) = 1 a leaf vertex.
Corollary 5.1: Suppose i, j ∈ V are any vertices such that

degree(i) = 1 and ij ∈ E. If x∗
j denotes a £nal value of

xj(t), then xi converges asymptotically to x∗
j .

Proof: Suppose xi 
= xj . Because i is only connected
to j,∇xi

U = xj−xi

(||xi−xj ||−∆)2||xi−xj || 
= 0. Since U̇ =
−

∑
i∈V (∇xU)T (∇xU), it must be the case that U̇ < 0,

implying that a con£guration with xi 
= xj is not in M .
We have shown that each leaf converges to its neighbor’s

position. We next construct a grammar in Section VI that

forms trees (and thus leaves). Then we construct a grammar
in Section VII that changes the connectivity of leaf robots so
the controller u can direct their progress toward the bases.

VI. DISTRIBUTED CYCLE REMOVAL (DCR)

We wish to construct a rule set, ΦDCR, such that even-
tually it is always the case that Gγ is a connected tree
(proposition PDCR). We denote by |CG| the number of
cycles in a graph G.

A. Grammar

Figure 5 shows the rule set designed for distributed cycle
removal. In the initial graph Gγ0 , (owner, dist) = (i, 0)
if node i is a base. Otherwise, (owner, dist) = (0, |G0|).
The algorithm propagates a nondeterministic ordering based
on path length from a base node and uses the ordering to
determine where to cut a cycle. The guard for r1 requires
the owner £eld of the £rst node to be less than the owner
£eld of the second node. As seen in Figure 6, when this
is the case, the £rst node assumes the owner value of the
second and sets its distance to be one unit larger. This
rule guarantees that eventually all vertices will have the
same owner. When two connected vertices i and j share
the same owner, rule r2 updates their perceived distance to
the owner based on lowest value in their dist £elds. This
rule guarantees that the perceived distance, i.dist, converges
to the true distance, d(i, i.owner). As shown in Figure 6,
rules r3 and r4 determine when two paths from the same
base node meet (and thus a cycle is present) and delete a
connecting edge.

B. Proof of Correctness

In this section we show that (γ0,ΦDCR, ψ, u) |=
FGPDCR. Let V : G → R × R × R where

V1(G) =
∑

j∈V |maxi∈B i − j.owner|
V2(G) =

∑
j∈V |j.dist − d(j.owner, j)|

V3(G) = |CG|.
(6)

Let (R3,�) be the lexicographic ordering de£ned by

(a1, a2, a3) ≺ (b1, b2, b3)

if a1 < b1 or there exists an k such that ai = bi for all i ≤ k
and ak+1 < bk+1. The lexicographic ordering is extremely
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(7, 0)

(7, 0)

(owner, dist)

(owner, dist)

r3

r3

r4

r4

r2

r2

r1

r1

(7, 1)

(7, 1)

(7, 1)

(7, 1)

(7, 2)

(7, 2)

(7, 2)

(7, 2)

(7, 3)

(7, 3)

(0, 10)

(3, 2)

(3, 1)

(3, 1)

(3, 1)

(3, 2)

(3, 0)

(3, 0)

Fig. 6. Application of DCR rules. This £gure displays a graph before
and after the concurrent application of rules r1, r2, r3, and r4. The dashed
lines indicate the subgraphs where the rules are applied and small rectangles
indicate bases. The label £elds involved are (owner, dist).

useful in composing Lyapunov functions associated with
concurrently executing rules and grammars.

Proposition 6.1: If for some vertex i, i.owner 
= 0, then
there exists some path p(i.owner, i) such that the length of
p(i.owner, i) is i.dist. (Proof omitted.)

Proposition 6.2: V in Equation 6 is a Lyapunov function
for the system (γ0,ΦDCR, ψ, u).

Proof: We show that V meets the three requirements
in De£nition 4.5.

V is positive decreasing: We have constructed V1,V2, and
V3 such that applying rule r1 to any graph decreases V1,
applying rule r2 decreases V2, and applying r3 or r4 de-
creases V3. Using the lexicographic ordering we must show
that applying rules r3 or r4 does not increase V2 or V1 which
is true because it does not change the owner or dist labels.
An application of r2 does not increase V1 because it does
not alter the owner label. Thus V is positive decreasing with
respect to ≺.

V � 0 implies that at least one action (r, h) is applicable:
Assume V � 0 but that no action is applicable. Note
that V1 > 0 means r1 is applicable, which contradicts
our assumption. Thus, V1 = 0 and all vertices are
labeled with the same owner. However if V2 > 0, then
|i.dist − d(i.owner)| > 0. This implies that there exists a
vertex j with an edge ij where either 1) j.dist < i.dist + 1
and r2 is applicable or 2) j.dist = i.dist and r3 is
applicable. If V2 = 0, then Proposition 6.1 implies that
every node is labeled with its true distance from the owner
node. Finally, if V3 = |CG| > 0, then there must exist two
nodes i and j such that i.dist = j.dist and either r3 or r4

is applicable.

If V(Gk) = 0, then V(Gn) = 0 for all n > k: When V1 =
V2 = 0 the guards for rules r1 and r2 are false. Since no
rule forms an edge, |CG| = 0 for all future graphs.

Theorem 6.1: Given the system (γ0,ΦDCR, ψ, u) it is
eventually always the case that Gγ is a connected tree.

Proof: The reachable set of graphs is bounded because
the vertex set and label sets of the system are £nite. V3 = 0
implies there are no cycles in the graph and Proposition 6.1
implies connectivity. Thus if V = 0, then γ ∈ PDCR.
We then invoke the Lyapunov Theorem 4.1, to show it is
eventually always the case that G is a connected tree.

VII. LOAD BALANCING

Our goal is to route (in balanced proportions) all the
commuters to the bases. By A ⊂ C, we refer to the strict
subset of commuters without an edge to a highway robot
and informally call these alley robots. For instance in the
£rst panel of Figure 8, robot k is an alley robot. Suppose
Gω is a tree where every edge ij is labeled with four £elds:
(bij , sij , bji , sji). Suppose we cut the graph at any edge ij as
pictured in Figure 8. We denote the resulting tree containing
vertex i (respectively j) by Ti, (respectively Tj). As seen in
Figure 8, the strength of Ti, sij = | VTi

⋂
C|, is the number

of commuter robots in the tree. The base mass, bij , of tree
Ti is the number of bases in the tree. Since initially the
structure of the graph and number of bases is unknown, we
consider a set of edge-consistent embedded trees ω0 ∈ PDCR

such that (bij , sij , bji , sji) = (0, |Gω0 |, 0, |Gω0 |). We de£ne
the function err to be the number of edge £elds labeled 0.
We propose a grammar ΦLB such that (ω0,ΦLB , ψ, u) |=
FGPLB . Our approach is to route commuters in the alleys
to the highway where they can make locally optimal choices
that distribute them evenly to the bases.

A. Grammar

Figure 7 displays the rule set, ΦLB , designed for this
purpose. Rule r5 collects and propagates the strength and
base mass information through the graph. Rule r6 moves
alley robots toward the highways. We de£ne the pressure
differential of an edge in the ij direction by

ρij =
sij

bij
− sji

bji
.

As seen in Figure 8, if the pressure differential is greater
than zero, rule r7 moves the commuter into the subtree
with the lowest pressure (where a subtree is chosen non-
deterministically if all pressures differentials are equal and
greater than zero.)

B. Proof of Correctness

Let 〈Ci〉 = 1 if the number of commuters attached to i
is greater than zero, and zero otherwise. And [x] = x if
x > 0 and [x] = 0 otherwise. As in the previous section, we
associate a function with each rule, construct a lexicographic
ordering among them, and propose Υ as a Lyapunov function
for the grammar where

Υ1 = err
Υ2 =

∑
i∈A minj∈H d(i, j) − 1

Υ3 =
∑

i∈H 〈Ci〉
∑

j∈Ni
[ sij

bij
− sji

bji
].

(7)

Rules r6 and r7 have guards of the form ||xn − xj || < ∆
that guarantee the system remains edge-consistent when the
rules insert edges. In order to guarantee progress we must
show that these guards are always satis£ed in £nite time.
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(x, d − 2) (1, d − 1)
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1 ∈ A ∧ ||x1 − x3|| < ∆ :

||x1 − xn|| < ∆ :
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Fig. 7. Rule set for load balancing, ΦLB . Note the inclusion of geometric conditions in the guards on r6 and r7. β(i) � I(i.mode = base) and
µ(i) � I(i.mode �= base ∧ degree(i) = 1).

TiTi TjTj

ρij=3 ρij=
3
2

sij=4

bij=1bij=1

sji=2

bji=2bji=2

sij=3 sji=3

ii jj
k

k

(a) (b)
= base

= commuter
= highway

Fig. 8. Graph transition due to the concurrent application of rules r6 and
r7. The £gure shows the value of the pressure differential, ρij , between
subtrees Ti and Tj (marked by dashed ovals). Rule r7 moves a commuter
from i to j, decreasing the pressure differential.

Proposition 7.1: Let γ be edge-consistent with a £xed
topology G where ij, jk ∈ EG and i is a leaf. Then xi

converges to a set of points where ||xi − xk|| < ∆ in £nite
time.
The proposition follows directly from Corollary 5.1 and the
fact that U̇ < 0.

Proposition 7.2: Υ as de£ned in Equation 7 is a Lyapunov
function for the system (ω0,ΦLB , ψ, u).

Proof: We must again show the following.

Υ is positive decreasing: Showing Υ1 and Υ2 decrease with
respect to the lexicographical ordering ≺ is straightforward.
Rule r7is applicable when [ sij

bij
− sji

bji
] > 0. Applying rule r7

across edge ij decreases the value of the ρij to 0 ≤ [ sij−1
bij

−
sji+1

bji
]. Since no other edges are affected, Υ3 decreases.

If Υ � 0 at least one action is applicable: Assume Υ � 0
but no rule applies. The tree structure guarantees if err > 0,
then rule r5 is applicable, so it must be the case that Υ1 = 0.
By Proposition 7.1, eventually the guard ||xi − xj || < δ for
rules r6 and r7 is satis£ed. Thus if A 
= ∅, then r6 applies. It
follows that Υ2 = 0 and all the commuters are attached to the
highway. However, if Υ3 =

∑
i∈H 〈Ci〉

∑
j∈Ni

[ sij

bij
− sji

bji
] >

0, then r7 applies because there is a commuter connected

to a node with a pressure differential. This contradicts our
original assumption, thus Υ � 0 implies an action is
applicable.

If Υ(Gk) = 0, then Υ(Gn) = 0 for all n > k: The guards
on the rules r6 and r7 are false when Υ = 0. Applying
rule r5 does not change the graph since all £elds are correct.

Theorem 7.1: (ω0,ΦLB , ψ, u) |= FGPLB .
Proof: We must show that if Υ = 0 then for all k ∈ B,

|Ck| = |C|
|B| . Assume |Ck| < |C|

|B| . Since Υ = 0 implies all
commuters are attached to bases, there is a base i such that
|Ci| > |C|

|B| . Since Υ3 =
∑

i∈H 〈Ci〉
∑

j∈F (i)[
sij

bij
− sji

bji
] = 0,

this implies that sji

bji
= |C|

|B| . The total strength of the graph is

|C| = |Ci|+ |CG\Ci
| = |Ci|+

∑
ij∈E bji

|C|
|B| . This gives rise

to the contradiction |C| − |C|
|B| < |C| − |C|

|B| . Thus if Υ = 0,

then for all i ∈ B, |Ci| = |C|
|B| . Since Υ is a Lyapunov

function, we may invoke Theorem 4.1.

VIII. COMPOSITION OF EGG SYSTEMS

The preceding sections introduce two grammars, ΦDCR

and ΦLB and a continuous control law u such that the
system (γ0,ΦDCR, ψ, u) |= AFPLBand (ω0,ΦLB , ψ, u) |=
AFPLB . The correctness of each of the grammars is proved
using discrete Lyapunov functions. In this section, we com-
pose the grammars and show that for γ0 with the edge
labeling (0, |Gγ0 |, 0, |Gγ0 |)

(γ0, (ΦDCR ∪ ΦLB), ψ, u) |= FG(PDCR ∩ PLB). (8)

A. Total System – Proof of Correctness

Building on previous results, we form a new function

X = (V1,V2,V3,Υ1,Υ2,Υ3)

where R
6 is lexicographically ordered. We must show that

applying any rule from ΦLB does not change the ordering
property of Proposition 6.1 since this property is necessary
to prove that V is a Lyapunov function. This is true since
ΦLB repairs the dist £eld when it moves a commuter. And
we note that the convergence property in Proposition 7.1 still
holds for the composition.
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Fig. 9. Lyapunov functions for a representative run. A) Prior to an
application of r3. B) After an application of r3. C) The £nal state. Note
the lexicographic ordering allows X to be positive decreasing even though
Υ increases at B.

To show that X is positive decreasing, under the ordering,
we only need to show that applying a rule from ΦLB does
not increase V . This is the case since ΦLB does not alter
the owner £eld, does not create cycles, and repairs the dist
£eld. To show that X � 0 implies an action is applicable
we note that since the rules from ΦLB have not changed
the information used in ΦDCR, V � 0 implies that a rule
is applicable. If V(G) = 0, then the graph G is a tree and
thus the ΦLB grammar has a valid initialization point. Since
ΦDCR does not alter edge labels, V = 0 ∧ Υ � 0 implies an
action is applicable. Invoking the Lyapunov theorem proves
the temporal logic statement in Equation 8. By the conver-
gence properties proved in sectionV we have the desired
result that for all trajectories σ ∈ T (γ0,ΦDCR ∪ΦLB , ψ, u)

lim
t→∞σ(t) ∈ PDCR ∩ PLB ∩ PCMR.

Note that ΦDCR and ΦLB are really compositions of sin-
gle rules. Given a collection of smaller grammars, our design
methodology is to: 1) Identify initialization conditions and
invariant properties of those grammars such as the ordering
property of Proposition 6.1. 2) Compose the grammars and
show the composition satis£es the initialization and invariant
properties. 3) Form a Lyapunov function for the new system
under a lexicographic ordering that allows us to build upon
previous results.

B. Simulation Results

We simulated the system in Matlab using cyclic initial
graphs ranging in size from 30 to 70 vertices. Every simula-
tion terminated with a correct topology and trajectories where

the commuters were converging on the bases. Figure 9 shows
a representative run and the three Lyapunov functions V,Υ
and X . Note the £gure presents qualitative information since
we use a normalizing scheme to represent the lexicographic
ordering. One of the more persuasive arguments for our
design is that the system can execute in a concurrent fashion
as shown in Figure 9. The £gure displays the states just
before and after an execution of rule r3 where Υ increases
because commuters are added to the alleys. However, by
ordering the V elements of X before the Υ elements, we
can guarantee that X decreases.

IX. DISCUSSION

The embedded graph grammar formalism models net-
worked hybrid systems with local restrictions on their in-
teractions. We have shown a mapping from an embedded
graph grammar to a non-deterministic hybrid automata. The
automata may be large, unwieldy and may obscure informa-
tion about the local processes controlling the evolution of the
embedded graph grammar. Nonetheless using this mapping,
we hope to £nd conditions on the structure of the embedded
graph grammar that will allow us to build upon existing
results in hybrid systems literature.

Additionally, we developed a notion of the composition
of grammars in our proof. In future work, we will de-
£ne formally the semantics of graph grammar composition,
examine which properties and behaviors are preserved in
grammar composition, and develop formal design methods
for composing grammars.
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