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Abstract—We consider a network of mobile agents in an agent control [1]. The relationship between graph strectur
initially unknown acyclic network configuration and the prob-  and convergence is explored in [2] and [3] shows that for-
lem of reconfiguring them into a desired network topology —mation control can be reformulated as a consensus problem.
and formation geometry while maintaining connectivity in an  Solutions for formation control under communication and
asynchronous network. We model the system and solution as an sensing constraints are proposed for centralized systems
embedded graph grammar and use a method ofexicographically  in [4] and decentralized system in [5].
ordered Lyapunov functions to show the system converges non-  Most of these results apply to formation control problems
deterministically regardless of the initial network structure and ~ where the assignment of an agent to fulfill a role in the
the order of the communication events. formation is known a priori. In this paper, we consider
the dynamic assignment of roles in a network where the

initial topology is unknown and where network connectivity

Systems of networked mobile agents of increasing confmits allowable motion. The optimal assignment of agents
plexity are found in automotive, aircraft, and military PP {5 formation targets is examined in [6], where the prob-
cations. Many of these systems are safety-critical and then, s discretized over weighted graphs but communication
design of correct, safe and fault-tolerant communicatioth & -gnstraints are not considered. The work in [7] frames
control protocols that are robust to initialization is eg&d. e problem as an optimal control problem over target
The interplay between constraints on control, geometryt, angations, target translations and target permutatiorgh B
communication and the asychrony in the network makgapers require global information and the second suggests
QeS|gn|ng solutlons difficult. Verification of correct befar sub-optimal methods due to the intractability of the prable
is also problematic because the large state spaces.  additionally [7], requires first the agents be driven to a

To begin to address such issues, we examine a Simplgyge where the communication graph is fully connected. Our
class of cooperative control algorithms that captures soime paper presents a decentralized algorithm for restrugurin

the complexity of these systems . The problem we considgfe network which does not require the agents begin in any
exhibits hybrid dynamics over an asynchronous ”etworlbarticular network structure.

decentralized control under constrained communicatiod, a' |, [8], a set of local interactions @aph grammarjs syn-
requires robustness to unknown initial conditions andinco hesized to solve theelf-assemblyproblem where isomor-

plete information. _ . phic copies of a desired graph are assembled from an igitiall
In particular, we consider a network of mobile agentgjisconnected graplEmbedded graph gramm4BEGGs) [9],

in an initially unknown acyclic network configuration and 11] augment the graph grammar formalism by including

the problem of reconfiguring them into a desired networl,ca| geometric pre-conditions on switching and contiraiou

topology and formation geometry while maintaining conneCgontrollers to form an suitable for modeling cooperativa-co

tivity in an asynchronous network. Our goal is to show thafro| scenarios undergoing asynchronous communications. |

the system converges on the desired final state, regardiggg paper we present a control and communication protocol

of the initial condition and the order of the communicayy grive a set of agents from an unknowae formation to

tion events. We model the system as embedded graph 3 gesired one while maintaining connectivity in the graph

grammar and use a method dexicographically ordered sing only local communication and control. Additionally,

Lyapunov functiongo show the system converges. We notgye simplify the notation for EGGs, building upon among

thatembedded graph grammapsovide an appropriate level others, the notation for I/O Automata [10].

of abstraction in that the algorithm presented here inwlve

explicit cooperation among groups of three agents, and so lll. FRAMEWORK

would be cumbersome to express as a message passiigLabeled Graphs

protocol between individual agents. A labeled graphis a tupleG = (V, E,l,e) consisting
I1. PREVIOUS WORK of a setV of vertices, E' of edges, a functiord assigning

The formation control problem where the objective is tdnforma‘upn l(.i) to e"?‘Ch ygrtexi €V a”‘?', a function
e assigning informatiore(ij) to each edgej € E. In

drive the formation error to zero is a central one in multi-~ . . . . .
this paper, a considerable quantity of information may be
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a valuea, then we writei.mode = a. Similarly, if the edge
ij has a field callesffsettaking values ifR?, then we write,
for example,ij.offset = (1.1,3.0). In summary, we use dot
notation instead of a more cumbersome notation involvin
(i) or e(iy). If A C V, we write G[A] to be the subgraph
of GG induced by the vertices id. We useT (for “tree”) to

decentralized controller. is consideredwell defined with
respect to the communication constrairitsagenti € V
can calculate its control from the subgraph induced by its
geighbors in the grapty N G, [9].

IV. EMBEDDED GRAPH GRAMMARS

represent a connected acyclic labeled graph. And we denotdn this paper, the state of a system is represented by an

by N¢ (i) the neighbors ot in graphG.
The following definition allows comparison between

embedded graplix, G). The graphG, the discrete part of
the state(x, G), can be operated on byles that update?.

graphs possessing possibly different vertex and edge lab®lrule is expressed syntactically by

fields.

Definition 3.1: Suppose&x and H are two graphs an@ is a
set of vertex and edge label fields. We define an equivalen
relation S;?,, whereGRH if
1) (Va, Eg) is isomorphic to(Vy, Ex) under some wit-
nessh and
2) Forevery € Q, if ¢ is a vertex field, for every € V¢,
1. = h(i)g.q. Otherwise for everyj € Eg, ij.q =
h(i)h(5)m-q-

If this is true we sayG is structurally equivalento H over

the fields inQ.

B. Robotic Networks and Communication
Consider a system oV kinematic agents, where each

Rule r
Vertices : i1, ...,
FBrecondition:
P 1
P, m
Effect:
vary = valueq m+1
var, = value,, m+n
he symbols i;,...,7;, are free variables that can

be instantiated by vertices inG. The preconditions
Py, ..., P, denote propositions about vertex labels, edge
labels, vertex embedding (continuous state), or graph

agenti has a continuous state;(t) € R*. We denote the topology and useiq, ...,i, as free variables. Theffects

continuous state of the entire systembft) € R?NV = X.

vary

valuey, ...,var, := walue, are updates, using

An embedded grapis the pair(x, ). We use embedded ; ;s free variables, of vertex or edge fields, or they

graphs t_o model the state of a robotic network as follows, o updates to the graph topology. Examples of rules can
The vertices otz represent the id’s of th&y agents. Avertex pe found in Section VI, where the tree transformation

label, I(z), abstracts the current software states, hardwa
configuration and operational mode of agemin edge label
e(ij) represents information required by pairs of cooperatin
robots (for instance inter-robot spacing constraints) caual
only be altered by mutual agreement.

We capture the notion of communication constraints usin
a proximity functiony : X x G — G. When its dependence
on (x,G) is clear we writeG,, to meany(x,G) and call
this graph the communication graph. For example, if robo

can communicate when they are less than 10 meters ap r%
value,

and H = ¢(x,G), thenVy = Vi andij € Ey if and only

if ||x; —x;|| < 10. It is typically required thatEg C Eg,
meaning that pairs of robots sending information can algtual
receive it.

A formation graphF is an undirected edge labeled grap
containing a fieldij.offset € R? and a fieldij.head € Vp
where if the vertices in an edge afgj, we require that
ij.head takes values i, j}. We interpret these two fields
as a constraint. For instance,(¥, F') is an embedded graph
and:j € Er such thatj.head = j, the constraint is satisfied
whenx; — x; + ij.offset = 0, that is whenj is offset from
1 by ij.offset. If the constraint is satisfied for every edge
in Fr, we say thatx is consistentwith F'. By associating
directionality with a label in an undirected graph, the drap
can never have edgeg and ji with contradictory offset
fields.

A continuous controlleru, for a robotic network is a
mapping fromX x G — TX (the tangent space). A

Hfgorithm is described.
A rule r of the above form describes a relatich defined
9s follows. We write

(x,G) = (x,G)

H(l) there exist verticegy, ..., jx € Vi such thatP,, ..., P,
evaluate to true il when the free variables, ..., i, are in-
tantiated withy, ..., jx respectively; (2)7 is obtained from
by applying the updatesar; valuey, ..., vary, :
instantiated the same way; and (3) all information
and structure i not mentioned in the updates is preserved
in G’. Note that, in this paperx does not change upon

the application of a rule. A functioh that maps each free
hvariablez'k to a vertexjr € Vg is called awitnessand
describes where the rule is applied.

Asetd = {r,...,r,} is referred to as graph grammar
If a (local) controlleru : X x G — TX is also supplied,

then (@, u) is referred to as aembedded graph grammar

A systemis a tuple((xg, Go), ®,u, ) where
1) The pair(x,Go) € X is theinitial state is a set of
allowable initial graphs

2) @ is a graph grammar

3) wu is a controller

4) 4 is a proximity function.

Systems produce trajectories in the usual hybrid fashion:
(1) the continuous state evolves accordingkte= u(x, G);
(2) the discrete par? of (x, &) can (but not must) change



;- . . T . Field Description
to &' if there exists a rule € @ with G = G} (3) norule in | b o o= R7 Folds the desired ofiset o

® can be infinitely often applicable without eventually being from 4.

applied (i.efair trajectories); (4) all vertices instantiating the| ij.head | The fieldij.head € {i,j} establishes an order on the
application of a ruler must be able to communicate in _ edge that is useful for formation control.

. . ij.order | The functionij.order : {i,5} — {1,2,..,N}. In

We denote the set of trajectories of a system gs particular, ij.order (i) = T3 | andij.order(j) = |T!|

o € T(Xo, Go, ®,u,7) where for each trajectoryo  [iree | The field i.tree is either undefined (denoted) of Tt

el r2 ...rk ... denotes the sequence of rules apt contains some tred; where T;~T... Additionally

plied, 2!, h2 ..., hE. ... denotes the witness sequence, 3 thesg trees contain fieldsmode € {t,a} and vw.order
1 .92 o as above.

T T2, TE denOteS the times the rules are applied, and.——- The fieldi.role takes values i1V, ¢,ce OF it is undefined,

4) x,(t) andG (t) denote the continuous and graph state|

)

(denoted_1). If i.role = v, the interpretation is that

at timet. We omit the subscript when clear. assumes the role of in i.tree.
i.mode The labelsi.mode € {t,m,a} are used by the solutio
V. PROBLEM STATEMENT grammar as follows. The labélmode = ¢ indicates:
should reconfigure its neighborhood to one structurally
In the framework introduced in the previous section, equivalent to the vertex identity inrole. The labelm

implies that vertexi should merge two of its subtrees.
The labela is the initialization label.

TABLE |
LABEL FIELDS FOR THE SOLUTION GRAMMAR®.

the main problem of the paper can be stated as follow
Suppos€l,., is a desired formation tree where each edg
field ij.offset is labeled with the desired formation offsets.
SupposeF’ is the set of fieldse.offset, e.head. The main
goal is:

Task 5.1: Design (®, u) so that every trajectory converges

to some(x;, Ty) whereTfETdes, andxy is consistent with Proof: Supposel” is any tree. The grap® — {ij, jk,ik} is

2

Ty. a forest containing 3 treek;, 7 and7}. The transformation
Our approach in Section VI is to temporarily abstract awagbove preserves the property that there is exactly one path

the continuous state and consider the following task. betweeni, j, andk and hence betweeh,T;, andT,. &

Task 5.2: Given a desired formation tré,.; and any initial We begin by reviewing results and terminology from

tree T}, design a graph grammar such that for every non- previous work [9]. Supposd is any tree andij is any
deterministic trajectory: _1) every graph .in every trajeglis  edge in B7. If we remove the edgeéj, two trees remain,
a tlrwee, and 2) every trajectory has a final graph where  gne containing vertey but not vertexi (denotedT”) and
Ty~Tyes- the other containing but not; (denotedT?). In [9], we
In Section VI, we consider the continuous state an@evek)ped a graph grammar that gi\/en any connected graph
communication constraints. First we lift the solutidnto ¢, marksG with a spanning tred” and labels each edge
Task 5.2 to an embedded graph grammbaby adding the ij with [T| and |T7|. Here, we build on that approach and
appropriate preconditions on geometry and connectivity igssume an edge fielg.order contains these values.
the communication graph. We then show what conditions The non-deterministic tree reconfiguration system is given
¥,u, and (xo,Tp) must satisfy in order for the system py the following initialization conditiori, and graph gram-
((x0,To), @', u,9) to achieve Task 5.1. This method allowsmar &. Table | shows the edge and vertex label fields used
us to build a single grammar that converges for a class @fy @. Note that in addition to the tree composed of the
systems with different communication constraints. agents, the field.tree can be populated with a labeled tree
Finally we show the effectiveness of decoupling of theorresponding to the desired topology. To avoid confusion,
asynchronous tree grammar from the continuous controllgr 7 is a tree, we denote vertices corresponding to agents
by proposing & andu that satisfy these sufficient condi- by {i, j, ...} € V and for any vertex € Vi, we denote
tions. In Section IX simulation results for this specific @® vertices ini.tree by {v,w,...} € Vitree-
of system are shown. Initialization: We define the set of initial tree%,, where
Ty € Ty is defined over the fields in TableTl, has only
one vertex;i labeledi.mode = t, i.role = 1, andi.tree =
T whereT) indicates vertex is labeledl.mode = t and
The goal in this section is to solve Task 5.2. Sincell other verticesw € i.tree are labeledw.mode = a. All
maintaining a connected spanning tree in formations afther verticesj € Ty, are labeledj.mode = a,j.role =
cooperating agents is a desirable property, the following  jtree = L. Figure 1 panel (a) shows an initial graph.
simple lemma provides constraints on the type of rules we Grammar:For any vertex, if i.role = v # 1, we denote
use. by b;
Lemma 6.1: The set of all connected acyclic labeled graphs b; = max vw.order(w).
of size N is invariant to the application of rules of the form VWE B tree | w.mode=a

. . That is b; is the largest branch iiV(v) remaining to be
/\ N /] matched. Then the non-deterministic tree reconfiguration
j i —k - grammar® is shown in Table II.

VI. A GRAPH GRAMMAR FOR UNIVERSAL
TREE-TO-TREE CONVERSION



Rule 1

Vertices : 1,7
Precondition:
i.mode =t A\ j.mode = a

Denote i.role by v. 3w € Njtree(v) such that
(w.mode = a A vw.order(w) = ij.order(j))

Gl{i,jYl =i—
Effect:
w.mode :=t, j.lree:=i.tree
j.mode :=t, j.role:=w
ij.offset := vw.offset, ij.head:=j

N -

o O b

Rule 72

Vertices : 1,7,k

Precondition:
i.mode =t A j.mode = a N\ k.mode = a
ij.order(j) > b;

jk.order(k) > b; Vij.order(j) — jk.order(k) > b;

Gl{i, 4.k} = / \
i k

Effect:

Gl 4, k} = /

i

WN -

Rule r3

Vertices : 4,75,k

Precondition:
i.mode =t A j.mode = a A k.mode = a
ij.order(j) < b; A ik.order(k) < b;

Gl{i,5,k}] = /

i

Effect:

Gl{i,5,k}] = /\

i k

Rule r4

Vertices : 4,75,k

Precondition:
i.mode =t A j.mode = a A\ k.mode = a
ij.order(j) > b;

jk.order(k) < b; Aij.order(j) — jk.order(k) < b;

Gl{i, 4.k} = / \
i k

Effect:
i.mode :=m

wWN P

Rule r5

Vertices : 4,75,k
Precondition:
i.mode = m A j.mode = a A k.mode = a

Gl{i,5,k}] = /

7

Effect:

Gl{i,j kY] = /\
) k
i.mode := a

bW

TABLE Il

RULES IN THE TREE RECONFIGURATIONGRAMMAR .

Description: The basic notion is that a vertexlabeled
i.mode = t uses operations allowed by Lemma 6.1 to
rebalance the tree so that the neighborhood &f locally
structurally equivalent td@.s. In particular we require that
ij.order(j) = wvw.order(w). When this is the case, the
branch beginning with edgg € T' contains enough vertices
to be transformed into the branch beginning with € Ty,
(although the topology of the subtree rootedjamay be
quite different than topology of the subtree rootedugt
Groups of two or three agents may employ asynchronous
communications to apply the rules df and execute the
following basic operations.

Pass a role- Ruler; passes a role and is applied to the tree
in Figure 1, Panel (a) via the witneas2 {i — i,j — k}.
That is we apply rulel by replacingj with & andi: with
i. The tree representing the agents is seen above the dashed
line. Clearly the tree satisfies the pre-conditiomode = t
and k.mode = a. The value ofi.tree is pictured below
the dashed line. Sincék.order(k) = 1, we satisfy the
precondition in line 3 of ruler; by associating vertexw
in the rule with vertexd in i.tree.

Figure 1 Panel (b) shows the new tree formed by applying
the Effect of ruler;. That is5.mode is given the valug
to create a new value aftree. Then j.mode becomest,
j.role becomest, ik.offset is given the value ofi4.offset
andik.head becomesk. Now the edgek is equivalent to
the edgevw in the desired formation and ageltknows its
role in reconfiguring the topology is that of vertéx

Split a branch- Suppose a branch beginning with edge
i — j with mode labelst — a contains too many vertices
to match any of the unmatched branches.eble € i.tree
(line 3 of the pre-condition of rule;). Suppose additionally,
splitting the branch beginning with— j — k via r5 results in
one of the two branches containing at least as many vertices
asb; (line 4 of the pre-condition). This implies rule, is
applicable. Ruler, is applied to the tree in Figure 1 panel
(b) viah £ {i — 4,5 — I,k — j} to yield the tree in
panel(c).

Merge two branches If i is labeledi.mode = ¢ and
there are two branches beginning with eddésij where
ij.order; < b; andik.order; < b;. Then applying rule
r3 merges these branches into a larger branch (as shown
in Figure 2(f)-2(g)). Alternatively when a branch- j — &
with mode labelg — a — a andij.order(j) > b; cannot be
split because the resulting branches would both be smaller
than;, rulesr, andrs are applied to merge subtrees jof
(as shown in Figure 2(a) - 2(c)).

VIl. PROOF OFCORRECTNESS

Theorem 7.1: Let T,.s be any desired formation tree and
Ty € Ty an initial tree such thaTy.s| = |Ty|. Then every
reachable graph of the system of the syst€in @) is a tree
and every trajectory has a final graph such thaﬂ“fETdes.

The main thrust of this section is to show that even though
the grammar contains both merge and split operations, no
trajectories exhibit livelock or deadlock behaviors.



T0 order(m)=1 TI order(m)= ] TZ
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order(k)=2
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E
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Fig. 1. A partial trajectory the sequence of graphsrepresenting the agents is shown above the dashed line.dlbe of the fieldi.tree at time k is
shown below the dashed line. The green edges and verticesiisdhe growing isomorphism betwe@h andi.tree(k). For every edgej, the relevant
values ofij.order(j) are shown. Panel (a) shows the initial graph where agientabeled withi.role = 1. Sinceij.order(j) = 1 and14.order(4) = 1,
rule r; is applied via the witness — i, j — k and vertexw in rule r1 is associated with vertex. The resulting tree/; appears in panel (b). In panel
(b), the largest unmatched branch order= 3. Sinceil.order(l) > b;, rule r is applied yieldingZ> in panel (c). No update of.tree occurs. Finally

rule r; is applied toil. Note in panel (d)].tree # k.tree but the structural equivalence witnessedibyole,l.role, k.role is consistent.

A. Method of Proof

In graph grammars the order in which actions are appli
is non-deterministic. The resulting state spaces are lar
and directly exploring them using a method such as model,
checking is daunting [12]. In [9] we introduced the notion

of a lexicographically ordered discrete Lyapunfunction as

a method for proving that systems converge to a desired é%

of graphs. We briefly describe the method here.

Definition 7.1: Supposed is a set of rules andl C G is
invariant to applications of rules if?. Let < be an ordering
onR* with an unique zero element. A functidf : A — RF
is adiscrete Lyapunov functiofor the graph gramma® if
for all G € A,

i U(G) < 0 implies at least one rule is applicable.
i U(G) = 0 implies no rule is applicable.
i WhenU(G) > 0, every applicable rule- decreases
U.

Theorem 7.2 (from [9]):Suppos€ Gy, ) is a systempP
is a set of desired final graphd,is set of graphs invariant to
the application of rules ib and U is a discrete Lyapunov
function such thafU~1(0) C P. If Gy € A, then every
trajectory converges to a final graph in

We use thdexicographic ordering(R"™, <) defined by

- bp)

if a1 < by or there exists ak such thatz; = b; forall i < k
and a1 < br+1. Additionally if any ruler is applied to
any treeT’, we denote byl” and field’ the new tree and the
value of field in the new tree.

(al, ag, ..., an) < (bl, bg, ..

B. Invariant Set

€

Definition 7.2: DefineT,; € Tges by: (1) TdETdes under the

?gntity mapping; (2) the label field.mode € {t,a}; and

T4[V+(Ty)] is a directed tree rooted at vertéx
We denote byI'? € Tgesthe unique tree where only vertex
1 is labeled by/(1).mode = t. We denote byl'; € Tyes the
unigue tree where every vertexis labeledv.mode = t.
?finition 7.3: Define a set of tree$agent having the fields
in Table I, such that ifl’ € Tagent it satisfies the following
labeling constraints.

i. There existsB C Ty such thaﬂ“[vt]ET; [B] via the
withess).

ii. Ifi eV, T[V,AN(i)|Zitree[N(irole)nV,(i.tree)]

via the witness.

If i € Vy, theni.role € Vs andi.tree € Tges

If jomode = m, N(j) contains exactly one vertex

such that; € V,.

v. If i.mode = m, thenrs is applicable toi.

We next show thafagentis an invariant set.

Lemma 7.1: If T is a connected acyclic graph, the applica-
tion of any action in® results in a connected acyclic graph.
Proof: An inspection of the preconditions and effects of
the reconfiguration rules in Table Il shows they satisfy
Lemma 6.1. ]

Lemma 7.2: If T € Tagens then after the application of any
rule, conditionsiif, (ii) and {ii) of Definition 7.3 are true.
Proof: We need only consider applications of rulg be-
cause it is the only rule to alter;. Suppose- is applicable
to someT" € TagentWhere the verticeg and z instantiate the
vertices: and j in r;. Condition {) requiresT [V (T)]
T;[B] via witnessy for someB and conditionif) guarantees
that for all i € V,, T[V, N N(i)]%i.tree[N(i.role) N
V. (i.tree)]. Since line 3 requiresv.mode = a, B clearly

~

The following notation is useful in constructing the in-does not contaim. Since the effectin line 4 is.mode :=t,

variant set. For any tree, we denote B, (7) the set
{i € Vr | i.mode = t}. We define the functiom : {i €
Vr) | i.mode = t} — Vp- asn(i) £ i — i.role. We next
define the set of values that can appear in the figleke.

it follows thatT"[V(T')Uz] ~ T;[BUw]. Additionally since
this rewrite is recorded in the new value afree it follows
thatT[V: N N(y)] =~ y.tree[N(y.role) N V;]. Furthermore,
sincew € N(v), condition (i) holds. [ |



Lemma 7.3: If T € Tagerns then after the application of any Lemma 7.4: For everyT € Tagens if U > 0, then some
rule in ®, condition {v) and condition ¥) of Definition 7.3 action is applicable t@".

hold. Proof: Assume to the contrary thdf - 0 but no rule is
Proof: SupposeT’ € Tagems ij € E, i € V¢(T) and applicable. By condition\) of Definition 7.3, Einq # @
j.mode = m. Since no rule change awode label of ¢, implies rulers is applicable. Assum&;,,, is empty, but
V(T) C V(T"). This implies vertex; is connected to at Us > 0. Since any element o, ., — Ey,, Satisfies either
least one vertex labelegiode = t. Now suppose verticeg the precondition of ruler; or of rule o, it must be that
andz instantiate verticesandj in rule 4. The precondition Us = 0 andUg = 0. But this implies thatUs is zero. Since
of rule r4 requiresz be connected to a vertey with line 4 of rule r4 is not satisfied, line 4 of rule, is satisfied.
y.mode = t and the effect is to changg.mode to m, Now assumeUs, Us, and U are zero, but/, > 0 and
thus y will be connected to at least one vertex labeled.mode = t. If r3 is not applicable, then there can be
mode = t. Furthermore any vertex with jmode = m  at most one vertex with ij € E., andij.order(j) <
can be connected to at most one vertex withde = ¢ b;. Furthermore, ifi is the head ofk then |T{| — 1 =
since condition i{) and Definition 7.2 imply tha'[V] is > ;:cp ;4 tj.order(j). It follows thatU, > 0 implies £,
connected. Thus conditioivj of Definition 7.3 is true. Since is non-empty which contradicts our assumption tigt= 0.
the precondition of rule, line 3 implies the existence of two ThusU;, = 0 for k£ > 3 if no rule is applicable. However, we

branchegjk, jl, condition {) is met. [ |

Proposition 7.1: The setZTagentis invariant.

Proof:

The  proposition follows from Lem-

mas 7.1, 7.2, and 7.3 [ |

C. Discrete Lyapunov Function

The following sets are useful in constructing a discret€roof: WhenU,; = 0, every vertex is labeledmode = t.
Since the precondition for every rule contains at least one

Lyapunov function satisfying Definition 7.1.

TABLE Il
SETS USED IN THE DISCRETELYAPUNOV FUNCTION, U

Define a functionU : G — R® as follows

Ui(T) = |T|—|V¢|. This is the number of vertices that "

have yet to be matched to the target graph.

Us(T) = (Uy)(N — 1 — |E>p,|). The number of edges
that can be used in an application of

Us(T) = 1z >, ij-order(j) — b;. The average
distance fromb; by the branches that are too large.
Uy(T) = ZE«H b; —ij.order(j), the summed distance
of all sites to whichrs applies.

Us(T) = |Et-tal-

U6(T) = |Et—\ta| - |Etma|

In general, the dependence Bf on T is understood and

so we will write U instead of U(T"). We now show that

this function meets the requirements of a discrete Lyapun
function for our system.

have shown that the sef.;,, andE',;, are empty. Therefore
if Uy > 0, then ruler; is applicable. Sincé/; = 0 implies
U; = 0 for all otheri, U > 0 implies an action is applicable.

Lemma 7.5: For everyT' € Tagers U = 0 implies no action
is applicable.

vertex not labelednode = t, no rule is applicable. [ ]

T4)

r5) Applying r5 implies U =

Symbol  Description Lemma 7.6: For everyT € Tagens if U > 0, then the
Eta = {ij I_E dE \ i-mgde :fté\ j-mode = g}- I ﬂfle o canbe| application of any action decreasts
___ applied, members of this set must be involved. Proof: We must show that ifI’ inZagen: and r € @,
Esp, = {ij € Eta | j.mode = a = ij.order(j) > bs}. If rule ro , g . '
or r4 can be applied, a member of this set must be involved. then U(T") < U(T”). Table IV summarizes the information
Eivta= {i-j—k EbT}\ i~;n0_cle : t Aj.gbodefsﬁ_ t Ar?motile :h proved below, indicating the relative change for ed¢h
a/Ni—7j € gbi}. This is the number of size three branchgs E . . e
beginning with a vertex labelethode — . If rules 1, 4, When each rule; is applled. Here we prove this by explicitly
andrs can be applied, members of this set must be involved. looking at an application of each rule.
By, = {1 € Eia | jmode = a = ij.order(j) > bi}. r1) Ruler; labels a vertex bynode = t, decreasing/; .
B, {ij € Bia | jmode = a = ijorder(j) <bi}. Wrulers | % syunnoseij.order(j) > b; is the order of the branch
can be applied, it must be applied to two members of this .
set. beforer, splits the branch. There are two cases. In
Eima = {i—j — k € Enospit| j-mode = m}. the first case, when the branch— j — k is split,

ij.order(j) > b; and ik.order(k)’ > b;, which
implies U, < Us. In the second casd/; = Us
because only one branch (sayorder(;)’) is greater
than or equal td;. Sinceij.order(j) < ij.order(j),
Uz decreases and; is unchanged.

Supposeij and jk are merged as in rules and
ij.order(j) = ij.order(j) + ik.order(k). Suppose
ij.order(j) < b;. Thenb; — ijorder(j) = b; —
(ij.order(j) +ik.order(k)) < b; —ij.order(j) +b; —
|T}|, implying U; < Us. Now supposéj.order(j) >
bi, then|E>y,|" = |E>y, | + 1, and U} < Us.

Applying ry implies Us = [E{q spirl = |Efmal =

| ENo spiil — (| Etma| + 1) < Us. This relabeling does
not alterU; for 7 < 6.

|El/\lo Splitl = Us — 1 since
the merge eliminates one branch. The operation does
not alterU; for i < 5.

Proposition 7.2: U under thelexicographic ordering=< is

Qv

a Lyapunov function for the grammadrwith respect to the

invariant setZagens



L _[[Us] Uz [ Us [Us|Us[Us| adding or deleting edges in the communication graph, we can
:; (l] 0,ll (l] 2 2 2 create a grammar that simulates the topological behaviors o
rs 0 | (1,o) | (7,0) | 1 7 7 the system((xo, 7p), @, u, ¥).
ra || O 0 0 0 | 1 Proposition 8.2: Suppose: satisfies Proposition 8.1. Addi-
= 0 0 0 0 0 ! tionally suppose that for any’ € Zagens TET; and anyxg

TABLE IV

such thatEr C Eyx,,r). If the limit of x(t) ast — oo
DIRECTION OF CHANGE INU71, ..., Ug WHEN RULES IN® ARE APPLIED. under the dynamics‘<7: u(x T) is somex* where x*
is consistent withT', then, the limit ast — oo of every
trajectoryo of a system((xg, 7p), @, u, ), is some(x*, T*)
« T * 1 i i *
Proof: The proof follows directly from Definition 7.1 and WhereT*~g., andx* is consistent withl™.
Lemmas 7.4, 7.5, and 7.6. m Essentially the proposition says that local progress and lo
cal safety are sufficient until the tree is structurally &glent
D. Proof of Theorem 7.1 to T,

For Ty € Tagens U = 0 implies every node is labeled by  Any number of proximity functions and controllers satisfy
i.mode = t. By condition (i) of Definition 7.3,T,»£Tdes. the requirements of Theorem 8.2. Here we consider the disk
Proposition 7.1 establishe%gen: as the invariant set and graph proximity function{ij € Er, < |x; — x;| < A}
clearly Ty is in the invariant set. By Propositiod? U is In [5], graph based controllers for connectedness prasgrvi
a Lyapunov function, the proof of Theorem 7.1 then followgormation control on the disk graph communication topology

from Theorem 7.2. were introduced. The controllers have the form

VIIl. CONTINUOUS CONTROLLER SPECIFICATIONS

In the previous section, we developed an abstract gragh _ ,,,(x. ) — — Z 2(A — [Joff]]) = [Ixi —x; — off||
grammar ® for reconfiguring formation trees. The goal JEN(i ( = [loff [l = [Ixi —x; — off ||)?
of the paper is formation reconfiguration and thus we (1)

want to construct an embedded graph grammar systewhere off € R? such that||off|| < A. The global hybrid
((x0,To), ®,u, 1) so that the system converges to the desiregcheme introduced first sets the valueif on every edge to
formation. In this section, we lift the graph grammar rulesirive the agents towards consensus. Once the robots sense th
in ® to a set of embedded graph grammar rules global conditiony(x, G) = KV, the variableoff is given the
Definition 8.1: For every rule inr € ® and for every edge desired formation offset values. The scheme we propose here
ij that appears in, we constructr € @ by adding the uses the labeling changes propagated via the graph grammar

preconditionij € Eg,, . to switch the value obff locally.
Proposition 8.1: Suppose a controller. and a proximity
function ) satisfy the following specifications (0,07 if i.mode = t and j.mode = a
i Local Safety—For anyx,, T') such thatl” € A C Tagent off = { ; j.’oﬁset otherwise (2

and Er C Er,, if x = u(x,T) then for allt > 0,
ij € Er C ETw'

i Local Progress—Suppo§éc A C Tagers 7 € ¢ andh
mapsL into T. If T is static andx = u(x,T), then
there exists & such that for alt > ¢, and all edges

ij inruler, ij € Eg,. ety g dse® | istent with™*

ThenG, € T (x0,Tb, &, u, 1) < G, € T(Ty, ®). e A S CONSISERT WM ;

) ) : Proof: In [5], they introduce an edge tensiod;; =
Proof: Suppose there is a trajectoryG, € lIxi—x;—of f] 4 sh h ,
T((x0,To), @, u, ) that is not inT (T, ®). This implies A=[of7l-Tx.—x; 2nd show thaty = 3 ;. Vi; is a
that G, has a final graphl’;, but in the system(Tp, @) Lyapunov function for the system. In partlcular they show
there exists a ruler whose precondition is satisfied byth"]lt
Ty. However, the local progress condition guarantees the i SinceV;; — oo as||x; — x;[| — A, if T' is static if

Proposition 8.3: Supposely € Tagens ¢ is the disk graph,
u is defined by Equations 1 and 2, ang satisfiesij €

Er, = ij € Eg,. Then every trajectory of the
system((xo, Tp), ®, u, 1)) converges to somgx*, T*) where

pre condition of the embedded graph grammar ndlén ij € ¥(x0,T) thenVt > 0,ij € ¥(x(t),T) otherwise

Definition 8.1 is satisfied. Furthermore any sequence can be V must increase.

generated simply by waiting until the desired action satisfi  ii If the local safety condition is met at time = 0,

the geometric pre-condition of Definition 8.1. [ | thenlim;_, . x(¢) satisfies the formation constraing
Essentially® guarantees that when a rule is applied, ifthe ~ ©On €very edge. The proof is by LaSalle's invariance

rule adds an edgg the controller is still well-defined since principle.

ij € Gy. This suggests that we may abstract the behavior &ince off = (0,0)7 on edgesij wherei.mode = t and
this hybrid system as a graph grammar on two types of edggsmnode = a and sincel|of f|| is strictly less tham\, there
By adding rules that implement the changes in the commurexists a finite time ¢ satisfying the local progress condition
cation graph implied by the conditions of Proposition 8.1 byf Proposition 8.1. [ ]
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(a) Initial State. The  (b) Rulery changes (c) Rule rs merges two  (d) Another merge(e) Rulers splits a

letters indicate the the mode label of a branches of the vertex la- operation hashranch.
value of the mode vertex tom. beledm in the previous  occurred via rulery
label. shapshot. andrs.
T ) { F
a- Lot
a—1-a G—1-Q G 1,01 N
a | ., | t
\ l B ¥ i
¥
aa” t\ ad \ ad t\ ‘m/t\ b b ¢
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(f) Rule r; labels a (g9) Rulers merges (h) Another merge (i) After one more (i) The system con-
vertex mode = t. two branches. via r3 merge, rule rp verges to the desired
Dashed edges occur labels another vertex tree and formation
between vertices in mode = t. shown here.
Vi.

Fig. 2. A sample trajectory for &0 vertex system.

IX. SIMULATION '

Matlab simulations of the systefttxo, Ty, ', u, ) were |
run on randomly generated initial trees and target trees,|
T,. All simulations converged on the desired formation treé0
under isomorphism. P

Figure 2 shows a sample trajectory for a system containing
10 vertices. Each rule is applied at least once. Figure 3 shows

the value ofU and the values of/5 and Uy. 02
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— U
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__ Ul A

6|
5|

yapu

X. FUTURE WORK

There area number of obvious extensions to the simple
grammar presented here. For instance, the reconfiguratie. 3. Values of the discrete Lyapunov functibhand component&s and

algorithm we present requires a single initialization e®yt U, for the trajectory in Figure 2. Note that decreases with the application
. . . f le. Al te that wh €fy i 3d .
where in general one might prefer any number of vertices 3§ Ve "Ulé: Also note that whenever increases(/s decreases

begin the reconfiguration process. Another natural extensi

IS to ad_d_ rules to th_e gramma_r to make it more robust t0[6] M.E. Broucke. Disjoint path algorithms for planar reiguration of
the addition of deletion of vertices or edges. Furthermore, ~ identical vehicles. IPAmerican Control Conferenc&003.

there are reasonable proximity functions where the elemeri/] S. Azuma M. Ji and M. Egerstedt. Role-assignment in ragent

tarv moves of the reconfiguration algorithm must result in coordination.International Journal of Human-friendly Welfare Robotic
y Systems2006.

disconnection in the communication graph. Whether or nofg] Eric Klavins, Robert Ghrist, and David Lipsky. A gramrivat
one may make a general grammar for these systems similar approach to self-organizing robotic system&EE Transactions on

; Automatic Contragl 2006.
to what was done here is not Currently known. [9] J. M. McNew and E. Klavins. Locally interacting hybridteyns using
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