
Non-deterministic Reconfiguration of Tree Formations

John-Michael McNew Eric Klavins

Abstract— We consider a network of mobile agents in an
initially unknown acyclic network configuration and the pro b-
lem of reconfiguring them into a desired network topology
and formation geometry while maintaining connectivity in an
asynchronous network. We model the system and solution as an
embedded graph grammar and use a method oflexicographically
ordered Lyapunov functions to show the system converges non-
deterministically regardless of the initial network structure and
the order of the communication events.

I. I NTRODUCTION

Systems of networked mobile agents of increasing com-
plexity are found in automotive, aircraft, and military appli-
cations. Many of these systems are safety-critical and the
design of correct, safe and fault-tolerant communication and
control protocols that are robust to initialization is essential.
The interplay between constraints on control, geometry, and
communication and the asychrony in the network make
designing solutions difficult. Verification of correct behavior
is also problematic because the large state spaces.

To begin to address such issues, we examine a simple
class of cooperative control algorithms that captures someof
the complexity of these systems . The problem we consider
exhibits hybrid dynamics over an asynchronous network,
decentralized control under constrained communication, and
requires robustness to unknown initial conditions and incom-
plete information.

In particular, we consider a network of mobile agents
in an initially unknown acyclic network configuration and
the problem of reconfiguring them into a desired network
topology and formation geometry while maintaining connec-
tivity in an asynchronous network. Our goal is to show that
the system converges on the desired final state, regardless
of the initial condition and the order of the communica-
tion events. We model the system as anembedded graph
grammar and use a method oflexicographically ordered
Lyapunov functionsto show the system converges. We note
thatembedded graph grammarsprovide an appropriate level
of abstraction in that the algorithm presented here involves
explicit cooperation among groups of three agents, and so
would be cumbersome to express as a message passing
protocol between individual agents.

II. PREVIOUS WORK

The formation control problem where the objective is to
drive the formation error to zero is a central one in multi-

JM McNew (jmmcnew@ee.washington) is a graduate student in Electrical
Engineering at the University of Washington.

Eric Klavins (klavins@ee.washington.edu) is an AssistantProfessor in
Electrical Engineering at the University of Washington, Seattle, WA, 98195.

agent control [1]. The relationship between graph structure
and convergence is explored in [2] and [3] shows that for-
mation control can be reformulated as a consensus problem.
Solutions for formation control under communication and
sensing constraints are proposed for centralized systems
in [4] and decentralized system in [5].

Most of these results apply to formation control problems
where the assignment of an agent to fulfill a role in the
formation is known a priori. In this paper, we consider
the dynamic assignment of roles in a network where the
initial topology is unknown and where network connectivity
limits allowable motion. The optimal assignment of agents
to formation targets is examined in [6], where the prob-
lem is discretized over weighted graphs but communication
constraints are not considered. The work in [7] frames
the problem as an optimal control problem over target
rotations, target translations and target permutations. Both
papers require global information and the second suggests
sub-optimal methods due to the intractability of the problem.
Additionally [7], requires first the agents be driven to a
stage where the communication graph is fully connected. Our
paper presents a decentralized algorithm for restructuring
the network which does not require the agents begin in any
particular network structure.

In [8], a set of local interactions (agraph grammar)is syn-
thesized to solve theself-assemblyproblem where isomor-
phic copies of a desired graph are assembled from an initially
disconnected graph.Embedded graph grammars(EGGs) [9],
[11] augment the graph grammar formalism by including
local geometric pre-conditions on switching and continuous
controllers to form an suitable for modeling cooperative con-
trol scenarios undergoing asynchronous communications. In
this paper we present a control and communication protocol
to drive a set of agents from an unknowntree formation to
a desired one while maintaining connectivity in the graph
using only local communication and control. Additionally,
we simplify the notation for EGGs, building upon among
others, the notation for I/O Automata [10].

III. F RAMEWORK

A. Labeled Graphs

A labeled graphis a tupleG = (V,E, l, e) consisting
of a setV of vertices,E of edges, a functionl assigning
information l(i) to each vertexi ∈ V , and a function
e assigning informatione(ij) to each edgeij ∈ E. In
this paper, a considerable quantity of information may be
associated with each vertex or edge, and thus we use dot
notation, common in data structures, to keep track of it.
For example, if a vertexi has a field calledmodehaving

a valuea, then we writei.mode = a. Similarly, if the edge
ij has a field calledoffsettaking values inR2, then we write,
for example,ij.offset = (1.1, 3.0). In summary, we use dot
notation instead of a more cumbersome notation involving
l(i) or e(ij). If A ⊆ V , we writeG[A] to be the subgraph
of G induced by the vertices inA. We useT (for “tree”) to
represent a connected acyclic labeled graph. And we denote
by NG(i) the neighbors ofi in graphG.

The following definition allows comparison between
graphs possessing possibly different vertex and edge label
fields.
Definition 3.1: SupposeG andH are two graphs andQ is a
set of vertex and edge label fields. We define an equivalence

relation
Q
∼, whereG

Q
∼H if

1) (VG, EG) is isomorphic to(VH , EH) under some wit-
nessh and

2) For everyq ∈ Q, if q is a vertex field, for everyi ∈ VG,
i.q = h(i)H .q. Otherwise for everyij ∈ EG, ij.q =
h(i)h(j)H .q.

If this is true we sayG is structurally equivalentto H over
the fields inQ.

B. Robotic Networks and Communication

Consider a system ofN kinematic agents, where each
agenti has a continuous statexi(t) ∈ R

2. We denote the
continuous state of the entire system byx(t) ∈ R

2N = X .
An embedded graphis the pair(x, G). We use embedded
graphs to model the state of a robotic network as follows.
The vertices ofG represent the id’s of theN agents. A vertex
label, l(i), abstracts the current software states, hardware
configuration and operational mode of agenti. An edge label
e(ij) represents information required by pairs of cooperating
robots (for instance inter-robot spacing constraints) andcan
only be altered by mutual agreement.

We capture the notion of communication constraints using
a proximity functionψ : X × G → G. When its dependence
on (x, G) is clear we writeGψ to meanψ(x, G) and call
this graph the communication graph. For example, if robots
can communicate when they are less than 10 meters apart
andH = ψ(x, G), thenVH = VG and ij ∈ EH if and only
if ||xi − xj || < 10. It is typically required thatEG ⊆ EH ,
meaning that pairs of robots sending information can actually
receive it.

A formation graphF is an undirected edge labeled graph
containing a fieldij.offset ∈ R

2 and a fieldij.head ∈ VF
where if the vertices in an edge arei, j, we require that
ij.head takes values in{i, j}. We interpret these two fields
as a constraint. For instance, if(x, F) is an embedded graph
andij ∈ EF such thatij.head = j, the constraint is satisfied
whenxi − xj + ij.offset = 0, that is whenj is offset from
i by ij.offset . If the constraint is satisfied for every edge
in EF , we say thatx is consistentwith F . By associating
directionality with a label in an undirected graph, the graphs
can never have edgesij and ji with contradictory offset
fields.

A continuous controlleru for a robotic network is a
mapping fromX × G → TX (the tangent space). A

decentralized controlleru is consideredwell defined with
respect to the communication constraintsif agent i ∈ V

can calculate its control from the subgraph induced by its
neighbors in the graphG ∩Gψ [9].

IV. EMBEDDED GRAPH GRAMMARS

In this paper, the state of a system is represented by an
embedded graph(x, G). The graphG, the discrete part of
the state(x, G), can be operated on byrules that updateG.
A rule is expressed syntactically by

Rule r
Vertices : i1, ..., ik
Precondition:
P1 1

...

Pm m

Effect:
var1 := value1 m+1

...

varn := valuen m+n
The symbols i1, ..., ik are free variables that can

be instantiated by vertices inG. The preconditions
P1, ..., Pm denote propositions about vertex labels, edge
labels, vertex embedding (continuous state), or graph
topology and usei1, ..., ik as free variables. Theeffects
var1 := value1, ..., varn := valuen are updates, using
i1, ..., ik as free variables, of vertex or edge fields, or they
are updates to the graph topology. Examples of rules can
be found in Section VI, where the tree transformation
algorithm is described.

A rule r of the above form describes a relationr−→ defined
as follows. We write

(x, G)
r
−→ (x, G′)

if (1) there exist verticesj1, ..., jk ∈ VG such thatP1, ..., Pl
evaluate to true inG when the free variablesi1, ..., ik are in-
stantiated withj1, ..., jk respectively; (2)G′ is obtained from
G by applying the updatesvar1 := value1, ..., varm :=
valuem instantiated the same way; and (3) all information
and structure inG not mentioned in the updates is preserved
in G′. Note that, in this paper,x does not change upon
the application of a rule. A functionh that maps each free
variable ik to a vertexjk ∈ VG is called awitnessand
describes where the rule is applied.

A set Φ = {r1, ..., rn} is referred to as agraph grammar.
If a (local) controlleru : X × G → TX is also supplied,
then (Φ, u) is referred to as anembedded graph grammar.

A systemis a tuple((x0, G0),Φ, u, ψ) where

1) The pair(x0, G0) ∈ X is the initial state is a set of
allowable initial graphs

2) Φ is a graph grammar
3) u is a controller
4) ψ is a proximity function.

Systems produce trajectories in the usual hybrid fashion:
(1) the continuous state evolves according toẋ = u(x, G);
(2) the discrete partG of (x, G) can (but not must) change

toG′ if there exists a ruler ∈ Φ with G r
−→ G′; (3) no rule in

Φ can be infinitely often applicable without eventually being
applied (i.e.fair trajectories); (4) all vertices instantiating the
application of a ruler must be able to communicate in

We denote the set of trajectories of a system as
σ ∈ T (x0, G0,Φ, u, ψ) where for each trajectoryσ
1)r1σ, r

2
σ, ..., r

k
σ , ... denotes the sequence of rules ap-

plied, 2)h1
σ, h

2
σ, ..., h

k
σ, ... denotes the witness sequence, 3)

τ1
σ , τ

2
σ , ..., τ

k
σ , ... denotes the times the rules are applied, and

4) xσ(t) andGσ(t) denote the continuous and graph states
at time t. We omit the subscriptσ when clear.

V. PROBLEM STATEMENT

In the framework introduced in the previous section,
the main problem of the paper can be stated as follows.
SupposeTdes is a desired formation tree where each edge
field ij.offset is labeled with the desired formation offsets.
SupposeF is the set of fieldse.offset , e.head. The main
goal is:
Task 5.1: Design(Φ, u) so that every trajectory converges

to some(xf , Tf) whereTf
F
∼Tdes, andxf is consistent with

Tf .
Our approach in Section VI is to temporarily abstract away

the continuous state and consider the following task.
Task 5.2: Given a desired formation treeTdes and any initial
treeT0, design a graph grammarΦ such that for every non-
deterministic trajectory: 1) every graph in every trajectory is
a tree, and 2) every trajectory has a final graphTf , where

Tf
F
∼Tdes.
In Section VIII, we consider the continuous state and

communication constraints. First we lift the solutionΦ to
Task 5.2 to an embedded graph grammarΦ̃ by adding the
appropriate preconditions on geometry and connectivity in
the communication graph. We then show what conditions
ψ, u, and (x0, T0) must satisfy in order for the system
((x0, T0),Φ

′, u, ψ) to achieve Task 5.1. This method allows
us to build a single grammar that converges for a class of
systems with different communication constraints.

Finally we show the effectiveness of decoupling of the
asynchronous tree grammar from the continuous controller
by proposing aψ andu that satisfy these sufficient condi-
tions. In Section IX simulation results for this specific choice
of system are shown.

VI. A G RAPH GRAMMAR FOR UNIVERSAL

TREE-TO-TREE CONVERSION

The goal in this section is to solve Task 5.2. Since
maintaining a connected spanning tree in formations of
cooperating agents is a desirable property, the following
simple lemma provides constraints on the type of rules we
use.

Lemma 6.1: The set of all connected acyclic labeled graphs
of sizeN is invariant to the application of rules of the form

j

k
JJ

i

 ⇀

j

ki

.

Field Description
ij.offset The field ij.offset ∈ R

2 holds the desired offset ofj
from i.

ij.head The field ij.head ∈ {i, j} establishes an order on the
edge that is useful for formation control.

ij.order The function ij.order : {i, j} → {1, 2, ...,N}. In
particular,ij.order(i) = |T j

i | and ij.order(j) = |T i
j |

i.tree The field i.tree is either undefined (denoted⊥) or it

contains some treeTd where Td
F
∼Tdes. Additionally

these trees contain fieldsv.mode ∈ {t, a} and vw.order
as above.

i.role The fieldi.role takes values inVi.tree or it is undefined,
(denoted⊥). If i.role = v, the interpretation is thati
assumes the role ofv in i.tree.

i.mode The labelsi.mode ∈ {t, m, a} are used by the solution
grammar as follows. The labeli.mode = t indicatesi
should reconfigure its neighborhood to one structurally
equivalent to the vertex identity ini.role. The labelm
implies that vertexi should merge two of its subtrees.
The labela is the initialization label.

TABLE I

LABEL FIELDS FOR THE SOLUTION GRAMMARΦ.

Proof: SupposeT is any tree. The graphT −{ij, jk, ik} is
a forest containing 3 treesTi, Tj andTk. The transformation
above preserves the property that there is exactly one path
betweeni, j, andk and hence betweenTi,Tj, andTk.

We begin by reviewing results and terminology from
previous work [9]. SupposeT is any tree andij is any
edge inET . If we remove the edgeij, two trees remain,
one containing vertexj but not vertexi (denotedT ij) and
the other containingi but not j (denotedT ji). In [9], we
developed a graph grammar that given any connected graph
G, marksG with a spanning treeT and labels each edge
ij with |T ij | and |T ji |. Here, we build on that approach and
assume an edge fieldij.order contains these values.

The non-deterministic tree reconfiguration system is given
by the following initialization conditionT0 and graph gram-
mar Φ. Table I shows the edge and vertex label fields used
by Φ. Note that in addition to the tree composed of the
agents, the fieldi.tree can be populated with a labeled tree
corresponding to the desired topology. To avoid confusion,
if T is a tree, we denote vertices corresponding to agents
by {i, j, k...} ∈ VT and for any vertexi ∈ VT , we denote
vertices ini.tree by {v, w, ...} ∈ Vi.tree.

Initialization: We define the set of initial treesT0, where
T0 ∈ T0 is defined over the fields in Table I,T0 has only
one vertexi labeledi.mode = t, i.role = 1, and i.tree =
T 0
d whereT 0

d indicates vertex1 is labeled1.mode = t and
all other verticesw ∈ i.tree are labeledw.mode = a. All
other verticesj ∈ T0 are labeledj.mode = a, j.role =
⊥, j.tree = ⊥. Figure 1 panel (a) shows an initial graph.

Grammar:For any vertexi, if i.role = v 6= ⊥, we denote
by bi

bi = max
vw∈Ei.tree | w.mode=a

vw.order(w).

That is bi is the largest branch inN(v) remaining to be
matched. Then the non-deterministic tree reconfiguration
grammarΦ is shown in Table II.

Rule r1

Vertices : i, j
Precondition:

i.mode = t ∧ j.mode = a 1
Denote i.role by v. ∃w ∈ Ni.tree(v) such that
(w.mode = a ∧ vw.order(w) = ij.order(j))

2

G[{i, j}] = i − j 3
Effect:

w.mode := t, j.tree := i.tree 4
j.mode := t, j.role := w 5
ij.offset := vw.offset, ij.head := j 6

Rule r2

Vertices : i, j, k
Precondition:

i.mode = t ∧ j.mode = a ∧ k.mode = a 1
ij.order(j) > bi 2
jk.order(k) ≥ bi ∨ ij.order(j) − jk.order(k) ≥ bi 3

j

k
JJ

i

G[{i, j, k}] =

4
Effect:

j

ki

G[{i, j, k}] :=

5

Rule r3

Vertices : i, j, k
Precondition:

i.mode = t ∧ j.mode = a ∧ k.mode = a 1
ij.order(j) < bi ∧ ik.order(k) < bi 2

j

ki

G[{i, j, k}] =

3
Effect:

j

k
JJ

i

G[{i, j, k}] :=

4

Rule r4

Vertices : i, j, k
Precondition:

i.mode = t ∧ j.mode = a ∧ k.mode = a 1
ij.order(j) > bi 2
jk.order(k) < bi ∧ ij.order(j) − jk.order(k) < bi 3

j

k
JJ

i

G[{i, j, k}] =

4
Effect:

i.mode := m 5

Rule r5

Vertices : i, j, k
Precondition:

i.mode = m ∧ j.mode = a ∧ k.mode = a 1

j

ki

G[{i, j, k}] =

2
Effect:

j

k
JJ

i

G[{i, j, k}] :=

3
i.mode := a 4

TABLE II

RULES IN THE TREE RECONFIGURATIONGRAMMAR Φ.

Description: The basic notion is that a vertexi labeled
i.mode = t uses operations allowed by Lemma 6.1 to
rebalance the tree so that the neighborhood ofi is locally
structurally equivalent toTdes. In particular we require that
ij.order(j) = vw.order(w). When this is the case, the
branch beginning with edgeij ∈ T contains enough vertices
to be transformed into the branch beginning withvw ∈ Tdes
(although the topology of the subtree rooted atj may be
quite different than topology of the subtree rooted atw).
Groups of two or three agents may employ asynchronous
communications to apply the rules ofΦ and execute the
following basic operations.

Pass a role– Ruler1 passes a role and is applied to the tree
in Figure 1, Panel (a) via the witnessh , {i 7→ i, j 7→ k}.
That is we apply rule1 by replacingj with k and i with
i. The tree representing the agents is seen above the dashed
line. Clearly the tree satisfies the pre-conditioni.mode = t

and k.mode = a. The value ofi.tree is pictured below
the dashed line. Sinceik.order(k) = 1, we satisfy the
precondition in line 3 of ruler1 by associating vertexw
in the rule with vertex4 in i.tree.

Figure 1 Panel (b) shows the new tree formed by applying
the Effect of ruler1. That is 5.mode is given the valuet
to create a new value ofi.tree. Then j.mode becomest,
j.role becomes4, ik.offset is given the value of14.offset

and ik.head becomesk. Now the edgeik is equivalent to
the edgevw in the desired formation and agentk knows its
role in reconfiguring the topology is that of vertex4.

Split a branch– Suppose a branch beginning with edge
i − j with mode labelst − a contains too many vertices
to match any of the unmatched branches ofi.role ∈ i.tree

(line 3 of the pre-condition of ruler2). Suppose additionally,
splitting the branch beginning withi− j−k via r2 results in
one of the two branches containing at least as many vertices
as bi (line 4 of the pre-condition). This implies ruler2 is
applicable. Ruler2 is applied to the tree in Figure 1 panel
(b) via h , {i 7→ i, j 7→ l, k 7→ j} to yield the tree in
panel(c).

Merge two branches– If i is labeled i.mode = t and
there are two branches beginning with edgesik, ij where
ij.orderj < bi and ik.orderk < bi. Then applying rule
r3 merges these branches into a larger branch (as shown
in Figure 2(f)-2(g)). Alternatively when a branchi − j − k

with mode labelst− a− a and ij.order(j) > bi cannot be
split because the resulting branches would both be smaller
than bi, rulesr4 and r5 are applied to merge subtrees ofj
(as shown in Figure 2(a) - 2(c)).

VII. PROOF OFCORRECTNESS

Theorem 7.1: Let Tdes be any desired formation tree and
T0 ∈ T0 an initial tree such that|Tdes| = |T0|. Then every
reachable graph of the system of the system(T0,Φ) is a tree

and every trajectory has a final graphTf such thatTf
F
∼Tdes.

The main thrust of this section is to show that even though
the grammar contains both merge and split operations, no
trajectories exhibit livelock or deadlock behaviors.

order(m)=1

order(k)= 2

order(j)=1

k

t,1,T
d

0i

l

a,^,^j

t1a3

a2

a4

t,5,T
d
1k

t,1,T
d

1i

l

j

t1a3

a2

t4

t,5,T
d
1k

t,1,T
d

1i

l

j

t1a3

a2

t4

t,5,T
d
1k

t,1,T
d
1i

t, 2, T
d
2 l

j

t1a3

t2

t4

T
0

T
1

T
2

T
3

i.tree(0) = T
d

0 i.tree(1) = T
d

1 i.tree(2) = T
d

1 i.tree = T
d

2

r
1

r
2 r

1

(a) (b) (c) (d)

order(2)= 1

order(5)=1

order(3)=1

mode, role, treevertex

a,^,^

a,^,^
a,^,^

a,^,^

a,^,^

a,^,^

a,^,^

...

modevertex

order(2)= 1

order(5)=1

order(3)=1

order(2)= 1

order(5)=1

order(3)=1

order(2)= 1

order(5)=1

order(3)=1

order(m)=1

order(k)= 2

order(j)=1

order(m)=1

order(k)= 1

order(j)=1

order(m)=1

order(k)= 1

order(j)=1

Fig. 1. A partial trajectory the sequence of graphsTk representing the agents is shown above the dashed line. The value of the fieldi.tree at timek is
shown below the dashed line. The green edges and vertices indicate the growing isomorphism betweenTk and i.tree(k). For every edgeij, the relevant
values ofij.order(j) are shown. Panel (a) shows the initial graph where agenti is labeled withi.role = 1. Sinceij.order(j) = 1 and14.order(4) = 1,
rule r1 is applied via the witnessi 7→ i, j 7→ k and vertexw in rule r1 is associated with vertex4. The resulting treeT1 appears in panel (b). In panel
(b), the largest unmatched branch orderbi = 3. Sinceil.order(l) > bi, rule r2 is applied yieldingT2 in panel (c). No update ofi.tree occurs. Finally
rule r1 is applied toil. Note in panel (d),l.tree 6= k.tree but the structural equivalence witnessed byi.role, l.role, k.role is consistent.

A. Method of Proof

In graph grammars the order in which actions are applied
is non-deterministic. The resulting state spaces are large
and directly exploring them using a method such as model
checking is daunting [12]. In [9] we introduced the notion
of a lexicographically ordered discrete Lyapunovfunction as
a method for proving that systems converge to a desired set
of graphs. We briefly describe the method here.

Definition 7.1: SupposeΦ is a set of rules andA ⊂ G is
invariant to applications of rules inΦ. Let � be an ordering
on R

k with an unique zero element. A functionU : A→ R
k

is a discrete Lyapunov functionfor the graph grammarΦ if
for all G ∈ A,

i U(G) ≺ 0 implies at least one rule is applicable.
ii U(G) = 0 implies no rule is applicable.
iii When U(G) ≻ 0, every applicable ruler decreases

U.

Theorem 7.2 (from [9]):Suppose(G0,Φ) is a system,P
is a set of desired final graphs,A is set of graphs invariant to
the application of rules inΦ andU is a discrete Lyapunov
function such thatU−1(0) ⊆ P . If G0 ∈ A, then every
trajectory converges to a final graph inP .

We use thelexicographic ordering(Rn,�) defined by

(a1, a2, ..., an) ≺ (b1, b2, ..., bn)

if a1 < b1 or there exists ank such thatai = bi for all i ≤ k

and ak+1 < bk+1. Additionally if any rule r is applied to
any treeT , we denote byT ′ andfield′ the new tree and the
value offield in the new tree.

B. Invariant Set

The following notation is useful in constructing the in-
variant set. For any tree, we denote byV t(T) the set
{i ∈ VT | i.mode = t}. We define the functionη : {i ∈
VT) | i.mode = t} → VT∗

d
as η(i) , i 7→ i.role. We next

define the set of values that can appear in the fieldi.tree.

Definition 7.2: DefineTd ∈ Tdes by: (1) Td
F
∼Tdes under the

identity mapping; (2) the label fieldv.mode ∈ {t, a}; and
(3) Td[V t(Td)] is a directed tree rooted at vertex1.

We denote byT 0
d ∈ Tdes the unique tree where only vertex

1 is labeled byl(1).mode = t. We denote byT ∗
d ∈ Tdes the

unique tree where every vertexv is labeledv.mode = t.
Definition 7.3: Define a set of treesTagent having the fields
in Table I, such that ifT ∈ Tagent it satisfies the following
labeling constraints.

i. There existsB ⊂ T ∗
d such thatT [V t]

F
∼T ∗

d [B] via the
witnessη.

ii. If i ∈ V t, T [V t∩N(i)]
F
∼i.tree[N(i.role)∩V t(i.tree)]

via the witnessη.
iii. If i ∈ V t, theni.role ∈ VT∗

d
and i.tree ∈ Tdes.

iv. If j.mode = m, N(j) contains exactly one vertexi
such thati ∈ V t.

v. If i.mode = m, thenr5 is applicable toi.

We next show thatTagent is an invariant set.
Lemma 7.1: If T is a connected acyclic graph, the applica-
tion of any action inΦ results in a connected acyclic graph.
Proof: An inspection of the preconditions and effects of
the reconfiguration rules in Table II shows they satisfy
Lemma 6.1.

Lemma 7.2: If T ∈ Tagent, then after the application of any
rule, conditions (i), (ii) and (iii) of Definition 7.3 are true.
Proof: We need only consider applications of ruler1, be-
cause it is the only rule to alterV t. Supposer1 is applicable
to someT ∈ Tagent where the verticesy andz instantiate the
verticesi and j in r1. Condition (i) requiresT [V t(T)] ≃
T ∗
d [B] via witnessη for someB and condition (ii) guarantees

that for all i ∈ V t, T [V t ∩ N(i)]
F
∼i.tree[N(i.role) ∩

V t(i.tree)]. Since line 3 requiresw.mode = a, B clearly
does not containw. Since the effect in line 4 isw.mode := t,
it follows thatT ′[V t(T)∪z] ≃ T ∗

d [B∪w]. Additionally since
this rewrite is recorded in the new value ofz.tree it follows
that T [V t ∩N(y)] ≃ y.tree[N(y.role) ∩ V t]. Furthermore,
sincew ∈ N(v), condition (iii) holds.

Lemma 7.3: If T ∈ Tagent, then after the application of any
rule in Φ, condition (iv) and condition (v) of Definition 7.3
hold.
Proof: SupposeT ∈ Tagent, ij ∈ E, i ∈ V t(T) and
j.mode = m. Since no rule change amode label of t,
V t(T) ⊆ V (T ′). This implies vertexj is connected to at
least one vertex labeledmode = t. Now suppose verticesy
andz instantiate verticesi andj in rule r4. The precondition
of rule r4 requires z be connected to a vertexy with
y.mode = t and the effect is to changey.mode to m,
thus y will be connected to at least one vertex labeled
mode = t. Furthermore any vertexj with j.mode = m

can be connected to at most one vertex withmode = t

since condition (ii) and Definition 7.2 imply thatT [V t] is
connected. Thus condition (iv) of Definition 7.3 is true. Since
the precondition of ruler4 line 3 implies the existence of two
branchesjk, jl, condition (v) is met.

Proposition 7.1: The setTagent is invariant.
Proof: The proposition follows from Lem-
mas 7.1, 7.2, and 7.3

C. Discrete Lyapunov Function

The following sets are useful in constructing a discrete
Lyapunov function satisfying Definition 7.1.

Symbol Description
Eta = {ij ∈ E | i.mode = t ∧ j.mode = a}. If rule r1 can be

applied, members of this set must be involved.
E>bi

= {ij ∈ Eta | j.mode = a ⇒ ij.order(j) > bi}. If rule r2

or r4 can be applied, a member of this set must be involved.
Et¬ta = {i − j − k ∈ T | i.mode = t ∧ j.mode 6= t ∧ k.mode =

a∧ i− j ∈ gbi}. This is the number of size three branches
beginning with a vertex labeledmode = t. If rules r2, r4,
andr5 can be applied, members of this set must be involved.

E≥bi
= {ij ∈ Eta | j.mode = a ⇒ ij.order(j) ≥ bi}.

E<bi
{ij ∈ Eta | j.mode = a ⇒ ij.order(j) < bi}. If rule r3

can be applied, it must be applied to two members of this
set.

Etma = {i − j − k ∈ ENo Split | j.mode = m}.

TABLE III

SETS USED IN THE DISCRETELYAPUNOV FUNCTION, U

Define a functionU : G → R
6 as follows

• U1(T) = |T |− |V t|. This is the number of vertices that
have yet to be matched to the target graph.

• U2(T) = (U1)(N − 1 − |E≥bi |). The number of edges
that can be used in an application ofr3.

• U3(T) = 1
|E>bi |

∑
E>bi

ij.order(j) − bi. The average
distance frombi by the branches that are too large.

• U4(T) =
∑

E<bi
bi− ij.order(j), the summed distance

of all sites to whichr3 applies.
• U5(T) = |Et¬ta|.
• U6(T) = |Et¬ta| − |Etma|

In general, the dependence ofU on T is understood and
so we will write U instead ofU(T). We now show that
this function meets the requirements of a discrete Lyapunov
function for our system.

Lemma 7.4: For everyT ∈ Tagent, if U ≻ 0, then some
action is applicable toT .
Proof: Assume to the contrary thatU ≻ 0 but no rule is
applicable. By condition (v) of Definition 7.3,Etma 6= ∅

implies rule r5 is applicable. AssumeEtma is empty, but
U5 > 0. Since any element ofEt¬ta − Etma satisfies either
the precondition of ruler5 or of rule r2, it must be that
U5 = 0 andU6 = 0. But this implies thatU3 is zero. Since
line 4 of rule r4 is not satisfied, line 4 of ruler2 is satisfied.

Now assumeU3, U5, andU6 are zero, butU4 > 0 and
i.mode = t. If r3 is not applicable, then there can be
at most one vertexj with ij ∈ Eta and ij.order(j) <

bi. Furthermore, ifi is the head ofk then |T ik| − 1 =∑
ij∈E,j 6=k ij.order(j). It follows thatU4 > 0 impliesE>bi

is non-empty which contradicts our assumption thatU3 = 0.
ThusUk = 0 for k ≥ 3 if no rule is applicable. However, we
have shown that the setsE<bi andE>bi are empty. Therefore
if U1 > 0, then ruler1 is applicable. SinceU1 = 0 implies
Ui = 0 for all otheri, U ≻ 0 implies an action is applicable.

Lemma 7.5: For everyT ∈ Tagent, U = 0 implies no action
is applicable.
Proof: WhenU1 = 0, every vertex is labeledi.mode = t.
Since the precondition for every rule contains at least one
vertex not labeledmode = t, no rule is applicable.

Lemma 7.6: For every T ∈ Tagent, if U ≻ 0, then the
application of any action decreasesU.
Proof: We must show that ifT inTagent and r ∈ Φ,
thenU(T) ≺ U(T ′). Table IV summarizes the information
proved below, indicating the relative change for eachUi
when each rulerj is applied. Here we prove this by explicitly
looking at an application of each rule.
r1) Rule r1 labels a vertex bymode = t, decreasingU1.
r2) Supposeij.order(j) > bi is the order of the branch

before r2 splits the branch. There are two cases. In
the first case, when the branchi − j − k is split,
ij.order(j)′ ≥ bi and ik.order(k)′ ≥ bi, which
implies U ′

2 < U2. In the second case,U ′
2 = U2

because only one branch (sayij.order(j)′) is greater
than or equal tobi. Sinceij.order(j)′ < ij.order(j),
U3 decreases andU1 is unchanged.

r3) Supposeij and jk are merged as in ruler3 and
ij.order(j)′ = ij.order(j) + ik.order(k). Suppose
ij.order(j)′ < bi. Then bi − ij.order(j)′ = bi −
(ij.order(j)+ ik.order(k)) < bi− ij.order(j)+ bi−
|T ik|, implying U ′

4 < U4. Now supposeij.order(j)′ >
bi, then |E≥bi |

′ = |E≥bi | + 1, andU ′
2 < U2.

r4) Applying r4 implies U ′
6 = |E′

No Split| − |E′
tma| =

|ENo Split| − (|Etma| + 1) < U6. This relabeling does
not alterUi for i < 6.

r5) Applying r5 implies U ′
5 = |E′

No Split| = U5 − 1 since
the merge eliminates one branch. The operation does
not alterUi for i < 5.

Proposition 7.2: U under thelexicographic ordering� is
a Lyapunov function for the grammarΦwith respect to the
invariant setTagent.

U1 U2 U3 U4 U5 U6

r1 ↓ ↓ 0 0 0 0
r2 0 (0, ↓) ↓ ? ? ?
r3 0 (↓, 0) (?, 0) ↓ ? ?
r4 0 0 0 0 ↓ ↑
r5 0 0 0 0 0 ↓

TABLE IV

DIRECTION OF CHANGE INU1, ..., U6 WHEN RULES INΦ ARE APPLIED.

Proof: The proof follows directly from Definition 7.1 and
Lemmas 7.4, 7.5, and 7.6.

D. Proof of Theorem 7.1

For Tf ∈ Tagent, U = 0 implies every node is labeled by

i.mode = t. By condition (i) of Definition 7.3,Tf
F
∼Tdes.

Proposition 7.1 establishesTagent as the invariant set and
clearly T0 is in the invariant set. By Proposition?? U is
a Lyapunov function, the proof of Theorem 7.1 then follows
from Theorem 7.2.

VIII. C ONTINUOUS CONTROLLER SPECIFICATIONS

In the previous section, we developed an abstract graph
grammar Φ for reconfiguring formation trees. The goal
of the paper is formation reconfiguration and thus we
want to construct an embedded graph grammar system
((x0, T0), Φ̃, u, ψ) so that the system converges to the desired
formation. In this section, we lift the graph grammar rules
in Φ to a set of embedded graph grammar rulesΦ̃ .
Definition 8.1: For every rule inr ∈ Φ and for every edge
ij that appears inr, we construct̃r ∈ Φ̃ by adding the
preconditionij ∈ EGψ .

Proposition 8.1: Suppose a controlleru and a proximity
functionψ satisfy the following specifications

i Local Safety–For any(x0, T) such thatT ∈ A ⊂ Tagent

andET ⊆ ETψ , if ẋ = u(x, T) then for all t > 0,
ij ∈ ET ⊆ ETψ .

ii Local Progress–SupposeT ∈ A ⊂ Tagent, r ∈ Φ andh
mapsL into T . If T is static andẋ = u(x, T), then
there exists atf such that for allt ≥ tf and all edges
ij in rule r, ij ∈ EGψ .

ThenGσ ∈ T (x0, T0, Φ̃, u, ψ) ⇔ Gσ ∈ T (T0,Φ).
Proof: Suppose there is a trajectoryGσ ∈
T ((x0, T0), Φ̃, u, ψ) that is not inT (T0,Φ). This implies
that Gσ has a final graphTf , but in the system(T0,Φ)
there exists a ruler whose precondition is satisfied by
Tf . However, the local progress condition guarantees the
pre condition of the embedded graph grammar ruler′ in
Definition 8.1 is satisfied. Furthermore any sequence can be
generated simply by waiting until the desired action satisfies
the geometric pre-condition of Definition 8.1.

Essentially,̃Φ guarantees that when a rule is applied, if the
rule adds an edgeij the controlleru is still well-defined since
ij ∈ Gψ. This suggests that we may abstract the behavior of
this hybrid system as a graph grammar on two types of edges.
By adding rules that implement the changes in the communi-
cation graph implied by the conditions of Proposition 8.1 by

adding or deleting edges in the communication graph, we can
create a grammar that simulates the topological behaviors of
the system((x0, T0), Φ̃, u, ψ).
Proposition 8.2: Supposeu satisfies Proposition 8.1. Addi-
tionally suppose that for anyT ∈ Tagent, T

F
∼T ∗

d and anyx0

such thatET ⊆ Eψ(x0,T). If the limit of x(t) as t → ∞
under the dynamicṡx = u(x, T) is somex

∗ where x
∗

is consistent withT , then, the limit ast → ∞ of every
trajectoryσ of a system((x0, T0), Φ̃, u, ψ), is some(x∗, T ∗)

whereT ∗T∼des andx
∗ is consistent withT ∗.

Essentially the proposition says that local progress and lo-
cal safety are sufficient until the tree is structurally equivalent
to Tdes.

Any number of proximity functions and controllers satisfy
the requirements of Theorem 8.2. Here we consider the disk
graph proximity function{ij ∈ ETψ ⇔ |xi − xj | < ∆}
In [5], graph based controllers for connectedness preserving
formation control on the disk graph communication topology
were introduced. The controllers have the form

ẋi = ui(x, T) = −
∑

j∈N(i)

2(∆ − ||off ||) − ||xi − xj − off ||

(∆ − ||off || − ||xi − xj − off ||)2

(1)
whereoff ∈ R

2 such that||off || < ∆. The global hybrid
scheme introduced first sets the value ofoff on every edge to
drive the agents towards consensus. Once the robots sense the
global conditionψ(x, G) = KN , the variableoff is given the
desired formation offset values. The scheme we propose here
uses the labeling changes propagated via the graph grammar
to switch the value ofoff locally.

off =

{
(0, 0)T if i.mode = t andj.mode = a

ij.offset otherwise.
(2)

Proposition 8.3: SupposeT0 ∈ Tagent, ψ is the disk graph,
u is defined by Equations 1 and 2, andx0 satisfiesij ∈
ET0

=⇒ ij ∈ EGψ . Then every trajectoryσ of the
system((x0, T0), Φ̃, u, ψ) converges to some(x∗, T ∗) where

T ∗F∼Tdes andx
∗ is consistent withT ∗.

Proof: In [5], they introduce an edge tensionVij =
||xi−xj−off ||

∆−||off ||−||xi−xj ||
and show thatV =

∑
ij∈E Vij is a

Lyapunov function for the system. In particular they show
that

i SinceVij → ∞ as ||xi − xj || → ∆, if T is static if
ij ∈ ψ(x0, T) then∀t > 0, ij ∈ ψ(x(t), T) otherwise
V must increase.

ii If the local safety condition is met at timet = 0,
thenlimt→∞ x(t) satisfies the formation constraintoff

on every edge. The proof is by LaSalle’s invariance
principle.

Since off = (0, 0)T on edgesij where i.mode = t and
j.mode = a and since||off || is strictly less than∆, there
exists a finite timetf satisfying the local progress condition
of Proposition 8.1.

t

a

aa

a

a

a

a

a

a

(a) Initial State. The
letters indicate the
value of the mode
label.

t
aa

a

a

a

a

a

a

m

(b) Rule r4 changes
the mode label of a
vertex tom.

...

t
aa

a

a

a

a

a

a

a

(c) Rule r5 merges two
branches of the vertex la-
beledm in the previous
snapshot.

t
aa

a

a

a

a

a

a

a

(d) Another merge
operation has
occurred via ruler4

and r5.

t aa

a

a

a

a

a

a

a

(e) Ruler2 splits a
branch.

t

t

aa

a

aa

a

a

a

(f) Rule r1 labels a
vertex mode = t.
Dashed edges occur
between vertices in
V t.

t

t

a

aa

aa

a

a

a

(g) Ruler3 merges
two branches.

t

t

a

aa

a
a

a

a

a

(h) Another merge
via r3

...

t
t

t

a

a

a
a

a

a

a

(i) After one more
merge, rule r1

labels another vertex
mode = t.

t

t

t

t
tt

t

t

t

t

(j) The system con-
verges to the desired
tree and formation
shown here.

Fig. 2. A sample trajectory for a10 vertex system.

IX. SIMULATION

Matlab simulations of the system(x0, T0,Φ
′, u, ψ) were

run on randomly generated initial trees and target trees,
Td. All simulations converged on the desired formation tree
under isomorphism.

Figure 2 shows a sample trajectory for a system containing
10 vertices. Each rule is applied at least once. Figure 3 shows
the value ofU and the values ofU3 andU4.

X. FUTURE WORK

There area number of obvious extensions to the simple
grammar presented here. For instance, the reconfiguration
algorithm we present requires a single initialization vertex,
where in general one might prefer any number of vertices to
begin the reconfiguration process. Another natural extension
is to add rules to the grammar to make it more robust to
the addition of deletion of vertices or edges. Furthermore,
there are reasonable proximity functions where the elemen-
tary moves of the reconfiguration algorithm must result in
disconnection in the communication graph. Whether or not
one may make a general grammar for these systems similar
to what was done here is not currently known.

REFERENCES

[1] B. Young J. Lawton, R. Beard. A decentralized approach toformation
maneuvers.IEEE Trans. on Robotics and Automation, 2003.

[2] R. Olfati-Saber and R. Murray. Consensus problems in networks of
agents with switching topologies and time delays.IEEE Transactions
on Automatic Control, 2004.

[3] J. Alexander Fax and Richard Murray. Graph laplacians and stabiliza-
tion of vehicle formations. In15th IFAC Congress, 2002.

[4] G. Pappas M. Zavlanos. Potential fields for maintaining connectivity
of mobile networks.IEEE Trans. on Robotics and Automation, 2007.

[5] M. Ji and M. Egestedt. Distributed formation control whil preserving
connectedness. InConference on Decision and Control, 2006.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

N
o
rm

a
li
z
e
d
 L

y
a
p
u
n
o
v
 V

a
lu

e
s

U3

U4

U

Fig. 3. Values of the discrete Lyapunov functionU and componentsU3 and
U4 for the trajectory in Figure 2. Note thatU decreases with the application
of every rule. Also note that wheneverU4 increases,U3 decreases.

[6] M.E. Broucke. Disjoint path algorithms for planar reconfiguration of
identical vehicles. InAmerican Control Conference, 2003.

[7] S. Azuma M. Ji and M. Egerstedt. Role-assignment in multi-agent
coordination.International Journal of Human-friendly Welfare Robotic
Systems, 2006.

[8] Eric Klavins, Robert Ghrist, and David Lipsky. A grammatical
approach to self-organizing robotic systems.IEEE Transactions on
Automatic Control, 2006.

[9] J. M. McNew and E. Klavins. Locally interacting hybrid sytems using
embedded graph grammars. InProceedings of the Conference on
Decision and Control, 2006.

[10] N. Lynch. Distributed Algorithms. 1996.
[11] J. McNew, E. Klavins, and M. Egerstedt. Solving coverage problems

using embedded graph grammars.Hybrid System:Computation and
Control, 2007.

[12] John-Michael McNew and Eric Klavins. Model-checking and control
of self-assembly. InAmerican Control Conference, 2006.

