
Model-Checking and Control of Self-Assembly

John-Michael McNew Eric Klavins

Department of Electrical Engineering
University of Washington

Seattle, WA 98195
{jmmcnew, klavins}@ee.washington

Abstract— Graph grammars can be used to model highly
distributed systems where local interaction rules controlfor-
mation or self-assembly tasks. In this paper, we explore model-
checking graph grammar systems, introducing thezero-one-
many collapse as a way of reducing the usually enormous
number of states and transitions produced by a graph grammar
system. From this collapse, we also define acanonical initial
graph, that captures some of the characteristic behavior of
larger graphs with the same zero-one-many collapse. Finally, we
show through examples how these results allow us to effectively
reason about the behavior of a graph grammar – and also
how to improve a graph grammar based on an analysis of its
collapsed Kripke Structures.

I. I NTRODUCTION

The control of local interactions in systems involving
large numbers of vehicles or robots in highly distributed
environments can result in predictable global behaviors, such
as formation forming, flocking, swarming and coverage. We
have demonstrated the use ofgraph grammars[9] to define
local interaction rules for formation, assembly and other
tasks [7], [8] and have implemented the technique onself-
assembling robots[1].

An important goal with these systems is to prove that the
behaviors admitted by a graph grammar are correct. Also we
may wish tosynthesizenew graph grammars from behavioral
specifications. Therefore, in this paper, we begin to explore
the use ofModel-Checking[3] systems defined by graph
grammars. The main difficultly is that the transition system
or Kripke Structureon the set of graphs reachable via a
graph grammar from an initial graph usually contains an
enormous number of states and transitions. This is a well
known problem with model-checking concurrent systems,
and for some interleaved systemsPartial Order Reduction
has proven an often-successful approach.

In this paper, we explore systems that assemble robots
into groups. In these systems there is often a good deal
of structure that we can use to effectivelycollapse[2] the
Kripke Structure induced by a graph grammar to a size that
is amenable to model-checking. In particular, we examine
what is called thezero-one-manycollapse, which ignores the
difference between having two or more of a given assembly
type. From this collapse, we also define acanonical initial
graph, that captures some of the characteristic behavior of
larger initial graphs with the same zero-one-many collapse.
Finally, we show through examples how these results allow

us to effectively reason about the behavior of a graph
grammar – and also how to improve a graph grammar based
on an analysis of its collapsed Kripke Structures.

II. RELATED WORK

Graph theory underlies much of the work in cooperative
control [4] [6]. However, many methods require a specific
initial topology. Klavins, Ghrist, and Lipsky [9] introduced
graph grammars to assemble pre-specified graph topologies.
By restricting rewrites to small subgraphs, graph grammars
provide a useful method to program the concurrent behavior
of large decentralized systems of robots. An application of
graph grammars to robotic systems was demonstrated in [1]
where free-floating robots used graph grammars to assemble
into larger structures in a predictable and robust manner.

The verification of control strategies for groups of robots
is largely unexplored territory. In [5], Fainekos, Gazit, and
Pappas applied model-checking to path planning for single
robot systems. We too use model-checking and our main
point of departure is the paper by Clarke [2], where the
notion of a collapsedKripke Structure is introduced as a
method to reduce the size of the state space. Furthermore,
Baldan [10] and Rensink [11] introduced abstractions and
collapsings for classes of graph grammars used in modeling
software systems.

III. SYSTEMS ONGRAPHS

A. Graph Grammars

A simple labeled graphover an alphabetΣ is a triple
G = (V, E, l) where V is a set ofvertices, E is a set
of edges, and l : V → Σ is a labeling function. In this
paper, a graph is a model of thenetwork topologyof an
interconnected collection of robots, vehicles or particles. A
vertexx corresponds to the index of a robot. The presence of
an edgexy corresponds to a physical and/or communication
link between robotsx and y. The labell(x) of robot x is
used to keep track of local information and may also indicate
the operational mode of the robot.

A graph grammar consists of a setΦ of rules. Each rule
r = (L, R) is a pair of labeled graphs over some small vertex
setVL = VR. Let G be a larger graph representing a possible
state of a system and leth be an injective, label and edge
preserving map fromVL into G. The pair (r, h) describes

an action onG that produces a new graphG′ = (V, E′, l′)
defined by

E′ = (E − {h(x)h(y)|xy ∈ EL})

∪{h(x)h(y) | xy ∈ ER}

l′(x) =

{
l(x) if x 6∈ h(VL)
lR ◦ h−1(x) otherwise.

That is, we replaceh(L) (which is a copy ofL) with
h(R) in the graphG. We write G

r,h
−−→ G′ or equivalently

G′ = f(r,h)(G)to denote thatG′ was obtained fromG by
the application of(r, h).

A system(G0, Φ) consists of an initial graphG0 and a set
of rulesΦ. A trajectory is a (finite or infinite) sequence

G0
r1,h1
−−−−→ G1

r2,h2
−−−−→ G2

r3,h3
−−−−→ ...

whereri ∈ Φ. If the sequence is finite, then we require that
there is no rule inΦ applicable to the terminal graph. The
set of all graphs reachable fromG0 via some trajectory is
called thereachable setR(G0, Φ). The set of all connected
components of graphs inR(G0, Φ) up to isomorphism is de-
notedC(G0, Φ). In particular, we suppose that each reachable
component type has a single representative inC(G0, Φ). If no
rules inΦ can alter a reachable component, the component
is said to bestable. The set of stable components is denoted
S(G0, Φ).

Example 3.1:Define a rule set by

Φ =

{
a a ⇒ b − c,
a b ⇒ d − e.

Suppose thatG0 = {{1, 2, ...1500}, ∅, λx.a}. Here λx.a
is the function assigning the labela to all vertices. The
components of the system areC(G0, Φ1) = {a , b −
c , d − e − c }, where b − c indicates a robot labeled
b is connected by an edge to a robot labeledc. N

B. Propositions About Graphs

Let G be the set of all labeled, finite graphs. By a
proposition, we simply mean a subsetP ⊆ G of graphs.
By defining propositions in this manner, we avoid having to
define a syntax and semantics for logical statements about
graphs. Informally, we will describe propositions by logical
formula and use double brackets to denote the set of graphs
that satisfy the formula. For example,

[[l(1) = b ∧ ∃x∃y.xy ∈ E]]

denotes the set of graphsG = (V, E, l) such that1 ∈ V ,
l(1) = b and E 6= ∅. In general, any closed formula about
labels and edges using finite quantification overV or E, and
using constant symbols for elements inV is permitted.

Example 3.2:An example propositionP for the system
(G0, Φ1) defined in Example 3.1 is given by

P = [[All components are isomorphic tod − e − c]].N
Definition 3.1: Let ∼⊆ G × G be an equivalence relation

onG. A propositionP is preservedby∼ if, for all G, G′ ∈ G,
if G ∼ G′ then

G ∈ P ⇔ G′ ∈ P.

If AP is a set of propositions, thenAP∼ is the subset of
propositions inAP that are preserved.

We will often wish to know what propositions are pre-
served by a given equivalence relation. For example, suppose
∼ is the relationlabeled graph isomorphism, denoted≃.
Then any proposition that can be represented by a formula
not using constant symbols to represent vertices inV is
preserved by≃.

IV. M ODEL-CHECKING GRAPH GRAMMARS

A Kripke StructureM over propositionsAP is a four-
tuple M = (S, S0, R, L) whereS is a set of states,S0 ⊆ S
is a finite subset ofS, R is a total transition relation overS,
andL : S → 2AP is a function that labels each states with
the propositions inAP that are true ins. To save space we
do not reviewCTL∗ logic, but refer the interested reader
to [3].

Definition 4.1: The concrete Kripke structureof a graph
grammar system(G0, Φ) is the structure

M(G0, Φ) = (R(G0, Φ), {G0}, R, L)

where

i. R(G, G′) if and only if there exists a ruler ∈ Φ and
a monomorphismh such thatG

r,h
−−→ G′.

ii. L(G) = {P | G ∈ P}.
Two problems arise immediately. First, the size of

R(G0, Φ) can make the concrete Kripke structure pro-
hibitively large for standard model-checking algorithms.
Even on-the-fly algorithms have difficulty when the number
of states reachable in one step from a given state is large.
To illustrate the problem, for the system in Example 3.1, the
number of unique graphs in the reachable set,|R(G0, Φ)|,
is greater than1500!. To model check systems represented
by graph grammars it is clear we must develop efficient
methods of reducing the number of states to be explored.
Second, the structure depends on the initial graph. For
example, a grammar that directs the assembly of components
of size 5 will have different reachable sets depending on
whether the size of the initial graph is congruent to 5 or
not. Nevertheless, under somecollapsingsof the concrete
Kripke structure, different initial graphs will result in the
same Kripke structures. Additionally the collapsed structure
usually has substantially fewer states.

In the following definition [G]∼ denotes the set of all
graphs equivalent toG under a fixed equivalence relation
∼. The following definition is standard.

Definition 4.2: Let M(G0, Φ) = (S, S0, R, L) be the con-
crete Kripke structure for(G0, Φ). Let ∼ be an equivalence
relation onS. The collapsed Kripke structurefor (G0, Φ)
induced by∼ is M∼(G0, Φ) = (S′, S′

0, R
′, L′) where

i. S′ = {[G] | G ∈ S}
ii. S′

0 = {[G0]}.
iii. ([G], [G′]) ∈ R′ if and only if there existH ∈ [G] and

H ′ ∈ [G′] such that(H, H ′) ∈ R.
iv. L : S′ → 2AP∼ whereL′([G]) = L(G) ∩ AP∼.

The following proposition summarizes the properties of a
collapsed Kripke structure. Note that “�” is the simulation
relation [3, Ch. 11].

Proposition 4.1:Let M∼ be the Kripke structure induced
from M by the equivalence relation∼. Then

i. M � M∼.
ii. [3, Theorem 16] If f is an ACTL∗ formula and if

M∼ |= f , thenM |= f .
The first property states that every behavior ofM is also

a behavior ofM∼. The second property allows us to model
check M∼ to deduce properties aboutM . However, we
are limited to the basic propositions inAP∼ about graphs
that are common to entire equivalence classes, and we are
limited to checkingACTL∗ formulas. Furthermore, by the
first property, counterexamples obtained in checkingM∼ are
not necessarily counterexamples inM . Nevertheless, when
faced with the daunting size of the state space ofM , we
have little other recourse than to consider collapsings.

V. TWO USEFUL COLLAPSINGS

A. Isomorphism

The most obvious equivalence relation on graphs is graph
isomorphism. This is in fact quite natural given that the gram-
mars we consider regard all vertices as essentially identical.
In the context of self-assembly, it is useful to represent an
equivalence class generated by the isomorphism relation by
listing the number of each component type present in graphs
in the class. Thus, suppose thatC(G0, Φ) = {C1, C2, ...}.
Thenv : C(G0, Φ) → N represents all graphsG ∈ R(G0, Φ)
with v(1) components isomorphic toC1, v(2) components
isomorphic toC2 and so on. We write these representatives
in vector notation. For the system presented in Example 3.1
where C1 is a component of typea, C2 = b − c and
C3 = e − d − c, the vector

v = (3, 2, 497)T

denotes thatv(1) = 3, v(2) = 2 andv(3) = 497. For each
component typeCj ,we denote the basis vector asĈj , where
Ĉj(i) is equal to1 if i = j and equal to zero otherwise. Ifv
represents the equivalence class[G]≃ of a graphG, we write
G |= v to denote thatG is consistent withv and we may
write vG instead of justv. Note, if H |= vG, thenH ≃ G.

Also, in keeping with the self-assembly paradigm which
is typically addressed in the context of statistical mechanics,
we call v an isomorphism macrostate. Additionally, we
denote the set of reachable isomorphism macrostates by
R≃(G0, Φ) = {vG | G ∈ R(G0, Φ)}.

Let G and G′ be graphs and letvG,vG′ denote the
associated isomorphism macrostates. Let(r, h) be an action
such thatfr,h(G) = G′. Let a = vG′ − vG. For example,a
may have the form

a = (0, −1, 1, 0, −1)T

indicating that components of type 2 and type 5 were
combined into a component of type 3. Ifa(i) = m < 0, then
m components of typeCi were destroyed by applying the

action (r, h). If a(i) = m > 0, thenm components of type
Ci were created. We call the vectora a macrostate action.
Without loss of generality, we consider only rules where the
left and right graphs,L andR, each have at most two distinct
components. This motivates the following definition.

Definition 5.1: Fix a ruler. We define the set ofisomor-
phism macrostate actionsapplicable to macrostatey via a
rule r by

Ar(y) = {−v(Ci∐Cj) + vf(r,h)(Ci∐Cj) |

y(i)(resp. (j))≥ Ĉi(i) + Ĉj(i), and

r is applicable toCi ∐ Cj}.
HereCi ∐ Cj is the graph created by the disjoint union of
components of typei andj.

Proposition 5.1:Let M≃(G0, Φ) = (S≃, S0,≃, R≃, L≃).
A transition (y,v) ∈ R≃ if and only if

1) y ∈ R≃(G0, Φ).
2) There existsr ∈ Φ anda ∈ Ar(y) such that

v = y + a.
We also denote the set of macrostate actions that result

in a transition fromy to v as A(y,v) = {a | a ∈
Ar(y) for somer ∈ Φ andv = y + a }. Since in self-
assembly problems, we are often interested in creating many
copies of small components, Proposition 5.1 implies we
can more efficiently compute the isomorphism collapse by
considering pairwise combinations of components rather than
operating on larger graph representatives of a macrostate.

B. Zero-One-Many Equivalence

The isomorphism collapse may still contain an enormous
number of states and paths. Therefore we present a refine-
ment of the collapse that results in a more drastic reduction
in the state space.

Definition 5.2: Two graphsG and H are k-equivalent,
denotedG ∼k H , if and only if for eachi,

vG(i) ≤ k or vH(i) ≤ k ⇐⇒ vG(i) = vH(i).
Taking k = ∞ results in isomorphism. Takingk = 1

results in what we call thezero-one-manyrelation:
1
∼. Two

graphs arezero-one-manyequivalent if, for each component
typeCi in C(G0, Φ), the graphs both contain zero copies of
Ci, they both contain one copy ofCi, or they both contain
more than one copy (i.e.many copies) ofCi. The Kripke
structureM1

∼
(G0, Φ) is called thezero-one-many collapse

of M(G0, Φ).
We also write[G] 1

∼
in vector notation as in, for example,

ṽ = (m, 0 1, m, . . .)T

which denotes that̃v(1) > 1, ṽ(2) = 0, ṽ(3) = 1 and
so on. As with isomorphism macrostates, we writeG |= ṽ

when ṽ corresponds to[G] 1
∼

and we may writẽvG instead
of just ṽ. We call ṽ a zero-one-many macrostate, or just
macrostate. Finally, ifv is an isomorphism macrostate, we
denote by ṽ the zero-one-many macrostate obtained by
replacing elements ofv with m when they are greater than
1. When an isomorphism macrostate is written in terms of a

macrostatev and a macro-actiona as in(v+a), we denote
the corresponding zero-one-many macrostate by(v + a)̃.

Proposition 5.2:Any proposition that does not use con-
stant symbols to represent vertices inV and which does not
imply the existence of more than two components of any
given type is preserved by the equivalence relation

1
∼. We

denote this set of propositions asAP 1
∼

.
Example 5.1:The proposition

P = [[∃x, y, z ∈ V, x 6= y 6= z | l(x) = b, l(y) = b, l(z) = b]]

is not preserved. To see this letG be the graph with three
unconnected vertices, each labeledb and H be the graph
with two unconnected vertices each labeledb. Then ṽG =
ṽH but G is in P , while H is not. However, the following
proposition is preserved.

P ′ = [[∃ a componentC ∈ G and verticesx, y, z ∈ C
such thatl(x) = b, l(y) = b, l(z) = b]]. N

We usually consider finite initial graphs. Each initial
graph, unfortunately, results in a potentially different zero-
one-many collapse ofM(G0, Φ). However, we can show
that the number of different possible forms forM 1

∼
(G0, Φ)

is finite if we require that the number of components of a
grammar, independent of the initial graph, is finite. LetG0

be the set of initial graphs under consideration and define

C(Φ) =
⋃

G0∈G0

C(G0, Φ).

Proposition 5.3: If C(Φ) is finite, then there are a finite
number of Kripke structuresM 1

∼
(G0, Φ) with G0 ∈ G0.

Proof: There are at most3|C(Φ)| possible zero-one-
many macrostates̃v, becausẽv(i) ∈ {0, 1, m} for all i. The
states of each Kripke structureM 1

∼
(G0, Φ) are taken from

these macrostates, thus there are a finite number of such
structures.

Note that this result does not hold for the isomorphism
collapse, since, then,v(i) ∈ N.

For a fixed rule setΦ we define an equivalence relation≡1

on initial graphs inG0 by

G0 ≡1 H0 ⇐⇒ M 1
∼

(G0, Φ) = M 1
∼
(H0, Φ).

By Proposition 5.3, the relation≡1 partitions G0 into
a finite number of equivalence classes. The zero-one-many
equivalence relation allows us to characterize the behavior
of Φ with respect to the possibly infinite set of initial graphs
in a given class.

C. Determining the Zero-One-Many Kripke Structure

Obtaining the collapsed structureM 1
∼
(G0, Φ) by enumer-

ating the states in concrete structureM(G0, Φ) is compu-
tationally infeasible. We instead seek a direct method of
deriving M 1

∼
(G0, Φ), especially one amenable to on-the-fly

model-checking.
Let c = (|C1|, |C2|, ...|Cn|)T be the vector of component

sizes whereC(Φ) = (C1, C2, ..., Cn).
Proposition 5.4: If ṽ is a state ofM 1

∼
(G0, Φ), then the

equation
cT x = |G0|

subject to the constraint̃x = ṽ has an integer solution.
Proof: If ṽ is a state ofM 1

∼
(G0, Φ), there exists a

graphG ∈ R(G0, Φ) such thatṽ = ṽG. Definex = xG.
Since |G| = cT x and |G| = |G0|, the equation is satisfied.
Also, for all i, if ṽ(i) ∈ {0, 1}, then ṽ(i) = x(i) and if
ṽ(i) = m, thenx(i) > 1.

Note thatx is a representative of a possible isomorphism
macrostate that is consistent with̃v. A similar result applies
to transitions in the zero-one-many collapsed structure.

Proposition 5.5: If M 1
∼
(G0, Φ) = (S 1

∼
, S 1

∼,0
, R 1

∼
, L 1

∼
), a

transition(ũ, ṽ) ∈ R 1
∼

if and only if there exists ay such
that

1) cT y = |G0| has an integer solution.
2) ũ = ỹ.
3) ∃r ∈ Φ, anda ∈ Ar(y) such that

ṽ = (y + a)̃.

4) y is reachable.
The reachability ofy requires a path of macrostate actions

from vG0 to y in M≃(G0, Φ). Each of these actions may
further constrain the values ofy. For example, suppose that
a is an action that deletes an edge inCi, producing two
components of typeCj . If a is the only action capable of
generating components of typeCj and no actions destroy
componentCj , theny(j) must be even. Thus the reachability
of a statey is determined by propagating all constraints im-
plied by actions and initial conditions. However, by limiting
the rules we consider tonon-destructiverules we can present
a simpler method. A ruler whose right hand sideR is a
single connected component is callednon-destructive.

Proposition 5.6:Let G0 be an initial graph such that for
all x, lG0(x) = a and EG0 = ∅. Let Φ be any non-
destructive rule set. If there exists ay such that

cTy = |G0|,

then ỹ is reachable inM 1
∼

(G0, Φ).
Proof: Suppose thatH is a graph containing only

components involved in an action(r, h). If r is non-
destructive, thenf(r,h)(H) = H ′ implies thatH ′ is a single
component, sayCi. This implies that any componentCi can
be constructed via a trajectory where every action involves
only the vertices inVCi

. Thus, for any set of non-destructive
rules, we can explicitly construct a trajectory ending in a
graph G with G |= y by constructingy(i) copies ofCi

independently. A valid trajectory for constructingG is then
any interleaving of thesecomponenttrajectories.

While Proposition 5.5 reveals relationships among the con-
crete, isomorphism, and zero-one-many Kripke structures,it
does not give an explicit method to computeM 1

∼
besides

brute force enumeration of the states ofM≃. The zero-one-
many Kripke structure for non-destructive grammars may be
determined however, by posing Proposition 5.5 as a linear
constraint satisfaction problem.

First, denote byA(ũ, ṽ) the set of actionsa ∈ Ar(ũ)
that result inṽ when applied to someu that models̃u. Let
(ũ, ṽ,a) be a triple witha ∈ A(ũ, ṽ). For each(ũ, ṽ,a)

m 0 0 m 1 0

m 0 1

m m 0

m 1 1

m m 1

m 0 m

m 1 m

1 1 m

m m m

0 0 m

1 m m

1 m 10 m 0

0 m m

Fig. 1. The zero-one-many collapsed Kripke structure for example 5.3.

we seek an isomorphism macrostatey consistent with the
constraints in Proposition 5.5.

We generate two types of constraints. First, define

e(ũ, ṽ,a)(i)) =





ṽ(i) − a(i) if a(i) 6= 0 and ṽ(i) ≤ 1
ũ(i) if ũ(i) ≤ 1
0 otherwise.

and require that whenevere(ũ, ṽ,a)(i) 6= 0, then y(i) =
e(ũ, ṽ,a)(i). Second, define

g(ũ, ṽ,a)(i) =

{
max(2 − a(i), 2) if e(ũ, ṽ,a(i) = 0
0 otherwise.

and require that wheneverg(ũ, ṽ,a)(i) 6= 0 then y(i) ≥
g(ũ, ṽ,a)(i). For convenience, denotee(ũ, ṽ,a) by e, and
similarly for g. Next, define the matrixAe, that determines
for which i to apply the constrainte(i) = y(i), by

Ae(i, j) =

{
1 if i = j ∧ e(i) 6= 0
0 otherwise.

Define a similar matrixAg.
Finally the proposed macrostatey must be consistent in

size with the initial graph:cT y = |G0|. This leads to the
following proposition.

Proposition 5.7:Let Φ be a non-destructive rule set. If
ũ ∈ S 1

∼
(G0, Φ), then (ũ, ṽ) ∈ R 1

∼
(G0, Φ) if there is some

y and somea ∈ A(ũ, ṽ) such that the constraints

cT y = |G0|

Aey = e

Agy ≥ g

have an integer solution iny.
Proof: The proof is straightforward by Propositions 5.4,

5.5 and 5.6 and the definition of the zero-one-many collapse.

Example 5.2:Let ũ = (m, 1, m)T and consider the
system described in Example 3.1. We want to determine if
the system can transition to statẽv = (m, 0, m)T . For
this pair, there is one actiona = (−1, −1, 1)T in A(ũ, ṽ).
This action uses the second rule to join an “a” (component
type C1) and a “b − c”, (type C2) to build a component
of type C3. The constraint vectors aree = (0, 1, 0)T and
g = (3, 0, 2)T . It must be thaty(1) is greater than or equal
to 3 since there are at least2 components of typeC1 in
ṽ, but one component of typeC1 was destroyed when the
actiona was applied toy. The matrices are

Ae =




0 0 0
0 1 0
0 0 0



 , Ag =




1 0 0
0 0 0
0 0 1





The vector of component sizes isc = (1, 2, 3)T . Many
solutions to the constraint problem in Proposition 5.7 exist,
for exampley = (4, 1, 498)T . In contrast, consider the
constraints for a transition from̃u = (m, 1, m) to z̃ =
(1, 0, m)T . Although this transition is allowed in systems
generated fromsomeinitial graphs, there are no solutionsy
that satisfy the constraint imposed by|G0| = 1500. N

Proposition 5.7 suggests the zero-one-many structure
M 1

∼
(G0, Φ) can be found via breadth first search. The

approach identifies all transitions possible from a given state
by examining actions applicable to pairs of components and
requiring a solution to the constraint satisfaction problem.
We have implemented this in Mathematica.

Example 5.3:Figure 1 shows the zero-one-many Kripke
structure for the system(G0, Φ1) defined in Example 3.1.
Although G0 has1500 vertices, the collapsed Kripke struc-
ture only has 15 states. N

D. Properties of the Zero-One-Many Collapse

By Proposition 4.1 we may examine temporal logic
properties of the zero-one-many collapsed system that are
ACTL∗ formula.

Example 5.4:Our intent was to create a grammar that
produces length3 chains. Consider theACTL∗ formula
f = AG AF (0, 0, m)T , which states that “for all paths it
is generally true that eventually state(0, 0, m)T is reached.”
By Proposition 4.1 ifM 1

∼
|= f , then M |= f . Model-

checkingM 1
∼

|= f yields a false result.However,M 1
∼

2 f
does not implyM 2 f , because a collapsing may have cycles
not present in the concrete structure.We will show later the
cycle between states(m 0 m) and (m 1 m) in Figure 1 is
one such cycle.

One counterexample that invalidatesf is described by the
path: (m, 0, 0)T → (m, 1, 0)T → (m, m, 0)T →
(0, m, 0)T → (0, m, 0)T This suggests that(0, m, 0)T

may be a final state in the concrete structure. One way to
verify this is to use the formula useful for identifying final
statesf ′ = AG ((0, m, 0)T ⇒ X(0, m, 0)T). It can be
shown thatM 1

∼
|= f ′, which implies that once reached, the

system can never progress away from state(0, m, 0)T . N

VI. CANONICAL INITIAL GRAPHS

Since the zero-one-many collapsed structure may have
cyclic behaviors that do not exist in the concrete structure,
it is useful to identify a canonical graph whose zero-one-
many behavior mimics those of larger initial graphs within
the same≡1 equivalence class. By considering the concrete

Kripke structure only for the canonical graph, we may make
inferences about the smaller structure that apply to the
structures of larger initial graphs.

A. Definition of the Canonical Initial Graph

In the following we denote the restriction of the concrete
Kripke structureM to a smaller set of propositionsAP ′ ⊂
AP by M|AP ′

.
Definition 6.1: Let G and H be graphs in[G0]≡1 . Let

M1 = M
|AP

1
∼

(G, Φ) andM2 = M
|AP

1
∼

(H, Φ). Define the
relation⊑ by M1 ⊑ M2 if and only if for all u1 ∈ M1 there
exists au2 ∈ M2 such thatũ1 = ũ2 and whenever there
exists av1 ∈ M1 with (u1,v1) ∈ R1 via an actiona, then
there exists av2 ∈ M2 with (u2,v2) ∈ R2 via actiona and
ṽ1 = ṽ2.

Note that the relation⊑ is a preorder.
Proposition 6.1:All but a finite subset of[G0]≃1 are

maximal elements with respect to⊑.
Proof: Let Mi be the concrete Kripke structure of graph

Gi. Choose any graphG1 in [G0]≡1 . EitherM1 is maximal
or there is another graphG2 ∈ [G0]≡1 with |G2| > |G1| in
whose structureM2 there exists a transition(u2,v2) ∈ R2

via an actiona such that for all(ui,vj) ∈ R1 whereũi = ũ2

and ṽj = ṽ2, the transition(ui,vj) is not viaa. Since the
number of actions available at any state is finite and the
number of states mapping to any macrostateũ is finite, there
must exist a maximal element.

Definition 6.2: For a fixed rule setΦ, thecanonical initial
graph, G∗ is the maximal element of the preorder⊑ with
the smallest initial graph.

Intuitively, a state with a self loop in the zero-one-many
structure must have an action that applies to a component
with ”Many” copies in the graph and produces another
component of which there are ”Many” copies in the graph.
Several such actions may be possible at a transition. The
canonical initial graph is the smallest initial graph such that
at every self-loop(ũ, ũ), every action inA(ũ, ũ) is possible.

B. Determining the Canonical Initial Graph

Given an initial graphG for which we have constructed
M 1

∼
(G, Φ), we want to determineG∗ without identifying

every graphH ∈ [G0]≡1 . For every transition and action
(ũ, ṽ,a) possible for a member of the equivalence class, a
representative macrostateu must exist inM|

AP
1
∼

where the
action applies. Then for each(ũ, ṽ,a) possible in the zero-
one-many structure, we pose the constraint satisfaction prob-
lem introduced in Proposition 5.7: Findx(ũ, ṽ,a), subject
to the constraintsx ≥ g(ũ, ṽ,a) andx = e(ũ, ṽ,a). As we
generate the zero-one-many Kripke structure, we concatenate
each constraint problem into new vectorsx̄, ḡ, ē and the
matricesĀe, Āg. Each solution must represent a graph with
the same number of vertices. This generates the constraint
that for allx, cTx(ũ, ṽ,a) = cT x(ỹ, z̃,a′). We enforce this

constraint by constructing the matrix

Āc =




cT −cT 0 ... 0
cT 0 −cT 0 ... 0

. . .
cT 0 ... −cT


 .

The above constraints may imply the presence of more
transitions than are allowed by systems in the equivalence
class[G]≡1 . Thus, we define one more set of constraints as
follows. If ũ ∈ S 1

∼
(G∗, Φ) but (ũ, z̃) /∈ R 1

∼
(G∗, Φ), then

Proposition 5.7 states that for every possible(ũ, z̃,a) there
does not exist a solution tocT x(ũ, z̃,a) = |G∗|. As we
determine the zero-one-many Kripke structure, we collect the
disallowed triples(ũ, z̃,a) into the setN . Since we wish to
minimize the size ofG∗, we arrive at the following linear
integer programming problem.

Theorem 6.1:The number of vertices in the canonical
initial graph,|G∗|, can be found by findinḡx such that

(c 0)T x̄ (1)

is minimized subject to the constraints

Ācx̄ = 0

Āex̄ = ē

Āgx̄ ≥ ḡ

x̄(i) ∈ N

(2)

and for all (ũ, ṽ,a) ∈ N there does not exist a vectory of
positive integers such that

cT y = x̄(1)
Aey = e

Agy ≥ g.
(3)

By convention̄x(1) is the number of vertices in the desired
initial graph. We find a candidate solution̄x to Equation 1
subject to the constraints in Equation 2 using standard integer
linear programming (ILP). Suppose the size of the candidate
canonical initial graph is̄x(1) = N . If no solution exists
to the constrained equations in Equation 3, then|G∗| = N .
Otherwise we add the constraint(c 0)T x̄ > N to the above
ILP problem. We iterate this process until a solution is found.

Example 6.1:The canonical initial graph for the system
(G0, Φ) in Example 3.1 has 18 vertices compared with 1500
in G0. Two iterations of the ILP are required to findG∗.
The first ILP solution has 15 vertices. However, the corre-
sponding Kripke structure contains more transitions than in
M 1

∼
(G0, Φ). Thus the additional constraint(c 0)T x̄ > 15

was added to the ILP for the second iteration. N

C. Shared Propositions and Properties

Our goal is to understand which behaviors of large systems
we can capture by examining the behaviors of the corre-
sponding canonical initial graphs.

Definition 6.3: Let I ⊆ [G∗]≡1 . A proposition P is
sharedby graphs reachable from graphs inI via Φ if

P ∩R(G, Φ) = ∅ ⇔ P ∩R(H, Φ) = ∅.

Proposition 6.2:Any proposition that is shared over
[G∗]≡1 may use constant symbols to represent vertices in
V provided

1) The largest constant symbol is less than or equal to
|G∗| and

2) the propositionP does not imply the existence of more
than two components of any given type.

We denote the set of shared propositions byAP+
1
∼

.
Example 6.2:The proposition

P = [[l(1) = b, l(2) = b, l(3) = b]]

is not shared. As a counter example consider an initial graph
H with three vertices each labeledb and another initial graph
G with only two vertices, each labeledb. H ∈ P . But clearly
P ∩R(G∗, Φ) = ∅ regardless ofΦ. However, the following
proposition is shared.

P ′ = [[∃C | {1, 2, 3} ∈ VC ∧ l(1) = b, l(2) = b, l(3) = b]].N
A temporal logic formulaf is shared among the canonical

system and the systems for larger initial graphsH in [G∗]≡1

if
M|

AP
1
∼

+
(G∗, Φ) |= f ⇔ M|

AP
1
∼

+
(H, Φ) |= f. (4)

Although, forCTL∗ andLTL, some properties will not be
shared, many important properties related to final behavioror
infinite behavior in the system are shared. One such formula
is

f = AFG P,

which can be used to identify the stable set. Also, we can
detect infinite cycles with

f = EG(P =⇒ F ¬P ∧ ¬P =⇒ FP).

Finally, under some restrictions, formulas describing se-
quences of labelings and possible connections for a vertex
are preserved. For example the formula

f = AG (l(1) = a U l(1) = b),

which states that vertex 1 is labeleda until it is labeled
b, is shared. This type of property cannot be investigated
using either the isomorphism collapse or the zero-one-many
collapse, since propositions that use constants to represent
vertices are not preserved under either collapse. We have
yet to characterize the full set of formulas preserved by the
canonical system.

Example 6.3:In Example 5.2 we stated that the cycle
between(m, 0, m)T and (m, 1, m)T in M 1

∼
(G0, Φ)

was a spurious by-product of the collapsing process. We can
verify this using the concrete Kripke structureM

|
1
∼

of the
canonical initial graph from Example 6.1. In particular, we
check whether

M
|
1
∼
(G∗, Φ) |= A ¬GF(m 1 m)),

which turns out to be false. Thus, the cycle identified in the
zero-one-many collapse did not correspond to a cycle in the
concrete system.

Example 6.4:Unlike in the zero-one-many collapse, we
may refer to distinct vertices in a limited fashion. For exam-
ple, the following formula expresses the different sequences
of labelings a vertex may assume.

f = AG (F l(1) 6= a ∧

l(1) = a U

(l(1) = c ∨ l(1) = e ∨ (l(1) = b U l(1) = d))).

The formula states that the label of vertex 1must change
from a to eitherc, b, or e. And if it is labeledb it maychange
to d. We find thatM

|
1
∼
(G∗, Φ) |= f . Note, most classes of

initial graphs[H]≡1 do not model this property. N

VII. I MPLEMENTATION AND EXAMPLES

We have constructed a program in Mathematica to demon-
strate the ideas presented in this paper. The program takes
a rule set and an initial graph and computes the zero-one-
many Kripke structure and the size of the canonical initial
graph. Supposef is a temporal logic formula andΦ is a rule
set designed to guarantee thatM(G0, Φ) modelsf . Suppose
also thatΓ is a set of rules generated by the environment or
some uncontrollable subsystem (e.g. See [1]). We think of
Γ as a disturbance and define the following control problem:
if

M(G0, Φ ∪ Γ) 2 f,

construct a “controller” rule setΨ such that

M(G0, Φ ∪ Γ ∪ Ψ) |= f.

As an example, consider an initial graphG0 with 1600
vertices labeleda. Define a rule setΦ by

Φ =





a a ⇒ b − c,
b b ⇒ d − c,
d d ⇒ c − c.

The desired stable component is the eight vertex acyclic
graph denoted byC4 in Figure 2. Consider theACTL∗

formula

f = ∀x(AG ṽ(x) = m =⇒ AFG ṽ(x) ≥ m) =⇒ x = 4,

which describes the desired behavior of our system. The
formula is equivalent to the statement that the component
C4 is the only member of the stable set,S(G0, Φ1). We
may verify in the collapsed structure thatM(G0, Φ) |= f.

Let z̃ be any zero-one-many macrostate. Consider another
formula that detects cyclic behaviors

g = ∀z̃ A ¬G(z̃ =⇒ F¬z̃ ∧ ¬z̃ =⇒ Fz̃).

We can consider this question in the concrete structure of
the canonical initial graph. Using the method described in
Theorem 6.1 we determine thatG∗ has only 40 vertices. We
can then show that

M|
AP

1
∼

(G∗, Φ1) |= g =⇒ M(G0, Φ1) |= g.

Now suppose we add the following disturbance rule,
representing a previously unmodeled interaction:

ΦU =
{

b b ⇒ e − f,

c

c

c

c

c

cc

c

cc

c

cc

c

cc

c

c

c

c

c

c

c

cc

cc

c

cc

ff

eeee
a

b

d

C1 C2 C3 C4 C5 C6 C7 C8

Fig. 2. Components of the grammar(G0, Φ∪ Γ ∪Ψ). C1 − C4 are the components ofΦ andC4 is the desired stable component.C5 is the unwanted
component created by the disturbance ruleΓ. C5 − C7 are the components created via the controllerΨ.

Call the new system(G0, Φ1 ∪ Γ). Using the Mathematica
program, we compute the zero-one-many collapsed Kripke
structure for the new systemM 1

∼
(G0, Φ1∪Γ), which has 125

states. The zero-one-many structure reveals that the system
produces an additional componentC5, which is pictured in
Figure 2 . The zero-one-many collapse does not modelf .
The program returns a list of final states(0, 0, 0, 0, m)T ,
(0, 0, 1, 0, m)T , (0, 0, 1, m, m)T , (0, 0, 0, m, m)T ,
(0, 0, 0, m, 0)T , (0, 0, 1, 1, m)T , (0, 0, 0, 1, m)T and
(0, 0, 1, m, 1)T . It is clear from this list that the controller
rule setΨ needs to convert twoC5 components to aC4

component and convert aC3 and aC5 component to aC4

component. The control rules are given by

Ψ =






f f ⇒ c − c,
f d ⇒ c − c,
c − e ⇒ c − c.

The zero-one-many collapseM 1
∼
(G0, Φ ∪ Γ ∪ Ψ) has ap-

proximately 6500 states and generates three more compo-
nents shown in Figure 2 . Some action is applicable to
every reachable state congruent with 1600 vertices except
(0, 0, 0, m, 0, 0, 0, 0)T thus

M(G0, Φ ∪ Γ ∪ Ψ) |= f.

VIII. D ISCUSSION

We have presented the zero-one-many collapse which
reduces the potentially enormous state space generated by a
graph grammar. For systems with only non-destructive rules,
we have shown that calculating members of the reachable set
corresponding to zero-one-many macrostates is equivalent
to solving a linear integer constraint satisfaction problem.
We may also allow destructive rules if we include non-
linear integer constraints. We are currently investigating
computationally efficient ways of including such constraints.
Also, we restricted our arguments to rules involving at most
two components. In general, if the rules have at mostn
components, the collapse to consider is thezero one two
... n − 1 manycollapse.

The restriction of the verifiable behaviors to those ex-
pressed byACTL∗ formulas over properties preserved by
the collapse is somewhat limiting. By identifying the canoni-
cal initial graph, we were able to examine a much larger class
of behaviors using a graph smaller than our initial graph.

Finally, we demonstrated the use of these ideas by exam-
ining a simple control problem where unwanted components
are generated when two grammars are composed. This type

of control must begin with the identification of unwanted
components. Since this is the domain of model-checking, we
believe that model-checking and control of graph grammar
systems are intrinsically linked. We were able to apply
the Mathematica program to grammars that produced small
numbers of components and we are currently implementing
our methods in faster languages. In the future we plan to fully
analyze the time and space complexity of the zero-one-many
collapse algorithm.

In the future, we would like to integrate these methods
with on-the-fly model-checking. Additionally there are a
number of open questions: When isC(Φ) finite? Are there
collapsings more appropriate to classes of systems where
C(Φ) is not finite? How can model-checking techniques
inform the synthesis of rule sets to meet logical specification
over graphs?

REFERENCES

[1] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp,
and T. Nguyen. Self-organizing programmable parts. InInternational
Conference on Intelligent Robots and Systems. IEEE/RSJ Robotics and
Automation Society, 2005.

[2] E. M. Clarke and O. Grumberg. Avoiding the state explosion problem
in temporal logic model checking algorithms. InACM Symposium on
Principles of Distributed Computing, Vancouver, Canada, 1987.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT
Press, 2000.

[4] J. A. Fax and R. M. Murray. Information flow and cooperative control
of vehicle formations.IEEE Transactions on Automatic Control, 5(1),
2004.

[5] Hadas Kress Gazit George Fainekos and George J. Pappas. Temporal
logic planning for mobile robots. InProceedings of the International
Conference on Robotics and Automation, Barcelona, Spain, 2005. To
Appear.

[6] A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules.IEEE Transactions
on Automatic Control, 48(6), 2003.

[7] E. Klavins. Automatic synthesis of controllers for distributed assembly
and formation forming. InProceedings of the IEEE Conference on
Robotics and Automation, Washington DC, May 2002.

[8] Eric Klavins. Universal self-replication using graph grammars. InThe
2004 International Conference on MEMs, NANO and Smart Systems,
Banff, Canada, 2004.

[9] Eric Klavins, Robert Ghrist, and David Lipsky. A grammatical
approach to self-organizing robotic systems.IEEE Transactions on
Automatic Control, 2005. To Appear.

[10] B. Knig P. Baldan, A. Corradini. Verifying finite-stategraph grammars:
an unfolding-based approach. In P. Gardner Conference Proceedings
and N. Yoshida, editors,CONCUR’04, volume 3170 ofLecture Notes
in Computer Science, pages 83–98. Springer-Verlag, 2004.

[11] Arend Rensink. Canonical graph shapes. In D. A. Schmidt, editor,
Programming Languages and Systems — European Symposium on
Programming (ESOP), volume 2986 ofLecture Notes in Computer
Science, pages 401–415. Springer-Verlag, 2004.

