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Abstract— Graph grammars can be used to model highly us to effectively reason about the behavior of a graph

distributed systems where local interaction rules controlfor- grammar — and also how to improve a graph grammar based

mation or self-assembly tasks. In this paper, we explore ma- a5 analysis of its collapsed Kripke Structures.
checking graph grammar systems, introducing thezero-one-

many collapse as a way of reducing the usually enormous
number of states and transitions produced by a graph grammar

system. From this collapse, we also define aanonical initial Graph theory underlies much of the work in cooperative

graph, that captures some of the characteristic behavior of . e
larger graphs with the same zero-one-many collapse. Finall we control [4] [6]. However, many methods require a specific

show through examples how these results allow us to effectlly ~ initial topology. Klavins, Ghrist, and Lip_s_ky [9] introded _
reason about the behavior of a graph grammar — and also graph grammars to assemble pre-specified graph topologies.

how to improve a graph grammar based on an analysis of its By restricting rewrites to small subgraphs, graph grammars
collapsed Kripke Structures. provide a useful method to program the concurrent behavior
of large decentralized systems of robots. An application of
) _ ) ) _graph grammars to robotic systems was demonstrated in [1]
The control of local interactions in systems involvingyhere free-floating robots used graph grammars to assemble

large numbers of vehicles or robots in highly distributeqnig |arger structures in a predictable and robust manner.
environments can result in predictable global behaviersis 116 yerification of control strategies for groups of robots

as formation forming, flocking, swarming and coverage. Wey largely unexplored territory. In [5], Fainekos, Gazifda
have demonstrated the usegriph grammarq9] to define 5555 anplied model-checking to path planning for single

local interaction rules for formation, assembly and othef,p ¢ systems. We too use model-checking and our main

tasks [7], [8] and have implemented the techniqueseli-  4int of departure is the paper by Clarke [2], where the

assembling robotfl]. _ notion of a collapsedKripke Structure is introduced as a
An important goal with these systems is to prove that thiethod to reduce the size of the state space. Furthermore,

behaviors admitted by a graph grammar are correct. AlSO We;\qan [10] and Rensink [11] introduced abstractions and
may wish tosynthesizeew graph grammars from behavioralq1apsings for classes of graph grammars used in modeling
specifications. Therefore, in this paper, we begin to exploigy¢hyare systems.

the use ofModel-Checking[3] systems defined by graph
grammars. The main difficultly is that the transition system 1. SYSTEMS ONGRAPHS
or Kripke Structureon the set of graphs reachable via a
graph grammar from an initial graph usually contains aﬁ" Graph Grammars
enormous number of states and transitions. This is a well A simple labeled graptover an alphabeb is a triple
known problem with model-checking concurrent systems; = (V, E,l) whereV is a set ofvertices E is a set
and for some interleaved systerRartial Order Reduction of edgesand/ : V — X is a labeling function. In this
has proven an often-successful approach. paper, a graph is a model of thmeetwork topologyof an

In this paper, we explore systems that assemble robdtgerconnected collection of robots, vehicles or parficlé
into groups. In these systems there is often a good deatrtexa corresponds to the index of a robot. The presence of
of structure that we can use to effectivadgllapse[2] the an edgery corresponds to a physical and/or communication
Kripke Structure induced by a graph grammar to a size théitk between robots: and y. The labell(z) of robot z is
is amenable to model-checking. In particular, we examinesed to keep track of local information and may also indicate
what is called theero-one-mangollapse, which ignores the the operational mode of the robot.
difference between having two or more of a given assembly A graph grammar consists of a sétof rules. Each rule
type. From this collapse, we also defineanonical initial r = (L, R) is a pair of labeled graphs over some small vertex
graph that captures some of the characteristic behavior stV = Vg. Let G be a larger graph representing a possible
larger initial graphs with the same zero-one-many collapsstate of a system and Iét be an injective, label and edge
Finally, we show through examples how these results allopreserving map froni/;, into G. The pair(r, h) describes

Il. RELATED WORK

I. INTRODUCTION



an action onG that produces a new gragh’ = (V, E’,l’) If AP is a set of propositions, thed P is the subset of
defined by propositions inAP that are preserved.
We will often wish to know what propositions are pre-

!/
E" = (E—{h@)h(y)lzy € EL}) served by a given equivalence relation. For example, sppos
U{h(z)h(y) | zy € Er} ~ is the relationlabeled graph isomorphispdenoted~.
V@) = { I(x) if = & h(VL) Then any proposition that can be represented by a formula
lr o h~(z) otherwise. not using constant symbols to represent verticed/irs

That is, we replaceh(L) (which is a copy of L) with preserved by~.

h(R) in the graphG. We write G oG or equivalently

IV. MODEL-CHECKING GRAPH GRAMMARS
G' = fun)(G)to denote thatz’ was obtained fronG' by

the application of(r, ). A Kripke StructureM over propositionsAP is a four-
A system(Gy, @) consists of an initial grapt¥, and a set tuple M = (S, So, R, L) where S is a set of statesS, C S
of rules®. A trajectoryis a (finite or infinite) sequence is a finite subset oF, R is a total transition relation ove¥,
_— . rs.hs andL : S — 247 is a function that labels each statavith

Go Gi—— G the propositions ilA P that are true ins. To save space we

wherer; € ®. If the sequence is finite, then we require thafl0 Not reviewCT'L* logic, but refer the interested reader
there is no rule in® applicable to the terminal graph. The© [3]-_ N )

set of all graphs reachable frofi, via some trajectory is ~ Definition 4.1: The concrete Kripke structuref a graph
called thereachable sefR (G, ®). The set of all connected grammar systeniGo, ®) is the structure

components of graphs IR(Gy, ®) up to isomorphism is de- B

notedC (G, ®). In particular, we suppose that each reachable M(Go, ®) = (R(Go, ), {Go}, R, L)
component type has a single representatig{y, ¢). If no  \yhere
rules in® can alter a reachable component, the component .

N . .
is said to bestable The set of stable components is denoted L R(G,G") if an(_:i only if there ex:%s arule € @ and
S(Go, ®). a monomorphisnk such thatG — G’.

i. L(G)={P|G e P}.
Two problems arise immediately. First, the size of
q)_{ aa = b-g R(Go,®) can make the concrete Kripke structure pro-
ab = d-—e hibitively large for standard model-checking algorithms.
Suppose thatGy = {{1,2,...1500}, @, Az.a}. Here \z.a  Even on-the-fly algorithms have difficulty when the number
is the function assigning the label to all vertices. The Of states reachable in one step from a given state is large.

Example 3.1:Define a rule set by

components of the system atdGy,®,) = {a , b — TO illustrate the problem, for the system in Example 3.1, the

¢, d —e— c}, where b — ¢ indicates a robot labeled number of unique graphs in the reachable $B(Go, ®)|,

b is connected by an edge to a robot labeted A IS greater than500!. To model check systems represented
. by graph grammars it is clear we must develop efficient

B. Propositions About Graphs methods of reducing the number of states to be explored.

Let G be the set of all labeled, finite graphs. By aSecond, the structure depends on the initial graph. For
proposition we simply mean a subsdt C G of graphs. example, a grammar that directs the assembly of components
By defining propositions in this manner, we avoid having t@f size 5 will have different reachable sets depending on
define a syntax and semantics for logical statements abomhether the size of the initial graph is congruent to 5 or
graphs. Informally, we will describe propositions by loglic not. Nevertheless, under soneellapsingsof the concrete
formula and use double brackets to denote the set of grapkigpke structure, different initial graphs will result irhé
that satisfy the formula. For example, same Kripke structures. Additionally the collapsed stitet

_ usually has substantially fewer states.

(/1) =bA323y.ay € E] In the following definition [G].. denotes the set of all
denotes the set of graplis = (V, E,l) such thatl € V, graphs equivalent t@7 under a fixed equivalence relation
I(1) =band E # &. In general, any closed formula about~. The following definition is standard.
labels and edges using finite quantification oVeor F, and Definition 4.2: Let M (Gg, ®) = (S, Sy, R, L) be the con-

using constant symbols for elementslinis permitted. crete Kripke structure fofGy, ®). Let ~ be an equivalence
Example 3.2:An example proposition for the system relation onS. The collapsed Kripke structurdor (G, ®)
(Go, @) defined in Example 3.1 is given by induced by~ is M..(Go, ®) = (5, S}, R', L") where
P = [All components are isomorphictd — ¢ — c].a - ' ={[G]| G €S}
Definition 3.1: Let ~C G x G be an equivalence relation ii. Sy = {[Go]}.
ongG. A propositionP is preservedy ~ if, forall G, G’ € g, i ([G],[G’]) € R’ if and only if there existH € [G] and
if G~ &' then H' € [G'] such that(H, H') € R.

GePoG cP iv. L:S" — 24P~ whereL/([G]) = L(G) N AP..



The following proposition summarizes the properties of action (r, h). If a(i) = m > 0, thenm components of type
collapsed Kripke structure. Note thak™ is the simulation C; were created. We call the vectara macrostate action

relation [3, Ch. 11]. Without loss of generality, we consider only rules where the
Proposition 4.1: Let M. be the Kripke structure induced left and right graphsl, and R, each have at most two distinct
from M by the equivalence relation. Then components. This motivates the following definition.
i, M <M. Definition 5.1: Fix a ruler. We define the set adsomor-
ii. [3, Theorem 16] If f is an ACTL* formula and if Phism macrostate actionapplicable to macrostatg via a
M. k= f, thenM  f. rule by

The first property states that every behaviorldfis also

. A, = {-v,1c, Rttel
a behavior ofM... The second property allows us to model ) { IV(ClHC”)_JF Vf(j*hf(c*u?f) .|
check M,. to deduce properties about/. However, we y(i)(resp. (1))> Ci(i) + C;(i), and
are limited to the basic propositions P, about graphs r is applicable toC; I1 C;}.

that are common to entire equivalence classes, and we atere C; 11 C; is the graph created by the disjoint union of
limited to checkingACT L* formulas. Furthermore, by the components of typé and .

first property, counterexamples obtained in checking are Proposition 5.1:Let M~(Go,®) = (S~, So,~; R~ L~).
not necessarily counterexamplesifi. Nevertheless, when A transition (y,v) € R~ if and only if

faced with the daunting size of the state space\bf we 1) y € Re(Go, D).

have little other recourse than to consider collapsings. 2) There existsr € & anda € A, (y) such that
V. Two USEFUL COLLAPSINGS v=y+a.
A. Isomorphism We also denote the set of macrostate actions that result

The most obvious equivalence relation on graphs is grarl)ﬂ a ftransition fromy to v as A(y,v) = {a | a €

isomorphism. This is in fact quite natural given that thengra Ar(y) for somer € & andv = yt+a ) Sl_nce n _self-
. . . : ._assembly problems, we are often interested in creating many
mars we consider regard all vertices as essentially idantic

In the context of self-assembly, it is useful to represent apopPIes of small components, Proposition 5.1 implies we

: . : ion &N more efficiently compute the isomorphism collapse by
equivalence class generated by the isomorphism relation anidering pairwise combinations of components rathear th
listing the number of each component type present in grapﬁs

in the class. Thus, suppose th&Go, ®) — {C1.Cs,...}. operating on larger graph representatives of a macrostate.

Thenv : C(Gy, ®) — Nrepresents all grapls € R(Gy, ®) B. Zero-One-Many Equivalence
with v(1) components isomorphic 6, v(2) components
isomorphic toC,; and so on. We write these representativeﬁ
in vector notation. For the system presented in Example 3
where C; is a component of type;,, Co = b — ¢ and
C3 =e—d — ¢, the vector

The isomorphism collapse may still contain an enormous
umber of states and paths. Therefore we present a refine-
rfllent of the collapse that results in a more drastic reduction
in the state space.

Definition 5.2: Two graphsG and H are k-equivalent
v={(3,2 497)7 denotedG £ H, if and only if for eachi,

denotes that/(1) = 3, v(2) = 2 andv(3) = 497. For each vg(i) <k or vy(i) <k <= va(i) = vu(i).
component type; we denote the basis vector &, where ~ Taking k = oo results in isomorphism. Tak'”;@ =1

(jj (i) is equal tol if i = j and equal to zero otherwise.¥f results in what we call theero-one-manyrelation: ~. Two
represents the equivalence cl&§$. of a graphG, we write  graphs arezero-one-mangquivalent if, for each component
G = v to denote thatG is consistent withv and we may type C; in C(Go, @), the graphs both contain zero copies of
write v instead of justv. Note, if H |= vg, thenH ~ G.  Cj, they both contain one copy @f;, or they both contain

Also, in keeping with the self-assembly paradigm whicinore than one copy (i.emany copies) ofC;. The Kripke
is typically addressed in the context of statistical meatgn Structure M, (Go, ®) is called thezero-one-many collapse
we call v an isomorphism macrostateAdditionally, we 0of M (Go, ®).
denote the set of reachable isomorphism macrostates byWe also write[G] , in vector notation as in, for example,
R:(Go,q)) = {VG | G e R(Go, (I))}

Let G and G’ be graphs and levg,vg: denote the
associated isomorphism macrostates. (reh) be an action \which denotes that (1) > 1, v(2) = 0, ¥(3) = 1 and
such thatf, »(G) = G'. Leta = vor — vg. For examplea s on. As with isomorphism macrostates, we wiite= v
may have the form when¥ corresponds t¢G], and we may writev instead

a=(0, -1, 1,0, —1)T of just v. We call v a zero-one-many macrostate, or just
o macrostate. Finally, ifv is an isomorphism macrostate, we
indicating that components of type 2 and type 5 werdenote byv the zero-one-many macrostate obtained by
combined into a component of type 3.dfi) = m < 0, then replacing elements of with m when they are greater than
m components of type&’; were destroyed by applying the 1. When an isomorphism macrostate is written in terms of a

v=(m, 01, m,...)7"



macrostatesr and a macro-actioa as in(v + a), we denote subject to the constrai® = v has an integer solution.

the corresponding zero-one-many macrostatésoy- a). Proof: If v is a state ofM, (Go, ®), there exists a
Proposition 5.2: Any proposition that does not use con-graphG € R(Gq, ®) such thatv = vqg. Definex = xg.

stant symbols to represent verticeslinand which does not Since|G| = ¢x and |G| = |Gy|, the equation is satisfied.

imply the existence of more than two components of anglso, for all 4, if v(i) € {0,1}, thenv(i) = x() and if

given type is preserved by the equivalence relatarWe V(i) = m, thenx(i) > 1. ]
denote this set of propositions as", . Note thatx is a representative of a possible isomorphism
Example 5.1:The proposition macrostate that is consistent with A similar result applies

P=[3z,y,2€V,a#y#z|l(z)=bl(y)=b1(z) = b to transitip_ns in the zero-one-many collapsed structure.
_ _ _ Proposition 5.5:If M, (Go,®) = (S:,5: ,R:,L,), a
is not preserved. To see this lét be the graph with three transition (&, v) € R, ifNand only if trTereNé(;(istg @'NSUCh
unconnected vertices, each labeledind H be the graph . ~

with two unconnected vertices each labeledThenvg =
vy but G is in P, while H is not. However, the following
proposition is preserved.

1) ¢’y =|Go| has an integer solution.
2) u=y.
3) Ir € ®, anda € A, (y) such that

P’ =[3 a componenC € G and verticese,y, z € C _

such thatl(z) = b,1(y) = b,1(z) = b]. A v=(y+aJ.
We usually consider finite initial graphs. Each initial 4) y is reachable.

graph, unforttljlnately, ;E/’}Sgts &)n aHpotent|aIIy d|ﬁere|e'rt:z- The reachability ofy requires a path of macrostate actions
one-many collapse of(Go, ). However, we can show from vg, toy in M~(Gop,®). Each of these actions may

FhaF t.he .number Of. different possible forms @f, (Go, 2) further constrain the values @f. For example, suppose that
is finite if we require that the number of components of a

. o SN is an action that deletes an edge @, producing two
grammar, independent of the initial graph, is finite. IGgt a g P d

T . _ _components of typ&’;. If a is the only action capable of
be the set of initial graphs under consideration and def'”egenerating components of typ€; and no actions destroy

C(P) = U C(Gy, ). component’;, theny(j) must be even. Thus the reachability
GoeGo of a statey is determined by propagating all constraints im-

plied by actions and initial conditions. However, by limij
the rules we consider toon-destructiveules we can present
a simpler method. A rule- whose right hand side? is a
single connected component is calledn-destructive

Proposition 5.6:Let G, be an initial graph such that for
ua|t|1 z, lg,(x) = a and Eg, = &. Let & be any non-
{Estructive rule set. If there existsyasuch that

Proposition 5.3:1f C(®) is finite, then there are a finite
number of Kripke structureMi(Go, ®) with Gy € Go.
Proof: There are at mos8/°(®) possible zero-one-
many macrostates, becauser(i) € {0,1,m} for all i. The
states of each Kripke structuML(Go,tb) are taken from
these macrostates, thus there are a finite number of s

structures.
Note that this result does not hold for the isomorphism c'y =Gl
collapse, since, thery(7) € N. theny is reachable inV/, (Go, ®).

For a fixed rule seb we define an equivalence relatica;

on initial graphs ingo by Proof: Suppose thatd is a graph containing only

components involved in an actio(r,h). If r is non-
Go =1 Hy <= M, (Go,®) = M. (Hyp, P). destructive, thery(, ,)(H) = H' implies thatH" is a single
By Proposition 5.3, the relation=; partitions G, into component, say’;. This implies that any componeay can

. . be constructed via a trajectory where every action involves
a finite number of equivalence classes. The zero-one-ma

) . ; .QXIy the vertices irl,. Thus, for any set of non-destructive
equivalence relation allows us to characterize the behawpuIeS we can explicitly construct a trajectory ending in a

of & with respect to the possibly infinite set of initial graphs . . . : .
in a given class. graph G with G | y by constructingy (i) copies ofC;

independently. A valid trajectory for constructiidg is then
C. Determining the Zero-One-Many Kripke Structure any interleaving of theseomponentrajectories. [ ]

Obtaining the collapsed structuid , (Go, ®) by enumer- While Proposition 5.5 reveals relationships among the con-
ating the states in concrete structut&(G,, ®) is compu- crete, isomorphism, and zero-one-many Kripke structttes,
tationally infeasible. We instead seek a direct method afoes not give an explicit method to computé, besides
deriving M, (Go, ®), especially one amenable to on-the-flybrute force enumeration of the statesit.. The zero-one-
model-chegking. many Kripke structure for non-destructive grammars may be

Let c = (|C1], |Cy], ...|C,|)T be the vector of component determined however, by posing Proposition 5.5 as a linear
sizes where&(®) = (Cy,Cy, ..., Cy). constraint satisfaction problem.

Proposition 5.4:1f v is a state ofM, (Gy, ®), then the First, denote byA(u,v) the set of actiona € A,.(u)
equation - that result inv when applied to soma that modelsa. Let

c'x = |Gy (u,v,a) be a triple witha € A(u,v). For each(u, v, a)
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Fig. 1. The zero-one-many collapsed Kripke structure fameple 5.3.

we seek an isomorphism macrostateconsistent with the The vector of component sizes is= (1, 2, 3)T. Many

constraints in Proposition 5.5. solutions to the constraint problem in Proposition 5.7 &exis
We generate two types of constraints. First, define for exampley = (4, 1, 498)”. In contrast, consider the
V(i) —a(i) ifa(i)#0andv(i)<1 constraints for a transition from = (m, 1, m)toz =
~ o~ N\, ~. e - T - ition i -
e(,v,a)(i)) =< u(i) if a(i) <1 (1, 0, m)". Although this transition is allowed in systems
0 otherwise. generated fronsomeinitial graphs, there are no solutiogs
that satisfy the constraint imposed [¥,| = 1500. A

and require that wheneves(u, v,a)(i) # 0, theny(i) =

~ . Proposition 5.7 suggests the zero-one-many structure
e(u,v,a)(i). Second, define b 99 y

M, (Go,®) can be found via breadth first search. The

g(d,v,a)(i) = { max(2 —a(i),2) ife(u,v,a(i) =0 approach identifies all transitions possible from a givertest
T 0 otherwise. by examining actions applicable to pairs of components and

and require that whenevey(li, v, a)(i) # 0 theny(i) > requiring a solution to the constraint satisfaction praohle

g(u,v,a)(i). For convenience, denotgu, v,a) by e, and We have implemented this in Mathematica.

similarly for g. Next, define the matri., that determines ~ Example 5.3:Figure 1 shows the zero-one-many Kripke

for which i to apply the constraing(i) = y(i), by structure for the systemiGo, ®;1) defined in Example 3.1.
1 ifi— i N0 Although Gy has1500 vertices, the collapsed Kripke struc-
A (i, j) = ifi=jne(d)# ture only has 15 states A
e 0 otherwise. :
Define a similar matrixA 4. D. Properties of the Zero-One-Many Collapse

Finally the proposed macrostage must be consistent in By Proposition 4.1 we may examine temporal logic

. : _— e .
size W'th the |n|'F|§1I graphc’y = [Gol|. This leads to the properties of the zero-one-many collapsed system that are
following proposition. ACTL* formula.

~ Prgpoztlog 5t7h Let~<1>~be aRnorgdegtr%cttg/e rqle set. If Example 5.4:Our intent was to create a grammar that
u € 5, (Go, ), then(u,v) € R, (Go, P) if there is some produces lengtt chains. Consider thetlCTL* formula

y and somea € A(u, V) such that the constraints f=AG AF (0, 0, m)”, which states that “for all paths it
cly = |Gy is generally true that eventually stdtg 0, m)? is reached.”
Ay = e By Proposition 4.1 ifM, | f, then M = f. Model-

A checkingM, = f yieIdsNa false resultdowever, M, ¥ f
24 & does not imph\V/ ¥ f, because a collapsing may have cycles
have an integer solution ig. not present in the concrete structulée will show later the
Proof: The proof is straightforward by Propositions 5.4 ,cycle between stategn 0 m) and (m 1 m) in Figure 1 is
5.5 and 5.6 and the definition of the zero-one-many collapsgne such cycle.
u One counterexample that invalidatgss described by the
Example 5.2:Let u = (m, 1, m)T and consider the path: (m, 0, 0)7 — (m, 1, 0) — (m, m, 0)T —
system described in Example 3.1. We want to determine {f), m, 0)” — (0, m, 0)7.... This suggests tha0, m, 0)7
the system can transition to state= (m, 0, m)T. For may be a final state in the concrete structure. One way to
this pair, there is one actiom= (-1, —1, 1)T in A(u,v). verify this is to use the formula useful for identifying final
This action uses the second rule to join ari {component statesf’ = AG ( (0, m, 0)7 = X(0, m, 0)7 ). It can be
type Cy) and a b — ¢, (type Cs) to build a component shown thatM, = f’, which implies that once reached, the

of type C3. The constraint vectors ake= (0, 1, 0)" and system can never progress away from statem, 0)7. a
g = (3, 0, 2)T. It must be thaty(1) is greater than or equal

v

to 3 since there are at leagt components of type’; in VI. CANONICAL INITIAL GRAPHS
v, but one component of typ€', was destroyed when the  gince the zero-one-many collapsed structure may have
actiona was applied toy. The matrices are cyclic behaviors that do not exist in the concrete strugture
0 0 0 100 it is useful to identify a canonical graph whose zero-one-
A. = |01 0|, A, = (0 0 O many behavior mimics those of larger initial graphs within
0 0 0 0 01 the same=; equivalence class. By considering the concrete



Kripke structure only for the canonical graph, we may makeonstraint by constructing the matrix

inferences about the smaller structure that apply to the A 0

structures of larger initial graphs. ) T 0 — o 0
A, =

A. Definition of the Canonical Initial Graph A _T

In the following we denote the restriction of the concrete The apove constraints may imply the presence of more
Kripke structureM to a smaller set of propositiondP" C  ransitions than are allowed by systems in the equivalence
AP by M. class[G]=, . Thus, we define one more set of constraints as

Definition 6.1: Let G and H be graphs in[Gol=,. Let follows. If & € S, (G*,®) but (,z) ¢ R.(G*,®), then
My =M, (G,®) andM; = M , .. (H,®). Define the  proposition 5.7 states that for every possibiez, a) there
relationC by M; C M, if and only if for all u; € M; there does not exist a solution to”x(u,z,a) = |G*|. As we
exists auy € M, such thatu; = u, and whenever there determine the zero-one-many Kripke structure, we colleet t
exists av; € M; with (u;,vy) € R; via an actiona, then disallowed triplegt, z, a) into the set\/. Since we wish to
there exists ar, € M, with (u2, vo) € Ry via actiona and  minimize the size ofG*, we arrive at the following linear
Vi = Va. integer programming problem.

Note that the relatiofiC is a preorder. Theorem 6.1:The number of vertices in the canonical

Proposition 6.1:All but a finite subset of[G]~, are initial graph,|G*|, can be found by finding such that
maximal elements with respect fo. . (c 0 )Ti 1)

Proof: Let M; be the concrete Kripke structure of graph
G;. Choose any grapt¥; in [Go]=,. Either M is maximal is minimized subject to the constraints
or there is another grap&, € [Gol=, with |G2| > |G1] in

) . Ax = 0
whose structuré\/, there exists a transitiofus, va) € Ro Ac; - &
via an actiora such that for al(u;, v;) € Ry whereu; = u, Aei S 5 (2)
andv; = v,, the transition(u;, v;) is not viaa. Since the X(gl.) c I%

number of actions available at any state is finite and the
number of states mapping to any macrostats finite, there and for all(u, v,a) € A there does not exist a vectgrof

must exist a maximal element. B positive integers such that

Definition 6.2: For a fixed rule se®, thecanonical initial 'y = x(1)
graph G* is the maximal element of the preorder with Ay = e 3)
the smallest initial graph. Agy > g

Intuitively, a state with a self loop in the zero-one-many By conventionk(1) is the number of vertices in the desired
structure must have an action that applies to a compondnttial graph. We find a candidate solutiehto Equation 1
with "Many” copies in the graph and produces anothegubject to the constraints in Equation 2 using standargémte
component of which there are "Many” copies in the graphlinear programming (ILP). Suppose the size of the candidate
Several such actions may be possible at a transition. Tl&nonical initial graph ist(1) = N. If no solution exists
canonical initial graph is the smallest initial graph subhtt to the constrained equations in Equation 3, théh| = N.
at every self-loogfu, u), every action inA(u, u) is possible. Otherwise we add the constraiftt 0)”< > N to the above
ILP problem. We iterate this process until a solution is fun

Example 6.1:The canonical initial graph for the system
(Go, @) in Example 3.1 has 18 vertices compared with 1500

Given an initial graph for which we have constructed in Go. Two iterations of the ILP are required to fir@".

M, (G,®), we want to determings* without identifying The first ILP solution has 15 vertices. However, the corre-
every graphH € [Gol=,. For every transition and action SPonding Kripke structure contains more transitions thran i
(,v,a) possible for a member of the equivalence class, &+ (Go, ®). Thus the additional constrairt 0)"x > 15
representative macrostatemust exist inM, . where the Was added to the ILP for the second iteration. A

action applies. Then for eadhu, v, a) possiﬁféin the zero- ¢ ghared Propositions and Properties
one-many structure, we pose the constraint satisfactiob-pr

B. Determining the Canonical Initial Graph

Our goal is to understand which behaviors of large systems

lem introduced in Proposition 5.7: Find(u, v, a), subject - ]
to the constraints > g (1, v, a) andx = e(i, v, a). As we we can capture by examining the behaviors of the corre-
o L n§Ponding canonical initial graphs.

generate the zero-one-many Kripke structure, we concege g 2 . .
each constraint problem into new vectatsg,e and the Definition 6.3:Let Z € [G"]=,. A prop93|tlop pis
matricesA., A,. Each solution must represent a graph witteharedby graphs reachable from graphsinvia & if
the same number of vertices. This generates the constraint PNR(G,®) =0 < PNR(H,®) = 2.
that for allx, cT'x(u,v,a) = c'x(y,z,a’). We enforce this



Proposition 6.2: Any proposition that is shared over Example 6.4:Unlike in the zero-one-many collapse, we
[G*]=, may use constant symbols to represent vertices imay refer to distinct vertices in a limited fashion. For exam

V provided ple, the following formula expresses the different seqesnc
1) The largest constant symbol is less than or equal @ labelings a vertex may assume.
|G*| and f = AG (Fi(1)#an

2) the propositionP? does not imply the existence of more

: I(1)=aU
than two components of any given type.
We denote the set of shared propositionsA . () =cVvil)=eV ((1)=bUl(1)=d))).
Example 6.2:The proposition The formula states that the label of vertexmiustchange

from a to eitherc, b, or e. And if it is labeledb it maychange
to d. We find thatMli(G*,tb) E f. Note, most classes of

is not shared. As a counter example consider an initial graphitial graphs[H]=, do not model this property. A
H with three vertices each labelé@nd another initial graph VIL. | MPLEMENTATION AND EXAMPLES
G with only two vertices, each labeléd H € P. But clearly '

PNR(G*,®) = @ regardless ofo. However, the following We have constructed a program in Mathematica to demon-
proposition is shared. strate the ideas presented in this paper. The program takes

a rule set and an initial graph and computes the zero-one-
P'=[3C {1,2,3} e Ve Al(1) =b,1(2) =b,1(3) =b].A  many Kripke structure and the size of the canonical initial
A temporal logic formulaf is shared among the canonicalgraph. Supposé¢ is a temporal logic formula andt is a rule
system and the systems for larger initial graphén [G*]=,  set designed to guarantee thd{ Gy, ®) modelsf. Suppose
if also thatl" is a set of rules generated by the environment or
M|A LG Efe M|AP1+(H, ®) E f. (4 some uncontrollable subsystem (e.g. See [1]). We think of

~ I" as a disturbance and define the following control problem:
Although, forCT L* and LT L, some properties will not be jf

shared, many important properties related to final beharior M(Go,® UT) ¥ f,

infinite behavior in the system are shared. One such formula
; construct a “controller” rule se¥ such that

P=i(1)=0b1(2) =b,1(3) = b]

is
f=AFG P, M(Go,®UT U D) = f.
which can be used to identify the stable set. Also, we can As an example, consider an initial gragh, with 1600
detect infinite cycles with vertices labeled:. Define a rule se® by
f=EG(P = F-P A-P = FP). a a = b-g,
=< b b = d-—c
Finally, under some restrictions, formulas describing se- d d = c—c
guences of labelings and possible connections for a verteXThe desired stable component is the eight vertex acyclic
are preserved. For example the formula graph denoted by, in Figure 2. Consider theACTL*
f=AG (I(1)=aUl(1)=b), formula

which states that vertex 1 is labeleduntil it is labeled | = "2(AG V(z) =m = AFGV(z) 2m) = z =4,

b, is shared. This type of property cannot be investigateghich describes the desired behavior of our system. The
using either the isomorphism collapse or the zero-one-maifigrmula is equivalent to the statement that the component
collapse, since propositions that use constants to rapres€’, is the only member of the stable s&(Gy, ;). We
vertices are not preserved under either collapse. We hameay verify in the collapsed structure thaf(Gy, @) E f.
yet to characterize the full set of formulas preserved by the Letz be any zero-one-many macrostate. Consider another
canonical system. formula that detects cyclic behaviors

Example 6.3:In Example 5.2 we stated that the cycle
between(m, 0, m)T and (m, 1, m)T in M. (Go,®)
was a spurious by-product of the collapsing pr0~cess. We cdlle can consider this question in the concrete structure of
verify this using the concrete Kripke structuné , of the the canonical initial graph. Using the method described in
canonical initial graph from Example 6.1. In particular, welheorem 6.1 we determine that" has only 40 vertices. We
check whether can then show that

g=VZiA-GE = FZ A & = F2).

M4 (G",®) = A ~GF(m 1m)), M (G @) Eg = M(Go,®1) =g
which turns out to be false. Thus, the cycle identified in the Now suppose we add the following disturbance rule,

. . representing a previously unmodeled interaction:
zero-one-many collapse did not correspond to a cycle in theP gap y

concrete system. dy={b b = e—Ff
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Fig. 2. Components of the gramm@go, ® UT' U ¥). C; — Cy are the components @ andC} is the desired stable component; is the unwanted
component created by the disturbance mleCs — C7 are the components created via the controller

Call the new systeniG,, ®; UT). Using the Mathematica of control must begin with the identification of unwanted
program, we compute the zero-one-many collapsed Kripkeomponents. Since this is the domain of model-checking, we
structure for the new systei, (Go, ®; UT"), which has 125 believe that model-checking and control of graph grammar
states. The zero-one-many structure reveals that thensysteystems are intrinsically linked. We were able to apply
produces an additional componett, which is pictured in the Mathematica program to grammars that produced small
Figure 2 . The zero-one-many collapse does not mgdel numbers of components and we are currently implementing
The program returns a list of final stat¢s,0,0,0,m)”, our methods in faster languages. In the future we plan tyg full
(0,0,1,0,m)7T, (0,0,1,m,m)7, (0,0,0,m,m)”, analyze the time and space complexity of the zero-one-many
(0,0,0,m,0)T,  (0,0,1,1,m)*, (0,0,0,1,m)” and collapse algorithm.

(0,0,1,m,1)T. It is clear from this list that the controller In the future, we would like to integrate these methods
rule set¥ needs to convert tw@'s components to &4  with on-the-fly model-checking. Additionally there are a
component and convert@s; and aCs component to &4  number of open questions: When(d$®) finite? Are there
component. The control rules are given by collapsings more appropriate to classes of systems where
C(®) is not finite? How can model-checking techniques

:> o 1 H . . pe .
0 — jj 5 = z_ cc’ inform the synthesis of rule sets to meet logical specificati
= 7 A
c—e = c—ec. over graphs?
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