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Abstract—We consider the problem of controlling gene set arbitrarily; (2) the covariance matrix of the copy numsbe
expression in a stochastic genetic regulatory network. We of the gene products can be prescribed using a scheme akin
introduce a general class of network designs that achieve this to full state feedback.

task, and that could be implemented in a synthetic biological B the state of t ists of b
setting. For our system, we describe the dynamics of the means ecause the state or our sysiem ConsISts of copy numbers

and covariances of the gene products, and show that their stegd  fOr some molecular species and concentrations for others, w
states can be prescribed and tuned. We demonstrate the ideas express the network asstochastic hybrid system [13] and
with a series of examples and also discuss how the network determine thenoment dynamics of the system to describe the
design could be implemented with molecular mechanisms such gy namics of the mean and covariance. The enabling idea in
as transcription factors and kinases. . . . f
the paper is to define the dynamics so that they are linear, so

. INTRODUCTION that the moment dynamics ackosed [15]. This idea was also

employed in [23] for the purposes of analyzing noisy gene

an-glhtingaoballcle%fiosgr?eﬂr]rﬁgglk:);m:t)g%slsatr? dderzlg[;r:ot\f/]eel;*nr?nbtgstt épression models. As a result, the analysis of the stdchast
y progran . grocess that results is straightforward. We use the sindpie i
genes of target cells. From the relatively simple bistabl

switch [11] and repressilator [9], published a decade ag(c))f integral control, which we have shown works for copy-

to the remarkably sophisticated coupled oscillator piielis number control in a stocha; tlcally—lntergctmg robotittisg .
. . . ; 20]. Of course, an actual implementation of the scheme in
this year [7], incredible progress has been made in our uf-.

derstanding of how to reprogram cells. For control systems. - hoPe! would likely be nonlinear and we discuss one such
9 prog ' y possible implementation in Section V.

synthetic biology offers a new class of systems with very The structure of the paper is as follows. In Section llI

new challenges. For example, consider implementing (with . . .
. we define the network structure and analyze its properties.

molecules!) an LQG controller to regulate the concentratio . : . .
o . In Section IV we discuss several increasingly complex ex-
of a novel metabolite introduced by a metabolic pathway en- . .
. . 7~ amples that show how the design works. In Section V, we
gineer. The lack of a true system model, the uncertaintyen th,. A . .
. . . discuss initial ideas for how the design could be implenmente
molecular components of the implementation, the inherent

A . . in molecules.
noise inside a single cell [22], [18], and the question of how

to represent a state estimate and do matrix multiplicatiiim w II. PRELIMINARIES

molecules presen.t enormous hurdles. In fact LQG and_manyA chemical reaction network in which some species occur
other control design paradigms that work well for micro-

: . ; o in low numbers (e.g. less than one thousand copies) can be
controllers are likely impractical for_synthetlc biology. modeled using the chemical master equation [12], or CME.
However, cells clearly have sophisticated control systemﬁhe CME involvingn chemical species with discrete copy

[24], [8]. In fact, what control systems engineers aatju-

K ) . numbers defines a Markov process on theimensional
lation anq zer0 steady state error, systems biologists call lattice of non-negative integers. Each point in the lattice
_hor_neostasus and perfect adaptation [3]. Control syste_ms corresponds to a vector of moleculeopy numbers.
inside cells can tlghtly regule_lte_mole_culempy mumbers in The system described in this paper, however, also includes
the face of intrinsic and extrinsic noise, even though thes

trol svst th I imol ted with molecul ecies whose numbers are so great as to be better modeled
control systems INeMSEIVes are implemented with MOIECUIES . ncentrations. Thus, the state of the system is deskcribe
subject to the same noise sources. The question of how no

trol ¢ be desiande f h tasks i two vectors: A vectoiX (¢) describing the copy numbers
contro’ Systems can be designee novo Tor SUCh 1asks 1S ¢ e low-copy species and a vectdi(t) describing the
the subject of this paper.

: . __ concentrations of the other species. For example, the copy
In particular, we consider the task of designing a gen

flumber of some proteins in a singk coli cell can be less
regulatory network consisting ef genes that can be tuned so p gie

than 100 while the copy number of others can be in the
that (1) the mearopy numbers of the gene products can be millions [1, ch. 2.

This work is supported by NSF Grant #0832773e Molecular Pro- Here, we aim t(_) describe the StO_Cha.St'C p_rocgs?é(e@
gramming Project. and Z(t) for a particular network design involving idealized
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transcription factors and other molecules (as described in r—Z, ,_—’XI

k
Section 1ll-A). We focus on the dynamics of the expected
values ofX and Z, which we denote here byX') and(Z),
as well as the dynamics of the second momenfsx ™), g k

X2—| Zj‘_ r,
(XzT7), and (ZZ™) from which the covariance matrix on K(

X and Z can be obtained. In particular, convergence results ”‘_;_’Z_;I—Xg

in this paper involve convergence in mean and (co)variance.

To simplify notation, we define a vector for the means anéig. 1. An example of the design described by (1), (2), and i{3¥hich
a matrix for the second moments the network has a ring structure. Gené§;) are controlled by integrators
(Z;) with reference inputs;. Genes are connected into a regulator network

ux\ a <X> A <XXT> <XZT> via proportional feedback terms specified by the makix Note, protein
n= ( ) = ((Z}) and M = <(ZXT> (ZZT)> . degradation and reference inputs are not shown.

0kO
00k
k0O

Hy
We also require the covariance matrix and its sub-blocks,

defined as The production and degradation &f; follows
KxxT KxzT\ a T
K= =M — . ui(X,Z i
<f€ZXT HZZT) s [} 2 X; B (o] Q)

Recall thatx is a covariance matrix if and only if it is

(symmetric) positive semidefinite. where 3; > 0 is the (generally uncertain) rate at which
To write the dynamics of a chemical system with mixeds degraded and

continuous and discrete states, we use a basic result from

stochastic hybrid systems [14]. In particular, {ebe a real- _ oy ~ .
valued function ofX (¢) and Z(¢). Then the dynamics of the uilX, Z) = Zi 21 Fig X )
expected value of) is described by =
d is the rate at which¥X; is produced. In (2)y; is theintegral
%@M = (L) gain and k; ; is the proportional gain from X; to X;. We

defineu = (uy ... u, )*. Note that in this model; could

be negative, not befitting a proper reaction rate. However, i

the systems we explore, the probability thatis negative is

very small. At this time we do not have a formal justification

for this statement. However, when we implementusing

repressors and activators, it will be impossible for the the

In this expressionZ = f(X,Z) describes the continuous actual production rate to be negative.

dynamics of the system. The sum is over all discrete transi- The dynamics of the integrator speciefollows

tions (changes in copy humbers). Thatds(X) is the copy

number vector obtained frooY via the discrete transition Zi =1 — X; (3)

Also, A;, which may be a function oX and Z, describes

the rate of the transition. That i§,dt is probability that the wherer; > 0 is called thereference input for transcription

ith transition occurs in the nextt seconds. _factor i. Once againZ; could become negative, but in the
The system proposed in this paper for gene regulatiosiems we explore, it has a low probability of doing so

is a linear model that only approximates more realisticy \when we implementZ; using biochemical reactions,
models of biochemical dynamics. To validate our resultsnegativity becomes impossible.

we compare the linear model to stochastic simulations of
more detailed models. For discrete chemical systems, the
stochastic simulation algorithm [12] would be sufficient for

whereL is theextended generator. Its general definition [14]
is more than we need here. In the present context,

I = 905X, 2)+ Yl(6n(X), 2) (X, ZIA(X, 2).

Collecting the parameters and gains, we define

é .
this purpose. However, for the mixed discrete/continuous P : diag(f1, ..., fn)
dynamics defined here, we simply use Euler integration with r = diag(y, .., 7n)
a smalldt. K = {kij}
r 2 (rp..r)t

IIl. Pl CONTROL OF GENE NETWORKS

A. Network Design Notice that K essentially defines a graph as shown in
We consider a network of transcription factors. The copy Figure 1, with an arrow leading from to ¢ when k;; # 0.
number of transcription factaris denotedX;(¢) € Z. Inour  If k;; is positive, thenX; represses the production &f;.
formulation, each transcription factérequires an auxiliary If k; ; is negative, then it activates the productionof. In
integrator species with concentrationZ;(t) € R. We put Section V we describe how (2) could be implemented with
X=(X;..X,)randZ=(2,..2,)" appropriately tuned transcription factors.



B. The Moment Dynamics of the Network eigenvalues ofA and A7 [4, p.71]. Thus, if A has all

The extended generator of the system defined by (fj9envalues in the left-half plane, so dads u
and (3) is given by It would be nice if the poles ofd could be placed
arbitrarily, and in small examples we are able to do so by
Ly = 8—7’0(7« - X) prescribing the coefficients of the characteristic polyiam
anZ of A (see Example IV-A). HoweverA does not separate
_ _ _ into the form A — BK. In general the coefficients of the
N ;W)(XJFG“Z) Y, DX, 2) characteristic polynomial ofA are nonlinear inK andT.
n Thus, prescribing these coefficients is not straightfodwvar
+ ZW(X —e,Z) —Y(X,2))6:X; Prescribing the exact mean X and covariance matrix in
i=1 X is possible, however.
wheree; denotes theth unit vector. Theorem 2: The unique steady state meaf} is ~ and is
Applying L to the elements qf and collecting into vectors INSensitive toK, I, and P.
results in the dynamics of the first moment: Proof: Set (4) to zero and solve fdX'). u

To determine the steady state covariance matrix, we sub-
4 (NX> _ (—P -K F) <MX> " (0) r, (4) StituteM =x+pu” into (5) and setM =0 to get

dt \pz -1 0) \nz I
) Ak + kAT = —C(u) — App™ — pu® A.
or written more compactly,
) Simplifying the right hand side results in a particularly
f=Ap+ Br simple Lyapunov equation:
where A € R?"*2" and B € R?"*" have the obvious
meanings.
Similarly, applying the extended generatbrto the ele-
ments of M gives

If A is non-singular (which it is if the system is stable), then
_ the existence of a unique steady state covariance matrix
M = AM + M AT + C(p) (5) is guaranteed [4, p. 71]. For purposes of design, we would
like to prescribe the covariance matrix and fiad and I"
to solve (6). Ifx* is chosen to be positive definite, it would
seem that aml exists to solve (6). However, such a@nwould
(diag(ruz + (P — K)px) pxr” ) have to have the form in (4), which is not guaranteed. Also,
T pzr” +ruy ) k* is not just any positive definite matrix. For example, (6)
Together, (4) and (5) determine enough of the dynamics #Pplies thatkx ;= is skew-symmetric (which itself implies
the system for use to reason about #msemble dynamics thatX; andZz; are uncorrelated in steady state). Nevertheless,
of of the system. For example, from these equations we cdff can show the following theorem. _
reason about the rate of convergence in mean and varianceJ€orem 3: The steady state covariance matrixihcan
and the mean and variance of the stationary distributioR® Placed arbitrarily. That is, ifV" is positive definite, then
Often, this is the same information that can be gleanelf @ndI’ can be found so that in steady stafg \» = W'
from experiments in systems and synthetic biology using Proof: We show that we can find find andT' so

fluorescence microscopy [17] or flow cytometry [19]. t%at Kyxr =W, Kyzr = Fle: andr’y ;- = 0. In fact,
substituting these assignments into (6) gives

At 4 AT — <—diag(2Pr) 0)

where A is the same as above aid(y) € R?"*?" s the
matrix

C. Properties of the Network

. _ _ —~(K+P)W -W(K +P)"' = diag(2P 7
Ideally, all the statistics of a synthetic gene network arch (K +P) (* +P) ng(2Pr) - (7)
tecture would be robust and tunable. In the present context, Thzgr =W = 0. (8)

we would like to tune the network so that it converges (irsincelV is positive definite, there exists a unique gain matrix

mean and variance) and we would like to be able to set thg solving (7). Sincex}, . is symmetric, Equation 8 requires
mean and covariance arbitrarily. Furthermore, we would thatT" = 41 for somey € R. Thenx?, .- =y 'W. -

like these statistics to be robust to a variety of distureanc |t js quite surprising that, for our system, steady state

for example, disturbances in the rates of production argbvariance matrices can be constructed with arbitey, »

degradation or unmodeled interactions. even thoughw*, . = 0. In fact, there are also steady state
Our first result is that an appropriately design&dand covariance matrices for the system that have,. # 0

7 result in a stable system. One simply has to check thghenr is not a scalar multiple af), but K is more difficult

eigenvalues ofd. to find in such cases.
Theorem 1: The network converges in mean and variance
if and only if A is Hurwitz. IV. EXAMPLES
Proof: Clearly (4) is asymptotically stable whe# is The goal of this section is to survey the possible behav-

Hurwitz. Now let A(M) = AM + M AT. The eigenvalues iors and design problems associated with networks defined
of the linear operatotd are all possible sums of pairs of by (1), (2), and (3). Details regarding the values of the rate



constants and whether they are biologically relevant, er thzr
units used, etc. are beyond the scope of this paper.

A. Control of a Sngle Gene

In this example, we compare three different architectures|
for regulating the product of a single gene. The goal of |
the comparison is to demonstrate which network is the:
most tunable and least sensitive to unknown parameters. The
networks span the range from (a) open loop, (b) proportiona - |
control, and (c) proportional-integral control as desediln f /

I

the previous section.
In the first network

- f— — L L TR S —1
0 50 100 150 200 4

r B
a) g— X — g
. . Fig. 2. A simulation of the control of a single gene using pmipoal-
the productX is produced and degradegpen loop. In this integral control withr = 10, 8 = 0.5, k = 2, and~ = 0.2. Shown are

case, the extended generator is the predicted mean and one-standard deviation window; destrajectory
from a stochastic simulation of the network that disallowgaiie rates; a
Loy = W(X + 1) _ w(X)]r histogram of the last half of the trajectory; and a Gaussitin thie predicted

steady state meam & 10) and variance§r/(k + 38) = 2).

+ X -1) -9(X)]BX

and the dynamics of the first and second moments are )
The third network,

AN _ (=B 0N (X)), (1), JZkX. B
dt \(X?) 2r+68 —26) \(X?) 1 c) ) X—o
For a given production rate, this system is stable when J=r—X
B> 0. Puttingu = (X) andx = (X?) — (X)? and solving
the above for steady state gives designed according to the scheme described in Section IlI-
r r A, includes an integrato#. The resulting dynamics follow
= 3 and k" = 7 (9)  equations (4) and (5) with
In fact, it can be shown that the steady state is Poisson with A= (—ﬂ —k 7)
parameter:/k. In this network, we can see that the steady -1 0/

state is quite sensitive the parametgrand importantly, the
variance and the mean are not independently tunable.
In the second network

The characteristic polynomial ofl is s? + (k + 3)s + v,
showing that the poles can be placed arbitrarily dynd
~. Furthermore, the steady state mean is simpignd the

by o=y By steady state covariance matrix is
the productX represses its own production, providing pro- . krfﬁ 0
! . C* = 8 (11)
portional control. The extended generator is 0 wiam
Lyp = [P(X +1) = (X)](r—kX) Significantly, the variance itk can be tuned vig without

+ WX -1) —9(X)]pX affecting the mean.
: ' ... Figure 2 shows a simulation of the third network. Overlaid
and the dynamics of the first and second moments are, similar. L L .
to the above with the_mom_ent dynamics is a stoch_asnc simulation of the
' system in which the production rate is setitax (0,72 —
da (<X>) _ ( —-B—k 0 ) (<X> >+(1> . kX) to prevent negative rates. The steady state mean and
dt \(X?)) “\2r+B8—-k -28-2k) \(X?) 1) variance are also shown as a histogram and compared to a
Assuming3 > 0, this system is stable whelhn > —3, and Gaussian with the predicted mean and variance.
the steady state mean and variance are
w = % and K* = — . (10) As an example design problem, suppose we are giyea
(k +5) k+p 0.1 and 32 = 0.5 and we are tasked with finding andT’
In contrast to (9), the mean and variance in (10) are indepege that
dently tunable (there are two equations and two parameters, 10 1 9
u*:rz( ) ananXT:( )

B. Prescribing the Covariance Matrix

k and r). Furthermore, the variance can be decreased by 20 2 10

increasing the feedback gaik, However, to decrease the

variance and achieve the same meamust be increased as According to Theorem 3, if we are satisfied with having
well, and therefore, the mean value remains sensitivé.to «% ,» = 0, then any symmetri€’ will do. For our example,
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F ensemble has the dynamics of a damped oscillator, and evensettles to
17 == X X BB a constant signal. The individual trajectories constawitexhe oscillatory
[ modes of the system and, therefore, oscillate with the samedpas the
10} e .... >~ ensemble, even during steady state. It is not a very goodatscilbut the
; example does show the possibilities of the class of systemsedkeiin this
9F bl o @ e e
; paper.
8 N . ' 2
7 e ‘ X . : . -
15 20 25 Figure 4 shows a simulation of the system in Figure 1

with £ = 0.1, v; = 1, andr = (20 40 60)”. Note that the

Fig. 3. (Top) A simulation of the control of two single genesngs reference inputs; can be used to shift the means of the
proportional-integral control and a fully connected netw@Bottom) Points  individual gene products arbitrarily.
from the simulation fromt = 150 to ¢ = 300 (not shown in the top figure).

The point size indicates relative frequency. Contour liaesfor a Gaussian V. IMPLEMENTATION WITH BIOCHEMICAL REACTIONS
with the mean and covariance matrix specified in Section IV-B. ) ) ] ) o i ]
In this section we discuss the plausibility of implementing
the idealized dynamics described above via actual biochemi
we choosd” = 0.51. To find K, we solve (7) withiW set cal mechanisms. It should not be surprising that biocheynist

according to the above specification and obtain could do these reactions. Several authors have shown that
173 —0417 biochemistry can implement Boolean logic [10], linear sys-
K = <'2.5 1'.0 ) tems [21], and Turing complete computation [5]. Therefore,

) N ) here we simply describe some ideas for how we might
In fact, the system is underspecified so that there is a opgoceed. The actual mechanisms would have to be carefully
parameter family of solutions. One can check that all of themhosen and tuned, of course. Based on our own work in
together with our choice of make A Hurwitz. synthetic biology, we believe that the mechanisms disclisse

A simulation of (4) and (5) for the above values &f  pejow could be made to work, in for exampg, coli. But

andI' are shown in Figure 3. A stochastic simulation isyjs is just a conjecture.
overlaid along with the histograms sampled from the steady As discussed above, many biochemical implementations
state (the system is ergodic so sample a window from steagy \yhat appear to be integrators have been elucidated in the

we approximate the distribution with a Gaussian having the

predicted steady state mean and variance. The bottom part Zog =z

of Figure 3 shows that covariance betwekEn and X, was X

obtained. whereZ,g is an inactive form of the transcription factar.
A small molecule presumably with concentrationperhaps

C. A Three Gene System a metabolite or attractant, activates the transcriptianofa

The network in Figure 1 has the topology of a repressilatguutting it into its active formZ. If Z,x is regulated and
[9] — although not exactly the dynamics of one. If properlyin large supply, the rate of this reaction ﬁsﬁ, which we
tuned, it the eigenvalues oft have significant imaginary call r. For example, the small molecule may recruit a kinase
parts and the system exhibits damped oscillations. Howevéhat phosphorylateg,¢ to obtainZ (there are examples of
the noise inherent in the low copy number aspect of ththis in glycolysis [2]). In the reverse reactioR, deactivates,
system constantly excites it, so that even though the enseperhaps dephosphorylates, Of course,X is also a tran-
ble behavior stabilizes to a constant signal, the indiMiduacription factor. One idea is to make a protein fusion of a
trajectories of the three gene products oscillate 120 @sgretranscription factor and a phosphatase. Considerably more
out of phase. unlikely pairs are regularly fused. As for the rate of the
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_X(t) (Hill function implementation)

5 10 15 20 25

t

Fig. 5. The average of 1000 simulations of a one gene netwer @nd
1000 simulations of the network implemented with the Hill fuot(12)
(blue). The parameters of the Hill function were= m = Kx = 1,
Kz =100 andv = 1331, which givesh(X,Z) ~ 11+ z — z.

reaction, it would seem to be proportional Xo7. However,
it is likely that the activity of the enzymatic activity ok
could be tuned to operate in saturation. Sitcés low copy
and Z is high copy, that seems reasonable.

VI. DISCUSSION ANDEXTENSIONS

The system described by (1), (2), and (3) is an example
of a network design that arguably could be implemented
in cells. It is easy to solve a number of design problems
in this setting, from placing poles to prescribing statigna
distributions. In contrast, understanding the dynamics of
existing biochemical networks (as is the task of the systems
biologist) can be quite difficult. Evolution optimizes penf
mance (broadly construed), not understandability.

Many questions remain, several of which we highlight
here. (a) The network structure itself can be altered and
adapted to specific settings. For example, if the task is to
control the concentration of a particular high-concerdrat
metabolite using low-copy-number enzymes, what network
structure should be used? (b) The network could include
more details. RNA dynamics were not modeled. Cooper-
ativity and protein-protein interactions were not modeled
It should be emphasized, however, that increasing the fi-
delity of the model is only necessary in as much as it
may introduce new kinds of dynamics or new knobs to
turn. As a specification of a desired system, simplicity is
crucial and other details should be left to a lower level of

As for implementing (2), consider the problem of imple-abstraction or implementation. (c) Several design problem
menting the third network in Section IV-A. We need to havaequiring more sophisticated treatments than in this paper

X repress gene expression afidictivate it. A promoter that
can be both activated and repressed can readily be found,

seem like obvious next steps. Cdn and I be found to
fattisfy a given performance criterion given constraintshen

example, from the combinatorial promoter library [6]. Suchetwork connectivity (e.g. find the sparsésthat minimizes

a dual promoter would result in a rate of gene expression
the form of a Hill function [16, p. 268]:

v
(Kz+Z™m)(Kx + 2Z™)

h(X,Z)= (12)

where v, n, m, Kz and Kx are parameters that can be

tuned by modifying promoter strengths, ribosome bindin
site affinities, and so on. Linearizing near p% and p%
gives

Q

WX.Z) ~ hiik.p)
ohX,Z
0X

OhX,Z
’ Z %
aZ e ( /’[/Z)
= a+~vZ —-kX.

(X —pXx)

*

w=p

Thus, one tunes the parametershirto give the desiredy
and k. The constant termx does not appear in (2). Adding

My — k% r|)? What can be achieved given biologically
realistic limitations on the parameters? (d) The inteoacti
between the concentration & and the copy number of

X seems to be required. K is implemented in high copy
number, but not so high as to be modeled as an element of
R, what limitations result? (e) And finally, can this system
éor similar) be implemented and easily tuned? Many of the
ools are in place to investigate possible implementations
and much of the current work in the author’s lab is in this
direction.
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