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Abstract— We consider the problem of controlling gene
expression in a stochastic genetic regulatory network. We
introduce a general class of network designs that achieve this
task, and that could be implemented in a synthetic biological
setting. For our system, we describe the dynamics of the means
and covariances of the gene products, and show that their steady
states can be prescribed and tuned. We demonstrate the ideas
with a series of examples and also discuss how the network
design could be implemented with molecular mechanisms such
as transcription factors and kinases.

I. I NTRODUCTION

The goal of synthetic biology is to design novel, robust,
and tunable biochemical systems and program them into the
genes of target cells. From the relatively simple bistable
switch [11] and repressilator [9], published a decade ago,
to the remarkably sophisticated coupled oscillator published
this year [7], incredible progress has been made in our un-
derstanding of how to reprogram cells. For control systems,
synthetic biology offers a new class of systems with very
new challenges. For example, consider implementing (with
molecules!) an LQG controller to regulate the concentration
of a novel metabolite introduced by a metabolic pathway en-
gineer. The lack of a true system model, the uncertainty in the
molecular components of the implementation, the inherent
noise inside a single cell [22], [18], and the question of how
to represent a state estimate and do matrix multiplication with
molecules present enormous hurdles. In fact LQG and many
other control design paradigms that work well for micro-
controllers are likely impractical for synthetic biology.

However, cells clearly have sophisticated control systems
[24], [8]. In fact, what control systems engineers callregu-
lation and zero steady state error, systems biologists call
homeostasis and perfect adaptation [3]. Control systems
inside cells can tightly regulate molecularcopy numbers in
the face of intrinsic and extrinsic noise, even though these
control systems themselves are implemented with molecules
subject to the same noise sources. The question of how novel
control systems can be designedde novo for such tasks is
the subject of this paper.

In particular, we consider the task of designing a gene
regulatory network consisting ofn genes that can be tuned so
that (1) the meancopy numbers of the gene products can be
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set arbitrarily; (2) the covariance matrix of the copy numbers
of the gene products can be prescribed using a scheme akin
to full state feedback.

Because the state of our system consists of copy numbers
for some molecular species and concentrations for others, we
express the network as astochastic hybrid system [13] and
determine themoment dynamics of the system to describe the
dynamics of the mean and covariance. The enabling idea in
the paper is to define the dynamics so that they are linear, so
that the moment dynamics areclosed [15]. This idea was also
employed in [23] for the purposes of analyzing noisy gene
expression models. As a result, the analysis of the stochastic
process that results is straightforward. We use the simple idea
of integral control, which we have shown works for copy-
number control in a stochastically-interacting robotic setting
[20]. Of course, an actual implementation of the scheme in
this paper would likely be nonlinear and we discuss one such
possible implementation in Section V.

The structure of the paper is as follows. In Section III
we define the network structure and analyze its properties.
In Section IV we discuss several increasingly complex ex-
amples that show how the design works. In Section V, we
discuss initial ideas for how the design could be implemented
in molecules.

II. PRELIMINARIES

A chemical reaction network in which some species occur
in low numbers (e.g. less than one thousand copies) can be
modeled using the chemical master equation [12], or CME.
The CME involvingn chemical species with discrete copy
numbers defines a Markov process on then-dimensional
lattice of non-negative integers. Each point in the lattice
corresponds to a vector of molecularcopy numbers.

The system described in this paper, however, also includes
species whose numbers are so great as to be better modeled
by concentrations. Thus, the state of the system is described
by two vectors: A vectorX(t) describing the copy numbers
of the low-copy species and a vectorZ(t) describing the
concentrations of the other species. For example, the copy
number of some proteins in a singleE. coli cell can be less
than 100 while the copy number of others can be in the
millions [1, ch. 2].

Here, we aim to describe the stochastic processesX(t)
andZ(t) for a particular network design involving idealized
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transcription factors and other molecules (as described in
Section III-A). We focus on the dynamics of the expected
values ofX andZ, which we denote here by〈X〉 and〈Z〉,
as well as the dynamics of the second moments〈XXT 〉,
〈XZT 〉, and 〈ZZT 〉 from which the covariance matrix on
X andZ can be obtained. In particular, convergence results
in this paper involve convergence in mean and (co)variance.

To simplify notation, we define a vector for the means and
a matrix for the second moments

µ =

(

µX

µY

)

,

(

〈X〉
〈Z〉

)

and M ,

(

〈XXT 〉 〈XZT 〉
〈ZXT 〉 〈ZZT 〉

)

.

We also require the covariance matrix and its sub-blocks,
defined as

κ =

(

κXXT κXZT

κZXT κZZT

)

, M − µµT .

Recall thatκ is a covariance matrix if and only if it is
(symmetric) positive semidefinite.

To write the dynamics of a chemical system with mixed
continuous and discrete states, we use a basic result from
stochastic hybrid systems [14]. In particular, letψ be a real-
valued function ofX(t) andZ(t). Then the dynamics of the
expected value ofψ is described by

d

dt
〈ψ〉 = 〈Lψ〉

whereL is theextended generator. Its general definition [14]
is more than we need here. In the present context,

Lψ =
∂ψ

∂Z
f(X,Z)+

∑

i

[ψ(φi(X), Z)−ψ(X,Z)]λi(X,Z).

In this expression,Ż = f(X,Z) describes the continuous
dynamics of the system. The sum is over all discrete transi-
tions (changes in copy numbers). That is,φi(X) is the copy
number vector obtained fromX via the discrete transitioni.
Also, λi, which may be a function ofX and Z, describes
the rate of the transition. That is,λidt is probability that the
ith transition occurs in the nextdt seconds.

The system proposed in this paper for gene regulation
is a linear model that only approximates more realistic
models of biochemical dynamics. To validate our results,
we compare the linear model to stochastic simulations of
more detailed models. For discrete chemical systems, the
stochastic simulation algorithm [12] would be sufficient for
this purpose. However, for the mixed discrete/continuous
dynamics defined here, we simply use Euler integration with
a smalldt.

III. PI CONTROL OFGENE NETWORKS

A. Network Design

We consider a network ofn transcription factors. The copy
number of transcription factori is denotedXi(t) ∈ Z. In our
formulation, each transcription factori requires an auxiliary
integrator species with concentrationZi(t) ∈ R. We put
X = ( X1 ... Xn )T andZ = ( Z1 ... Zn )T
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Fig. 1. An example of the design described by (1), (2), and (3) in which
the network has a ring structure. Genes (Xi) are controlled by integrators
(Zi) with reference inputsri. Genes are connected into a regulator network
via proportional feedback terms specified by the matrixK. Note, protein
degradation and reference inputs are not shown.

The production and degradation ofXi follows

∅
ui(X,Z)
−−−−−⇀
ui(X,Z)
−−−−−⇀ Xi

βi

−⇀
βi

−⇀ ∅ (1)

whereβi > 0 is the (generally uncertain) rate at whichXi

is degraded and

ui(X,Z) = γiZi −

n
∑

j=1

kijXj (2)

is the rate at whichXi is produced. In (2),γi is the integral
gain and ki,j is the proportional gain from Xj to Xi. We
defineu = ( u1 ... un )T . Note that in this modelui could
be negative, not befitting a proper reaction rate. However, in
the systems we explore, the probability thatui is negative is
very small. At this time we do not have a formal justification
for this statement. However, when we implementui using
repressors and activators, it will be impossible for the the
actual production rate to be negative.

The dynamics of the integrator speciesi follows

Żi = ri − Xi (3)

whereri > 0 is called thereference input for transcription
factor i. Once again,Zi could become negative, but in the
systems we explore, it has a low probability of doing so
and when we implementZi using biochemical reactions,
negativity becomes impossible.

Collecting the parameters and gains, we define

P , diag(β1, ..., βn)

Γ , diag(γ1, ..., γn)

K , {kij}

r , ( r1 ... rn )T .

Notice that K essentially defines a graph as shown in
Figure 1, with an arrow leading fromj to i whenkij 6= 0.
If kij is positive, thenXj represses the production ofXi.
If ki,j is negative, then it activates the production ofXi. In
Section V we describe how (2) could be implemented with
appropriately tuned transcription factors.



B. The Moment Dynamics of the Network

The extended generator of the system defined by (1)
and (3) is given by

Lψ =
∂ψ

∂Z
(r − X)

+

n
∑

i=1

[ψ(X + ei, Z) − ψ(X,Z)]ui(X,Z)

+
n

∑

i=1

[ψ(X − ei, Z) − ψ(X,Z)]βiXi

whereei denotes theith unit vector.
Applying L to the elements ofµ and collecting into vectors

results in the dynamics of the first moment:

d

dt

(

µX

µZ

)

=

(

−P − K Γ
−I 0

)(

µX

µZ

)

+

(

0
I

)

r, (4)

or written more compactly,

µ̇ = Aµ + Br

where A ∈ R
2n×2n and B ∈ R

2n×n have the obvious
meanings.

Similarly, applying the extended generatorL to the ele-
ments ofM gives

Ṁ = AM + MAT + C(µ) (5)

whereA is the same as above andC(µ) ∈ R
2n×2n is the

matrix
(

diag(ΓµZ + (P − K)µX) µXrT

rµT
X µZrT + rµT

Z

)

.

Together, (4) and (5) determine enough of the dynamics of
the system for use to reason about theensemble dynamics
of of the system. For example, from these equations we can
reason about the rate of convergence in mean and variance,
and the mean and variance of the stationary distribution.
Often, this is the same information that can be gleaned
from experiments in systems and synthetic biology using
fluorescence microscopy [17] or flow cytometry [19].

C. Properties of the Network

Ideally, all the statistics of a synthetic gene network archi-
tecture would be robust and tunable. In the present context,
we would like to tune the network so that it converges (in
mean and variance) and we would like to be able to set the
meanµ and covarianceκ arbitrarily. Furthermore, we would
like these statistics to be robust to a variety of disturbances,
for example, disturbances in the rates of production and
degradation or unmodeled interactions.

Our first result is that an appropriately designedK and
γ result in a stable system. One simply has to check the
eigenvalues ofA.

Theorem 1: The network converges in mean and variance
if and only if A is Hurwitz.

Proof: Clearly (4) is asymptotically stable whenA is
Hurwitz. Now letA(M) = AM + MAT . The eigenvalues
of the linear operatorA are all possible sums of pairs of

eigenvalues ofA and AT [4, p.71]. Thus, if A has all
eigenvalues in the left-half plane, so doesA.

It would be nice if the poles ofA could be placed
arbitrarily, and in small examples we are able to do so by
prescribing the coefficients of the characteristic polynomial
of A (see Example IV-A). However,A does not separate
into the form Ã − B̃K̃. In general the coefficients of the
characteristic polynomial ofA are nonlinear inK and Γ.
Thus, prescribing these coefficients is not straightforward.

Prescribing the exact mean inX and covariance matrix in
X is possible, however.

Theorem 2: The unique steady state meanµ∗

X is r and is
insensitive toK, Γ, andP .

Proof: Set (4) to zero and solve for〈X〉.
To determine the steady state covariance matrix, we sub-

stituteM = κ + µµT into (5) and setṀ = 0 to get

Aκ + κAT = −C(µ) − AµµT − µµT A.

Simplifying the right hand side results in a particularly
simple Lyapunov equation:

Aκ∗ + κ∗AT =

(

−diag(2Pr) 0
0 0

)

, (6)

If A is non-singular (which it is if the system is stable), then
the existence of a unique steady state covariance matrixκ∗

is guaranteed [4, p. 71]. For purposes of design, we would
like to prescribe the covariance matrix and findK and Γ
to solve (6). Ifκ∗ is chosen to be positive definite, it would
seem that anA exists to solve (6). However, such anA would
have to have the form in (4), which is not guaranteed. Also,
κ∗ is not just any positive definite matrix. For example, (6)
implies thatκXZT is skew-symmetric (which itself implies
thatXi andZi are uncorrelated in steady state). Nevertheless,
we can show the following theorem.

Theorem 3: The steady state covariance matrix inX can
be placed arbitrarily. That is, ifW is positive definite, then
K andΓ can be found so that in steady stateκ∗

XXT = W .
Proof: We show that we can find findK and Γ so

that κ∗

XXT = W , κ∗

ZZT = Γ−1W , andκ∗

XZT = 0. In fact,
substituting these assignments into (6) gives

−(K + P )W − W (K + P )T = diag(2Pr) (7)

Γκ∗

ZZT − W = 0. (8)

SinceW is positive definite, there exists a unique gain matrix
K solving (7). Sinceκ∗

ZZT is symmetric, Equation 8 requires
that Γ = γI for someγ ∈ R. Thenκ∗

ZZT = γ−1W .
It is quite surprising that, for our system, steady state

covariance matrices can be constructed with arbitraryκ∗

XXT

even thoughκ∗

XZT = 0. In fact, there are also steady state
covariance matrices for the system that haveκ∗

XZT 6= 0
(whenΓ is not a scalar multiple ofI), butK is more difficult
to find in such cases.

IV. EXAMPLES

The goal of this section is to survey the possible behav-
iors and design problems associated with networks defined
by (1), (2), and (3). Details regarding the values of the rate



constants and whether they are biologically relevant, or the
units used, etc. are beyond the scope of this paper.

A. Control of a Single Gene

In this example, we compare three different architectures
for regulating the product of a single gene. The goal of
the comparison is to demonstrate which network is the
most tunable and least sensitive to unknown parameters. The
networks span the range from (a) open loop, (b) proportional
control, and (c) proportional-integral control as described in
the previous section.

In the first network

a) ∅
r
−⇀
r
−⇀ X

β
−⇀
β
−⇀ ∅,

the productX is produced and degradedopen loop. In this
case, the extended generator is

Laψ = [ψ(X + 1) − ψ(X)]r

+ [ψ(X − 1) − ψ(X)]βX

and the dynamics of the first and second moments are

d

dt

(

〈X〉
〈X2〉

)

=

(

−β 0
2r + β −2β

)(

〈X〉
〈X2〉

)

+

(

1
1

)

r.

For a given production rater, this system is stable when
β > 0. Puttingµ = 〈X〉 andκ = 〈X2〉 − 〈X〉2 and solving
the above for steady state gives

µ∗ =
r

β
and κ∗ =

r

β
. (9)

In fact, it can be shown that the steady state is Poisson with
parameteru/k. In this network, we can see that the steady
state is quite sensitive the parametersβ, and importantly, the
variance and the mean are not independently tunable.

In the second network

b) ∅
r−kX
−−−−⇀
r−kX
−−−−⇀ X

β
−⇀
β
−⇀ ∅

the productX represses its own production, providing pro-
portional control. The extended generator is

Lbψ = [ψ(X + 1) − ψ(X)](r − kX)

+ [ψ(X − 1) − ψ(X)]βX

and the dynamics of the first and second moments are, similar
to the above,

d

dt

(

〈X〉
〈X2〉

)

=

(

−β − k 0
2r + β − k −2β − 2k

)(

〈X〉
〈X2〉

)

+

(

1
1

)

r.

Assumingβ > 0, this system is stable whenk > −β, and
the steady state mean and variance are

µ∗ =
rβ

(k + β)2
and κ∗ =

r

k + β
. (10)

In contrast to (9), the mean and variance in (10) are indepen-
dently tunable (there are two equations and two parameters,
k and r). Furthermore, the variance can be decreased by
increasing the feedback gain,k. However, to decrease the
variance and achieve the same mean,r must be increased as
well, and therefore, the mean value remains sensitive toβ.
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Fig. 2. A simulation of the control of a single gene using proportional-
integral control withr = 10, β = 0.5, k = 2, andγ = 0.2. Shown are
the predicted mean and one-standard deviation window; a single trajectory
from a stochastic simulation of the network that disallows negative rates; a
histogram of the last half of the trajectory; and a Gaussian with the predicted
steady state mean (r = 10) and variance (βr/(k + β) = 2).

The third network,

c) ∅
γZ−kX
−−−−−⇀
γZ−kX
−−−−−⇀ X

β
−⇀
β
−⇀ ∅

Ż = r − X

designed according to the scheme described in Section III-
A, includes an integratorZ. The resulting dynamics follow
equations (4) and (5) with

A =

(

−β − k γ
−1 0

)

.

The characteristic polynomial ofA is s2 + (k + β)s + γ,
showing that the poles can be placed arbitrarily byk and
γ. Furthermore, the steady state mean is simplyr and the
steady state covariance matrix is

C∗ =

(

rβ
k+β

0

0 rβ
(k+β)γ

)

. (11)

Significantly, the variance inX can be tuned viak without
affecting the mean.

Figure 2 shows a simulation of the third network. Overlaid
with the moment dynamics is a stochastic simulation of the
system in which the production rate is set tomax(0, γZ −
kX) to prevent negative rates. The steady state mean and
variance are also shown as a histogram and compared to a
Gaussian with the predicted mean and variance.

B. Prescribing the Covariance Matrix

As an example design problem, suppose we are givenβ1 =
0.1 and β2 = 0.5 and we are tasked with findingK and Γ
so that

µ∗ = r =

(

10
20

)

and κXXT =

(

1 2
2 10

)

.

According to Theorem 3, if we are satisfied with having
κ∗

XZT = 0, then any symmetricΓ will do. For our example,
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Fig. 3. (Top) A simulation of the control of two single genes using
proportional-integral control and a fully connected network. (Bottom) Points
from the simulation fromt = 150 to t = 300 (not shown in the top figure).
The point size indicates relative frequency. Contour linesare for a Gaussian
with the mean and covariance matrix specified in Section IV-B.

we chooseΓ = 0.5I. To find K, we solve (7) withW set
according to the above specification and obtain

K =

(

1.73 −0.417
−2.5 1.0

)

In fact, the system is underspecified so that there is a one
parameter family of solutions. One can check that all of them,
together with our choice ofΓ makeA Hurwitz.

A simulation of (4) and (5) for the above values ofK
and Γ are shown in Figure 3. A stochastic simulation is
overlaid along with the histograms sampled from the steady
state (the system is ergodic so sample a window from steady
state and taking an ensemble average coincide). Although
we have not solved for the steady state distribution forXi,
we approximate the distribution with a Gaussian having the
predicted steady state mean and variance. The bottom part
of Figure 3 shows that covariance betweenX1 andX2 was
obtained.

C. A Three Gene System

The network in Figure 1 has the topology of a repressilator
[9] – although not exactly the dynamics of one. If properly
tuned, it the eigenvalues ofA have significant imaginary
parts and the system exhibits damped oscillations. However,
the noise inherent in the low copy number aspect of the
system constantly excites it, so that even though the ensem-
ble behavior stabilizes to a constant signal, the individual
trajectories of the three gene products oscillate 120 degrees
out of phase.
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Fig. 4. A simulation of the three gene network shown in Figure 1. The
ensemble has the dynamics of a damped oscillator, and eventually settles to
a constant signal. The individual trajectories constant excite the oscillatory
modes of the system and, therefore, oscillate with the same period as the
ensemble, even during steady state. It is not a very good oscillator, but the
example does show the possibilities of the class of systems defined in this
paper.

Figure 4 shows a simulation of the system in Figure 1
with k = 0.1, γi = 1, and r = (20 40 60)T . Note that the
reference inputsri can be used to shift the means of the
individual gene products arbitrarily.

V. I MPLEMENTATION WITH BIOCHEMICAL REACTIONS

In this section we discuss the plausibility of implementing
the idealized dynamics described above via actual biochemi-
cal mechanisms. It should not be surprising that biochemistry
could do these reactions. Several authors have shown that
biochemistry can implement Boolean logic [10], linear sys-
tems [21], and Turing complete computation [5]. Therefore,
here we simply describe some ideas for how we might
proceed. The actual mechanisms would have to be carefully
chosen and tuned, of course. Based on our own work in
synthetic biology, we believe that the mechanisms discussed
below could be made to work, in for example,E. coli. But
this is just a conjecture.

As discussed above, many biochemical implementations
of what appear to be integrators have been elucidated in the
systems biology literature. One way to makeZ integrate a
difference as in (3) is with a reaction of the form

Zoff

r̃
−⇀↽−
X

Z

whereZoff is an inactive form of the transcription factorZ.
A small molecule presumably with concentrationr̃, perhaps
a metabolite or attractant, activates the transcription factor,
putting it into its active formZ. If Zoff is regulated and
in large supply, the rate of this reaction is̃Zoff , which we
call r. For example, the small molecule may recruit a kinase
that phosphorylatesZoff to obtainZ (there are examples of
this in glycolysis [2]). In the reverse reaction,X deactivates,
perhaps dephosphorylates,Z. Of course,X is also a tran-
scription factor. One idea is to make a protein fusion of a
transcription factor and a phosphatase. Considerably more
unlikely pairs are regularly fused. As for the rate of the
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Fig. 5. The average of 1000 simulations of a one gene network (red) and
1000 simulations of the network implemented with the Hill function (12)
(blue). The parameters of the Hill function weren = m = KX = 1,
KZ = 100 andv = 1331, which givesh(X, Z) ≈ 11 + z − x.

reaction, it would seem to be proportional toXZ. However,
it is likely that the activity of the enzymatic activity ofX
could be tuned to operate in saturation. SinceX is low copy
andZ is high copy, that seems reasonable.

As for implementing (2), consider the problem of imple-
menting the third network in Section IV-A. We need to have
X repress gene expression andZ activate it. A promoter that
can be both activated and repressed can readily be found, for
example, from the combinatorial promoter library [6]. Such
a dual promoter would result in a rate of gene expression in
the form of a Hill function [16, p. 268]:

h(X,Z) =
vZm

(KZ + Zm)(KX + Zn)
(12)

where v, n, m, KZ and KX are parameters that can be
tuned by modifying promoter strengths, ribosome binding
site affinities, and so on. Linearizingh near µ∗

X and µ∗

Z

gives

h(X,Z) ≈ h(µ∗

X , µ∗

Z)

+
∂hX,Z

∂X

∣

∣

∣

∣

µ=µ∗

(X − µ∗

X)

+
∂hX,Z

∂Z

∣

∣

∣

∣

µ=µ∗

(Z − µ∗

Z)

= α + γZ − kX.

Thus, one tunes the parameters inh to give the desiredγ
andk. The constant termα does not appear in (2). Adding
it does not substantially change the analysis in this paper,
however.

Figure 5 shows a the average of 1000 stochastic simula-
tions of a one-gene network (red) with the production rate
equal to 11 + z − x. It also shows the average of 1000
stochastic simulation in which we implement the production
rate with a Hill functionh(X,Z) that approximates11 +
z − x. The steady states are the same (as expected) and the
transients are also quite similar.

VI. D ISCUSSION ANDEXTENSIONS

The system described by (1), (2), and (3) is an example
of a network design that arguably could be implemented
in cells. It is easy to solve a number of design problems
in this setting, from placing poles to prescribing stationary
distributions. In contrast, understanding the dynamics of
existing biochemical networks (as is the task of the systems
biologist) can be quite difficult. Evolution optimizes perfor-
mance (broadly construed), not understandability.

Many questions remain, several of which we highlight
here. (a) The network structure itself can be altered and
adapted to specific settings. For example, if the task is to
control the concentration of a particular high-concentration
metabolite using low-copy-number enzymes, what network
structure should be used? (b) The network could include
more details. RNA dynamics were not modeled. Cooper-
ativity and protein-protein interactions were not modeled.
It should be emphasized, however, that increasing the fi-
delity of the model is only necessary in as much as it
may introduce new kinds of dynamics or new knobs to
turn. As a specification of a desired system, simplicity is
crucial and other details should be left to a lower level of
abstraction or implementation. (c) Several design problems
requiring more sophisticated treatments than in this paper
seem like obvious next steps. CanK and Γ be found to
satisfy a given performance criterion given constraints onthe
network connectivity (e.g. find the sparsestK that minimizes
||W − κ∗

XXT ||)? What can be achieved given biologically
realistic limitations on the parameters? (d) The interaction
between the concentration ofZ and the copy number of
X seems to be required. IfZ is implemented in high copy
number, but not so high as to be modeled as an element of
R, what limitations result? (e) And finally, can this system
(or similar) be implemented and easily tuned? Many of the
tools are in place to investigate possible implementations
and much of the current work in the author’s lab is in this
direction.
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