
Universal Self-Replication Using Graph Grammars

Eric Klavins
∗

Electrical Engineering Department
University of Washington

Seattle, WA 98195

Abstract

A graph grammar is described that can be used to
replicate arbitrarily labeled strands of particles (modeled
as linear graphs). The rules of the grammar dictate how
pairs of particles should attach or disassociate upon ran-
dom collisions, and thus describes a parallel and com-
pletely distributed algorithm for replication. The cor-
rectness of the algorithm is proved and the rate at which
replication occurs is characterized. The algorithm may be
applied to systems of programmable parts (stirred or agi-
tated in a fluid) that can encode the (very simple) rules of
the grammar and that can attach and dis-attach to create
strands and other structures.

1 Introduction

Engineering at the realm of the very small presents us
with several fundamental challenges, chief among them
is the construction of complicated structures from simple
parts. Although we have the ability to manufacture large
numbers of simple (for example flat) small components
(using, for example, lithography), the prospect of arrang-
ing such components into a prespecified and complicated
macro-scale object is daunting. One way to address this
problem that is the subject of considerable attention in
a variety of fields (MEMs, nanotechnology, biochemistry)
is self-assembly.

Our starting point in understanding self assembly is
the idea of conformational switching [14]: Each particle
(molecule, robot, etc.) exists in one of several conforma-
tions or shapes. When two particles collide, they attach
or not based on whether their conformations are compli-
mentary, as illustrated in Figure 1. If they do attach,
their conformations change (mechanically for example),
thereby determining in what future assembly interactions
the particless may partake.

As in other work [13, 12], we represent the conforma-
tion of a part by a discrete symbol, and we model an
assembly as a simple graph labeled by such symbols. Ver-
tices in these graphs represent parts, and the presence of

∗This work was supported in part by NSF Grant number

#0347955.

Fig. 1: A particle based embedding of self organization
using graph grammars.

an edge between two parts represents that they are some-
how attached.

One problem then, is to define the rules so that ran-
dom interactions (that follow the rules) always produce
a given graph (the desired assembly). In contrast, the
problem we focus on in this paper is the design of a rule
set that can replicate any suitable labeled “seed” graph
(see Figure 2). The products of the replication, being
identical to the seed, should continue to replicate until
all “raw materials” are used up. The difference between
these problems is that the desired assembly is encoded in
the rules of the system, whereas in the later problem, the
desired assembly is encoded as a seed assembly.

The specific contributions of this paper are the defini-
tion of the replication rules, which we call the replication
environment, and a proof that the rules indeed behave as
claimed above when interpreted using the graph grammar
approach.

2 Definitions

We begin with basic definitions. Much of this section
appeared first elsewhere [12], we include it for complete-
ness. Basic graph-theory definitions [3] are not numbered,
but only recalled.

A simple labeled graph over an alphabet Γ is a triple
G = (V,E, l) where V is a set of vertices, E is a set of pairs
or edges from V , and l : V → Γ is a labeling function. We
restrict our discussion to simple labeled graphs and thus
simply use the term graph. We denote by VG, EG and lG
the vertex set, edge set and labeling function of the graph

1

A0,0(abaa) : s1— a1 — b1 — a1 — a1 — t1

↓AS

s3— a1 — b1 — a1 — a1 — t1
A0,1(abaa) : |

s2

↓RS

s4— a2 — b1 — a1 — a1 — t1
B0,1(abaa) : |

s2

↓A(a)

s4— a4 — b1 — a1 — a1 — t1
A0,2(abaa) : | |

s2 a3

↓CS(a, 4)

s4— a4 — b1 — a1 — a1 — t1
A1,2(abaa) : | |

s4— a6

↓R(a, b)

s4— a5 — b2 — a1 — a1 — t1
B1,2(abaa) : | |

s4— a6

↓A(b)

s4— a5 — b4 — a1 — a1 — t1
A1,3(abaa) : | | |

s4— a6 b3

↓∗
s4— a5 — b5 — a5 — a5 — t4

C5(abaa) : | | | | | |
s4— a6 — b5 — a5 —- a5 —- t4

↓∗
s4— a5 — b5 — a8 — a1 — t1

G3(abaa) : | | | |
s4— a6 — b5 — a8 —- a1 —- t1

↓∗
s1— a1 — b1 — a1 — a1 — t1

A0,0(abaa) :
s1— a1 — b1 — a1 —- a1 —- t1

Fig. 2: The replication of the strand A0,0(abaa) in two
phases. In the first phase, each vertex of the strand at-
taches to a free vertex with the same basic symbol. In
the second phase, the replicated strand separates from its
parent. The notation used is explained in Sections 3-4.

G or by V , E and l when there is no danger of confusion.
Given graphs G1 and G2, we write f : G1 → G2 and

f : VG1
→ VG2

equivalently to mean that f is a function
from the vertex set of G1 to the vertex set of G2. A
function h : G1 → G2 is a label preserving embedding if

1. h is injective,

2. {x, y} ∈ EG1
⇔ {h(x), h(y)} ∈ EG2

,

3. lG1
= lG2

◦ h.

If h is also surjective then it is called an isomorphism.
The graphs G1 and G2 are said to be isomorphic (written
G1 ' G2) if there exists an isomorphism relating them.

Definition 2.1 A rule is a pair of graphs r = (L,R)
where VL = VR. The graphs L and R are called the left
hand side and right hand side of r respectively. The size

of r is |VL| = |VR|.

Definition 2.2 A rule r is applicable to a graph G if
there exists an embedding h : L → G. In this case the
function h is called a witness. An action on a graph G is
a pair (r, h) such that r is applicable to G with witness h.

Definition 2.3 Given a graph G = (V,E, l) and an ac-
tion (r, h) on G with r = (L,R), the application of (r, h)
to G yields a new graph G′ = (V ′, E′, l′) defined by

V ′ = V

E′ = (E − {{h(x), h(y)} | {x, y} ∈ L})

∪{{h(x), h(y)} | {x, y} ∈ R}

l′(x) =

{

l(x) if x 6∈ h(VL)
lR ◦ h−1(x) otherwise.

We write G
r,h
−−→ G′ to denote that G′ was obtained from

G by the application of (r, h).

Definition 2.4 A graph assembly system is a pair
(G0,Φ) where G0 is the initial graph and Φ is a set of
rules (called the rule set).

Definition 2.5 An assembly sequence of a system
(G0,Φ) is a sequence {Gi}

k
i=0 such that there exists a se-

quence of actions {(ri, hi)}
k
i=1 where ri ∈ Φ and

Gi
ri,hi
−−−−→ Gi+1

for i ∈ {0, ..., k − 1}.

Thus, a system (G0,Φ) defines a parallel, non-
deterministic dynamical system whose states are labeled
graphs over VG0

. The system is non-deterministic since,
at any step, many rules in Φ may be simultaneously ap-
plicable, each possibly via several witnesses. If the image
of the witnesses of a set of actions is disjoint, the actions
may be applied in parallel.

Two vertices in a graph G are connected if there is
a path (sequence of edges) connecting them in G. The
connectivity relation on V is an equivalence relation parti-
tioning V into sets {Vi}i∈I where v1 and v2 are connected
if and only if v1, v2 ∈ Vi for some i. The sets Vi are called
the components of G.

Definition 2.6 A connected graph G is reachable in a
system (G0,Φ) if there exists a finite assembly sequence
{Gi}

k
i=0 of (G0,Φ) such that G is isomorphic to some

component of Gk. The set of all such reachable graphs is
denoted R(G0,Φ).

2

3 An Environment for Replication

3.1 The Symbols

Let Σ be a set of symbols and let ω ∈ Σ∗ be a finite
string of symbols from Σ. Denote1 by ωn the nth symbol
in ω, where n ∈ {1, ..., |ω|}. Also, let s and t be two
distinct symbols not in Σ. In the sequel, the symbol s

will denote the “start” of the strand to be replicated, the
symbol t will represent the “terminal” end of the strand,
and ω will denote the symbols that define the body of the
strand.

We suppose that each symbol can take on one of a
finite number of states i ∈ {0, 1, 2, ...,m} and define

Γi = {σi | σ ∈ Σ ∪ {s, t}}

to be a new set of symbols. For example s3 represents the
3rd state of the symbol s and ωn

i represents the ith state
of the nth symbol in the string ω. In the graph grammar
presented below,

Γ =
⋃

0≤i≤m

Γi

is the co-domain of the labeling functions for rules and
for the initial graph.

3.2 The Initial Graph

The initial graph consists of two parts: The strand to
be replicated and the “raw materials” needed to perform
the replication. The strand is defined by

A0,0(ω) = (V, ∅, l)

where V = {0, ..., |ω| + 1} and l is defined by

l(v) =







s1 if v = 0
ωv

1 if 0 < v ≤ |ω|
t1 if v = |ω| + 1.

This graph is illustrated for ω = abaa at the top of Fig-
ure 2 and schematically in Figure 3. The purpose of the
subscripts in A0,0(ω) will be explained later. The “raw
materials” are defined by

G = (N, ∅, p) (1)

where p is subject to the following conditions

1. p(N) = Γ0

2. |p−1(σ0)| = ∞ for each σ0 ∈ Γ0.

Thus, G is a discrete graph all of whose vertices are la-
beled by symbols in state 0. Furthermore, each symbol
occurs infinitely often.

The initial graph for the replication of a given strand
A0,0(ω) is then G0(ω) = A0,0(ω)qG where q represents
the disjoint union.

1Using a superscript here is contrary to the standard convention,

that ω
n denotes the n-fold concatenation of ω, but will help make

the notation more concise.

3.3 The Rules

The rules for the replication environment are as fol-
lows. Many of them are parameterized by symbols in
Σ. We use the variables x and y to represent arbitrary
symbols in Σ.

ADDING PARTICLES For each symbol in Σ there is a
rule A(x) that matches a free vertex (one in state 0) to a
vertex in the strand. We also have rules AS and AT for
adding free start and termination vertices respectively.

AS : s0 s1 ⇒ s2 − s3

A(x) : x0 x2 ⇒ x3 − x4

AT : t0 t2 ⇒ t3 − t4

MOVING RIGHT Once a new vertex is matched at a
position k along the initial strand, we make the position
k +1 available to receive a free vertex using the following
rules.

RS(x) : s3 − x1 ⇒ s4 − x2

R(x, y) : x4 − y1 ⇒ x5 − y2

RT (x) : x4 − t1 ⇒ x5 − t2

CLOSING Once two adjacent positions are filled, they
should be attached. The following rules accomplish this.
Closing the new strand occurs sequentially from the be-
ginning to the end of the strand and trails the addition
of new vertices. Note that the rules for closing require
that the two vertices involved be from the same strand.
Because the upper right vertex involved in the first two
rules can be in one of two states (4 or 5), an integer i

appears as a parameter to those rules.

CS(x, i) :
s4 −− xi

| |
s2 x3

⇒
s4 −− xi

| |
s4 −− x6

CS(x, y, i) :
x5 −− yi

| |
x6 y3

⇒
x5 −− yi

| |
x5 −− y6

CT (x) :
x5 −− t4
| |

x6 t3

⇒
x5 −− t4
| |

x5 −− t4

SEPARATION Once a strand is copied and closed, the
following rules separate the new strand from the old one.
The first set of separation rules breaks apart the links
that join the strands.

BT : t4 − t4 ⇒ t1 t1

B(x) : x8 − x8 ⇒ x1 x1

BS : s6 − s6 ⇒ s1 s1

3

The second set of separation rules change the states of
the vertices adjacent to the most recently separated pair,
so that they may separate next.

LT (x) : x5 − t1 ⇒ x8 − t1

L(x, y) : x5 − y1 ⇒ x8 − y1

LS(x) : s4 − s1 ⇒ s6 − s1

These rules taken together comprise the replication en-
vironment. In the sequel we use the symbol Φ to denote
the set of all such rules. Note that there are 4|Σ|2+9|Σ|+4
rules in Φ. Also, symbols in Σ can be in one of nine states,
the symbol t can be in one of five states and the symbol
s can be in one of seven states. Thus, 21 symbols in all
are needed. The action of the first few rules is illustrated
in Figure 2.

4 Analysis

4.1 The Reachable Set

To prove that the system described above is correct,
we must show that the reachable set contains only copies
of, or partial copies of, A0,0(ω) and that some reachable
graph yields, in one step, two copies of the original strand.
To proceed, we catalog all the graphs that can possibly
arise in any assembly sequence of (G0(ω),Φ). They are
shown schematically in Figure 3. The relationship be-
tween the reachable graphs and the rules in shown in
Figure 4, which shows illustrates the assembly of a length-
three string.

There are seven varieties of reachable graph. The
graphs Aj,k(ω) are those wherein (1) the start symbol has
been copied (except in A0,0(ω)) via the rule AS; the first
k−1 symbols have been copied via the rules A(x), RS(x)
and R(x, y); and the first j links in the new strand have
been closed via the rules CS(x, i) and C(x, y, i). The
graph Bj,k(ω) is similar, except that kth vertex on the
original strand is in state 2 due to the rule R(ωk−1, ωk),
meaning it is ready to receive a matching free vertex via
the rule A(ωk).

The graphs Cj(ω) are those wherein all symbols (in-
cluding s and t) have been copied and the first j links have
been closed. Thus, Cn+1(ω) where n = |ω| represents two
identical attached strands (see, for example, C5(aaba) in
Figure 2). The graphs Dj(ω), Ej(ω) and Fj(ω) are in-
termediary graphs required to separate the two strands.
The graph D0(ω) consists of the original strand and its
completed and separated copy. That is

D0(ω) ' A0,0(ω) qA0,0(ω).

In Figure 4, we illustrate the structure of the reachable
set and its relation to the rules in Φ for a system based
on a string ω of size |ω| = 3. We summarize the structure
of the reachable set in the following theorem.

PSfrag replacements

A0,0

A0,1

B0,1

A0,2

B0,2

A0,3

B0,3

A0,4

B0,4

C0

A1,2

B1,2

A1,3

B1,3

A1,4

B1,4

C1

A2,3

B2,3

A2,4

B2,4

C2

A3,4

B3,4

C3

C4

D4

D3

D2

D1

D0

E4

E3

E2

E1

E4

E3

E2

E1

F4

F3

F3

F2

F1

G4

G3

G2

G1

G0

AS

AT

AT

AT

AT

A

A

A

A

A

CS

CS

CS

CS

CS

CS

CS

CT

C

C

C

C

C

C

C

C

RS

R

R

R

R

R

R

RT

RT

RT

RT

LSLS

LSLS

LTLT

LTLT

LL

LL

LL

LL

BS

B

B

B

BT

Fig. 4: The assembly graph for (G0(ω),Φ) when |ω| = 3.
The dependence of the reachable graphs on ω and the
specific form of the rules used have been omitted for the
sake clarity.

Theorem 4.1 For all ω ∈ Σ∗ with |ω| = n, the reachable
set R(G0(ω),Φ) consists of exactly

i. Aj,k(ω) for 0 ≤ j ≤ n, 0 ≤ k ≤ n + 1 and j ≤ k

ii. Bj,k(ω) for 0 ≤ j ≤ n, 1 ≤ k ≤ n + 1 and j ≤ k

iii. Cj(ω) for 0 ≤ j ≤ n + 1

iv. Dj(ω) for 1 ≤ j ≤ n + 1

v. Ej(ω) for 1 ≤ j ≤ n + 1

vi. Fj(ω) for 1 ≤ j ≤ n + 1

4

A0,0(ω) : s1— ω1
1 — ... — ωn

1 — t1

s3— ω1
1 — ... — ωn

1 — t1
A0,1(ω): |

s2

s4— ω1
2 — ... — ωn

1 — t1
B0,1(ω): |

s2

...

s4— ω1
5 — — ω

j
5 — ω

j+1
5 — — ωk−1

4 — ωk
1 — — t1

Aj,k(ω) : | | ... | | ... | ...

s4— ω1
5 — — ω

j
6 ω

j+1
3 ωk−1

3

s4— ω1
5 — — ω

j
5 — ω

j+1
5 — — ωk−1

5 — ωk
2 — — t1

Bj,k(ω) : | | ... | | ... | ...

s4— ω1
5 — — ω

j
6 ω

j+1
3 ωk−1

3

...

s4— ω1
5 — — ω

j
5 — ω

j+1
5 — — t4

Cj(ω) : | | ... | | ... |

s4— ω1
5 — — ω

j
6 ω

j+1
3 t3

s4— ω1
5 — — ω

j
5 — ω

j+1
1 — — t1

Dj(ω) : | | ... | ...

s4— ω1
5 — — ω

j
5 — ω

j+1
1 — — t1

s4— ω1
5 — — ω

j
8 — ω

j+1
1 — — t1

Ej(ω) : | | ... | ...

s4— ω1
5 — — ω

j
5 — ω

j+1
1 — — t1

s4— ω1
5 — — ω

j
5 — ω

j+1
1 — — t1

Fj(ω) : | | ... | ...

s4— ω1
5 — — ω

j
8 — ω

j+1
1 — — t1

s4— ω1
5 — — ω

j
8 — ω

j+1
1 — — t1

Gj(ω) : | | ... | ...

s4— ω1
5 — — ω

j
8 — ω

j+1
1 — — t1

Fig. 3: A complete catalog of R(Φ, G0(ω)), excluding singletons.

vii. Gj(ω) for 0 ≤ j ≤ n

as defined in Figure 3, and the singletons ({1}, ∅, λx.z)
for z ∈ Γ0.

Proof: Clearly A0,0(ω) is reachable since it is a compo-
nent of G0(ω). The only rule that applies to G0(ω) is AS.
Write AS = (L,R) where

VL = VR = {0, 1}

EL = ∅

ER = {{0, 1}}

lL(v) =

{

s0 if v = 0
s1 if v = 1

lR(v) =

{

s2 if v = 0
s3 if v = 1

Then AS is applicable via a witness h : L → G0(ω) where
h(1) equals vertex 0 of A0,0(ω) and h(0) equals some ver-
tex k of G (from Equation (1)) such that p(k) = s0. The
result of the action (AS, h) is a new graph

G1 = A0,1(ω) q G

Note that G ' G−{k} since there are an infinite number
of vertices with each label in Γ0. In a similar manner, we
can show that every graph listed above (1) has at most
two rules in Φ applicable to it and (2) yields another of
the graphs listed above. For example, there exist h1 and
h2 such that

Bj,k(ω) q G
A(ωk),h1

−−−−−−−→ Aj,k+1(ω) q G

and

Gj(ω) q G
B(ωj),h2

−−−−−−−→ Dj(ω) q G.

Furthermore, each graph listed can be produced via a
sequence of actions applied to G0(ω). The relationship
between the reachable graphs is illustrated in Figure 4.

Note that all rule applications in any assembly se-
quence are between a vertex on one of the reachable
graphs and a singleton labeled by a symbol in state 0;
or between two vertices on the same graph. This is be-
cause: all of the “ADDING” rules use symbols in state 0
and none of the reachable graphs (except singletons) have
vertices labeled with symbols in state 0; all of the “CLOS-
ING” rules require that the vertices to be linked be in the

5

same component; none of the other rules add edges. The
result is that, even when the state of the system contains
multiple copies of any of the graphs described in Figure 3,
none of them can combine via any rule to give a graph
not in Figure 3. 2

Notice that D0(ω) does not appear in the statement of
the theorem. This is because it is not connected, consist-
ing as it does of two copies of A0,0(ω). However, notice
that

G0(ω)
BS ,h
−−−−→ D0(ω)

for exactly one h. Furthermore, BS is the only rule that
is applicable to G0(ω). This yields the following corollary,
which is the main result of the paper:

Corollary 4.1 For any infinitely long assembly sequence

G0(ω)
r0,h0

−−−−→ G1
r1,h1

−−−−→ ...

of (G0(ω),Φ), the rule BS is used infinitely often.

4.2 Exponential Growth

Suppose that at some point k in an assembly sequence
of (G0(ω),Φ), the graph Gk contains n non-trivial com-
ponents. By Theorem 4.1, each such component is iso-
morphic to one of those described in Figure 3. Also, to
each component at least one rule is applicable. Since non-
trivial components do not interact, these rules can all be
applied in parallel. The point is that when there are n

non-trivial components in an assembly sequence, then af-
ter N parallel steps there are at least 2n components,
where N is the number of steps required to assemble from
A0,0(ω) to D0(ω) in the worst case. (If we had not con-
sidered the rules in parallel, it would take nN sequential
steps to achieve the same number of components.) We
have just argued that

Theorem 4.2 If

G0(ω)
A0
−−→ G1

A1
−−→

.
−→ ..

ANk−1

−−−−−→ GNk

where Ai = {(ri,1, , hi,1), ...} is a maximal set of actions
that can be applied in parallel to Gi and N(ω) is the num-
ber of steps to replicate a strand in the worst case, then
the number of non-trivial components in GNk

is O(2k).

5 Related Work

The replication environment described here is clearly
inspired by DNA replication [18], although we make abso-
lutely no claims that we have modeled this considerably
more complex phenomenon at any useful level of detail.
John von Neumann, in the late 1940s, was the first to de-
scribe self-reproducing automata [19], which he did in the
context of Cellular Automata (CAs). Since then, many re-
searchers have pursued similar ideas, usually also in the

context of CAs, but sometimes in other formalisms as well
[15]. We believe that using the particle model described
in Figure 1, instead of CAs as the basis for our replicator,
makes the present work potentially applicable to a broad
array of engineered systems based on, for example, tile
assembly [4].

Conformational switching was first described as a sym-
bolic process for self assembly by Saitou [13], who consid-
ered the assembly of strings in one dimension. Self as-
sembly as a graph process is described by the author of
this paper [12]). A method for using potential fields and
deadlock avoidance to implement graph grammar rules
with a group of mobile robots was also described [9].

Graph grammars were introduced [6, 5] at least two
decades ago and have been used to describe a broad array
of systems, from data structure maintenance to mechan-
ical system synthesis. Graph grammars are, of course,
a generalization of the standard “linear” grammars used
in automata theory and linguistics [7] and thus (inciden-
tally), can perform arbitrary computation.

There are other models of self assembly besides graph
grammars. For example, several groups [20, 1, 2] have
explored self assembly using passive tiles. The tiles at-
tach along complimentary edges upon random collisions.
In this setting, a form of replication has been described
that creates “barcodes” from a given seed string [21]. As
described elsewhere [11], graph grammars are somewhat
more general and are possibly better suited to describing
the topology of assemblies.

A simple dynamical model of the physics of tile as-
sembly has been described [10]. Somewhat similar to the
reachable set in this paper, the identification of “unique”
assemblies has been explored [16]. There is also other
work on tile systems with conformal-like state informa-
tion [8]. The addition of simple processing to each part,
similar in capability to that assumed in the present pa-
per, is considered in models of the assembly of the T4
bacteriophage [17].

6 Conclusions and Future Work

We have presented a very basic replication environ-
ment and proved that it behaves as claimed. We believe
that such a system can be used to describe the parallel
assembly and self-organization algorithms that bottom-
up manufacturing techniques seem to require. Certainly,
more sophisticated replicators and other such systems
could be designed. However, the underlying methodol-
ogy of examining the structure of the reachable set will
be the same for more complicated systems.

Several modifications to our system are immediately
obvious. For example, one could add a rule q0 s0 ⇒
q1−s2 that “blocks” that the initial step in the replication
of a strand by combining a blocking particle q with the
start particle. The “release” of enough particles labeled q

into the system could stop replication. Other variations

6

are readily imagined.
Many open issues remain. First, the physical realiza-

tion of graph grammar systems has not been adequately
addressed. In our lab we are building macroscale (3cm
diameter) programmable parts that can execute graph
grammar programs. The robots float on an air table and
attach or not upon random collisions. We are also design-
ing MEMs scale parts that operate similarly in a stirred
fluid. Power, of course, remains a problem. We believe
these problems are purely technical, however. Second,
many theoretical issues remain. For example, what hap-
pens when two rules sets are combined that interact in
a non-trivial way? That is, if we want a system that
performs two tasks (replication and assembly, for exam-
ple) — possibly with feedback loops between the tasks
— how can this reliably be achieved? Other issues in-
volve the interplay between graph grammars (which are
essentially topological) and their geometrical and physical
implementations.

Acknowledgements

Many of the ideas in this paper were inspired by conver-
sations with Robert Ghrist and Dave Lipsky. The work
was supported in part by NSF Grant number #0347955.

References

[1] L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang. Run-
ning time and program size for self-assembled squares.
In Proceedings of the thirty-third annual ACM sympo-

sium on Theory of computin, pages 740–748, Hersonissos,
Greece, 2001.

[2] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang,
D. Kempe, P. Wilhelm P. Moisset de Espanés, and
K. Rothemund. Combinatorial optimization problems in
self-assembly. In Proceedings of the thiry-fourth annual

ACM symposium on Theory of computing, pages 23–32,
Montreal, Canada, May 2002.

[3] B. Bollobás. Modern Graph Theory. Springer, 1991.

[4] N. Bowden, A. Terfort, J. Carbeck, and G. M. White-
sides. Self-assembly of mesoscale objects into ordered
two-dimensional arrays. Science, 276(11):233–235, April
1997. http://www.sciencemag.org/.

[5] B. Courcelle. Handbook of Theoretical Computer Sci-

ence, Volume B: Formal Models and Sematics, chapter
on Graph Rewriting: An Algebraic and Logic Approach,
pages 193–242. MIT Press, 1990.

[6] H. Ehrig. Introduction to the algebraic theory of graph
grammars. In V. Claus, H. Ehrig, and G. Rozenberg, ed-
itors, Graph-Grammars and Their Application to Com-

puter Science and Biology, volume 73 of Lecture Notes in

Computer Science, pages 1–69, 1979.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation. Addison-
Wesley, 1979.

[8] C. Jones and M. J. Matarić. From local to global behavior
in intelligent self-assembly. In International Conference

on Robotics and Automation, Taipei, Taiwan, 2003.

[9] E. Klavins. Automatically synthesized controllers for dis-
tributed assembly: Partial correctness. In S. Butenko,
R. Murphey, and P. M. Pardalos, editors, Cooperative

Control: Models, Applications and Algorithms, pages
111–127. Kluwer, 2002.

[10] E. Klavins. Toward the control of self-assembling systems.
In A. Bicchi, H. Christensen, and D. Prattichizzo, editors,
Control Problems in Robotics, pages 153–168. Springer
Verlag, 2002.

[11] E. Klavins. Directed self-assembly using graph grammars.
In Foundations of Nanoscience: Self Assembled Architec-

tures and Devices, Snowbird, UT, 2004. Invited Paper.

[12] E. Klavins, R. Ghrist, and D. Lipsky. Graph grammars
for self-assembling robotic systems. In Proceedings of the

International Conference on Robotics and Automation,
2004. To Appear.

[13] K. Saitou. Conformational switching in self-assembling
mechanical systems. IEEE Transactions on Robotics and

Automation, 15(3):510–520, 1999.

[14] K. Saitou and M. Jakiela. Automated optimal design
of mechanical conformational switches. Artificial Life,
2(2):129–156, 1995.

[15] M. Sipper. Fifty years of research on self-replication: An
overview. Artificial Life, 4(3):237–257, 1998.

[16] Y. S. Smentanich, Y. B. Kazanovich, and V. V. Kornilov.
A combinitorial approach to the problem of self assembly.
Discrete Applied Mathematics, 57:45–65, 1995.

[17] R. L. Thompson and N. S. Goel. Movable finite automata
(MFA) models for biological systems I: Bacteriophage as-
sembly and operation. Journal of Theoretical Biology,
131:152–385, 1988.

[18] D. Voet and J. G. Voet. Biochemistry. John Wiley and
Sons, 3 edition, 2003.

[19] J. von Neumann. Theory of Self-Reproducing Automata.
University of Illinois Press, 1966.

[20] E. Winfree. Algorithmic self-assembly of DNA: Theoret-
ical motivations and 2D assembly experiments. Journal

of Biomolecular Structure and Dynamics, 11(2):263–270,
May 2000.

[21] H. Yam, T. H. LaBean, L. Feng, and J. H. Reif. Directed
nucleation assembly of dna tile complexes for barcode-
patterned lattices. Proceedings of the National Academy

of Science, 100(14):8103–8108, July 2003.

7

