
1 Toward the Control of Self-Assembling

Systems

Eric Klavins?

California Institute of Technology, Pasadena, CA 91125, USA

Abstract. In recent work [4], capillary forces between tiles floating on a liquid-
liquid interface are used to direct a self-assembly process. By carefully arranging the
wetabilities of the edges of the tiles, regular arrays of various shapes spontaneously
form when the tiles are gently shaken. It is difficult, however, to avoid flaws in the
assembled aggregates and to assemble terminating and asymmetric structures. In
this paper, we suppose that the wetability properties of the tiles, and therefore the
capillary forces , can be controlled. In particular, we introduce a simple model of a
“waterbug” shaped tile and derive the equations of motion for a system of such tiles
from a model of the lateral forces between two floating colloidal particles. We then
explore the possibilities for control in this setting and present some initial forays
into addressing the above difficulties.

1.1 Introduction

Self-assembly plays a crucial role in many phenomena in chemistry, physics
and cell biology. Self assembling systems occur when many similar parts
(molecules, colloids, tiles) are placed in an environment that thermodynam-
ically favors their forming regular arrays. Recent work on mesoscale self-
assembly [4] has employed capillary forces between millimeter scale tiles float-
ing on a liquid-liquid interface to direct the assembly process. By carefully
arranging the wetabilities of the edges of the tiles, regular arrays of various
shapes spontaneously form as the system is gently shaken. The straightfor-
ward construction of such tile systems allows researchers to more easily ob-
serve the assembly process than in chemical systems. Mesoscale self-assembly
may also have practical applications such as the assembly of three dimensional
memory chips [5] or of computer displays [24].

Two main difficulties arise in self-assembling systems. First, it is difficult
to avoid flaws in the assembled aggregates due to malformed parts or, more
interestingly, local minima in the energy landscape. Second, it can be difficult
to assemble terminating and asymmetric structures for arbitrary part mor-
phologies. For example, square parts with all hydrophobic edges form square
lattices that terminate only when all parts are incorporated. Designing an
open loop system that terminates at, for example, multiple 10× 10 arrays of
such parts is not possible.
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and by AFOSR grant number F49620-01-1-0361.
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Fig. 1.1. The waterbug tile model: Two lightweight beams of equal length joined
at their centers at right angles. To the ends of each beam are attached buoyant
particles whose wetability (see Figure 1.3) can be controlled. When the tile floats
on the surface of the water, the meniscus formed by the “feet” results in attraction
to or repulsion from the feet of other tiles.

One way to address these problems is to suppose that the parts themselves
have some control over in which binding interactions they participate. In a
biochemical environment, we might suppose that this control is mediated by
organelles in the cell. In mesoscale self-assembly, we might suppose that tiles
have control over the wetabilities of their edges and also some idea of their
local state.

Of course, other models of self-actuated, robotic parts using magnets or
latches are readily imagined. In this paper, however, we propose a model
of a tile, dubbed the waterbug (Figure 1.1), we believe will be useful in de-
veloping an initial analytical understanding of the dynamics and control of
self-assembling systems. The waterbug consists of two beams held at right
angles with buoyant particles (its feet) at the ends of the beams. We suppose
that the wetabilities of the feet can be varied [22,13] so that their interactions
with other feet can be controlled. This model is conceptually simple in that
we can, using what is known about particles floating on liquid-fluid inter-
faces (Section 1.3.1 which summarizes [16]), derive fairly accurate equations
to describe its motion and its interaction with other tiles (Section 1.3.2).

Remark: We emphasize that the details of the waterbug model are not
important. The forces that attract particles together could equally well be
magnetic, electrostatic, even gravitational, and the qualitative behavior of
the system would be the same: The tiles readily form aggregates that are,
qualitatively, quite similar to those observed in [4] as illustrated in Figure
1.2.

The opportunities for new modeling and control techniques in self-assembly
are substantial. In general, the main difficulties are the estimation of global
state from local information and distributed control based on local and incom-
plete information. After introducing the waterbug model, we suggest some
initial ideas for how to address these difficulties. In Sections 1.3.3 and 1.3.4,
we examine the dynamics of the assembly model we propose and our initial
understanding of what kinds of aggregates are possible. In Section 1.4.1, we
demonstrate that by controlling the wetabilities of the feet of the waterbug
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Fig. 1.2. An example intermediate assembly of waterbug tiles. Without control,
the tiles arrange themselves into quasi-regular arrays that terminate only when all
tiles are incorporated. Defects, corresponding to undesirable stable configurations
(see for example Figure 1.6(c)), are also possible.

tile, we can avoid certain undesirable subassemblies that would have been en-
ergetically favorable if the wetabilities of the feet were static. In Section 1.4.2
we review [9,10] and suggest how the methods used there can be adapted to
the present model.

1.2 Related Work

Research in self-assembly has traditionally been the realm of supramolecular
chemistry [14] wherein the formation of regular molecular aggregates by non-
covalent binding interactions (such as hydrogen bonding) is studied. Such
aggregates form spontaneously due to thermodynamics and chance collisions
and are not mediated by chemical reactions. Many examples of these aggre-
gates and their assembly dynamics, from dendrimer formation to chemical
contaminant recognition, can be found in the recent issue of the PNAS ded-
icated to the subject [8]. Molecular self-assembly systems are quite flexible
and in fact, in [2,23], arbitrary computations are studied using DNA tiles,
reinforcing the view put forth in [14] that self-assembly is as much about
structure as it is about information.

Research into aggregates of small particles suggests alternative systems
for which interesting self-assembling systems can be easily constructed and
observed. According to [6], Perrin was the first (in 1909) to report the phe-
nomenon wherein particles in fluid are attracted to each other by capillary
forces. The idea is extended significantly in [4] to systems of tiles with var-
ious shapes floating on a liquid-liquid interface. By carefully designing the
wetabilities of the edges of the tiles with respect to one of the liquids, a wide
variety of arrays of tiles can be made. This work was further extended [20] to
reproduce, with tiles and capillary forces, the computational systems inves-
tigated in [23]. Chemistry and colloid physics are combined in [15] wherein
single strands of DNA are attached to small gold balls which then assem-
ble according to the interactions between complementary strands of DNA.
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Saitou [21] has explored the logic of conformational switching whereing the
binding of a part to a subassembly changes the “shape” and therefore the
future binding properties of the parts involved.

The idea of controlling the wetability of surfaces is used in [13] to move a
liquid droplet across the surface of a microchip (see also [1]) and in [22] for
protein patterning. More generally, capillary forces are being used to a greater
and greater extent in the MEMs community for microfluidic manipulation
and assembly [7].

In robotics and control, Koditschek was the first (in unrelated work) to
propose the idea of assembly as a “game of its pieces” [19]. In this work,
parts can move themselves – or they can direct external manipulators to
move them – based on artificial potential functions [12]. The robotics com-
munity, however, has mainly latched onto this work for its application to
robot navigation. Initial forays have also been made toward decentralized
versions of this idea [18] that resemble self-assembling systems, but for which
analysis is apparently quite difficult.

Despite the innovation of considering parts as autonomous, the approach
in [19] is problematic in that the programs that achieve a final desired config-
uration (assembly) are global. We are concerned with systems where global
information is not readily available if for no other reason than that the size
of the system is enormous, so that the communication complexity of shar-
ing global information [11] is prohibitively high. To overcome this we have
examined decentralized schemes for assembly [9,10], which require only local
knowledge and which, statistically, seem to work. The main idea is to compile
programs for each autonomous part from a specification of the desired final
assembly, which in general may be terminating and asymmetric – unlike most
uncontrolled tile systems [4]. When the programs are run by each part, copies
of the desired assembly form. The method relies on local sensing and control:
We augment the natural thermodynamic programs of the tiles with internal
state and control. The work in [9,10] assumes a certain highly idealized part.
One motivation for the the present work is to investigate the feasibility of
various physically realistic models for autonomous parts that may be able to
execute the programs compiled in [9,10].

1.3 Modeling

1.3.1 Lateral Capillary Forces Between Floating Particles

Consider the system depicted in Figure 1.3. Two particles float on a liquid-
fluid interface (e.g. water-air). Each particle k forms a meniscus which has
slope Ψk based on the wetability of the particle. If the particle is hydrophilic,
then Ψk > 0. Otherwise the particle is hydrophobic and Ψk < 0. The two
particles will experience a force along the line connecting them due to the
thermodynamic tendency for the interfacial free energy between the liquid
and fluid to be minimized. Using the Laplace-Young [17] equation, which
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Fig. 1.3. The model examined in [16]: Two particles floating on a liquid-fluid
interface form a meniscus that results in their mutual attraction or repulsion, de-
pending on their respective wetabilities. The waterbug model in Figure 1.1 uses
such particles for its “feet”.

describes the shape of the meniscus around the particles, Paunov et al. [16]
determined that the lateral force between two particles at distance L from
each other is approximated by

F (L) = 2πγQ1Q2ρK1(ρL)[1 + O(ρ2R2)], (1.1)

where γ is a parameter describing the surface tension of the interface; ρ is a
parameter (related to γ, the mass densities of the liquid and fluid, and the
force of gravity) describing the capillary length; R is the radius of particles;
K1 is the modified Bessel function of the first order; and

Qk , rk sin Ψk (1.2)

where rk is the distance from the center-line of the particle to the interface
(see Figure 1.3). We will assume that ρ2R2 � 1 so that this approximation is
valid. However, we will be noncommittal about the rest of these parameters
in this paper.

Using the fact that K1(ρL) > 0 and the definition of Qk, we see that two
particles of similar wetabilities (both hydrophobic, or both hydrophilic) will
be attracted to each other, whereas two particles of differing wetabilities will
be repelled from each other.

To simplify notation, define c1,2 , 2πγQ1Q2. Using the fact that

∂

∂x
K0(x) = −K1(x)

where K0 is the modified Bessel function of zeroth order, we see that (1.1) is
a gradient field with potential energy function

Upre(L) = −c1,2K0(ρL). (1.3)

This function is depicted (with two variations of it) in Figure 1.4. Note in
particular that Upre(L) is singular at L = 0.
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1.3.2 The Waterbug Model

We are in general interested in systems of tiles, such as those examined in
[4], whose edges have certain wetability properties. To understand such sys-
tems using what we know about particle interactions, we introduce a model
“waterbug” tile (shown in Figure 1.1) that is similar to the tiles studied ex-
perimentally in, for example, [4], with respect to its possible interactions with
other tiles. The waterbug model consists of two beams of negligible mass and
of length 2d joined at their centers at right angles. To the ends of each beam
are attached buoyant particles (which we will call feet) of radius R, mass m

and with wetabilities described by Ψ1, Ψ2, Ψ3 and Ψ4.
We suppose that the Ψj are control inputs to the system; that is, we

suppose that a tile is able, somehow [13,1,22], to vary the wetabilities of its
feet so that they will be attracted to or repelled by the feet of other tiles
according to (1.1).

Now consider a system consisting of n waterbug tiles. Denote by qi =
(xi, yi, θi) the generalized position and orientation of the ith tile and by
wi,j = (ui,j , vi,j) the actual position of the jth foot of tile i (e.g. (ui,1, vi,1) =
(xi + d cos θi, yi + d sin θi)). We denote the full state of the system (q1, ..., qn)
by q. The potential energy corresponding to two different tiles i and k is

Utiles(qi, qk) = −
4

∑

j=1

4
∑

l=1

ci,j,k,lK0(q||wi,j − wk,l||)

where ci,j,k,l = 2πγQi,jQk,l and Qi,j is the wetability coefficient of the jth
foot of the ith tile. We have assumed that no two feet are touching (i.e. that
||wi,j − wk,l|| > 2R for all i, j, k and l). The full potential energy of the
system1 is then

U(q) =
∑

1≤i6=k≤n

Uw(qi, qk).

The kinetic energy of a single tile is Ki = 4m(ẋi + ẏi + d2θ̇i), and of the
system is K =

∑n

i=1 Ki. We assume that each foot is subject to the force
of viscous friction which we model simply by −kf ẇi,j where kf > 0 is a
constant. Setting L = K −U and setting the Lagrangian equal to the sum of
the frictional forces, we have that the dynamics of the system are described
by

8mẍi +

n
∑

k=1,k 6=i

∂

∂xi

Uw(qi, qk) = −4kf ẋi

8mÿi +
n

∑

k=1,k 6=i

∂

∂yi

Uw(qi, qk) = −4kf ẏi (1.4)

8md2θ̈i +

n
∑

k=1,k 6=i

∂

∂θi

Uw(qi, qk) = −4kf d
2ẋi.
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Fig. 1.4. The potential energy Upre(L) between two particles distance L apart and
the modified potentials used to model contact situations. The collision potential,
if used, is active when L < 2R. The smoothing of the singularity, if used, is active
when L < δ � R. In both cases a polynomial of appropriate degree is used so that
the resulting potential is C2.

1.3.3 The Hybrid Dynamics of Assembly Systems

The equations (1.4) are valid under the assumption that ||wi,j − wk,l|| > 2R
for all i, j, k and l. When two feet make contact, however, the system dy-
namics change. There are three obvious ways to describe the system wherein
some number of feet are touching.

First, we can define a hybrid automaton [3] with states corresponding
to each of the 4n(4n − 4) possible contact configurations. In each state the
dynamics are described by (1.4) subject to the constraints ||wi,j −wk,l|| = 2R
for each pair ((i, j), (k, l)) of contacting feet. Transitions occur between states
when new pairs come into contact or when the force (1.1) holding two feet
together is overcome by other forces. This model is appealing because the
finite state part mirrors nicely the space of all possible assembly sequences.
It is unappealing for analytical and simulation purposes because of possible
chattering between states and the neutral stability of equilibria due to the
fact that ||wi,j − wk,l|| = 2R defines a circle and not a point.

Second, we can modify the potential function Upre in (1.3) so that a (large)
force preventing two particles from overlapping takes affect when ||wi,j −
wk,l|| < 2R+δ as in Figure 1.4. This is very appealing for simulation purposes
as it eliminates chatter and is fairly realistic: It has been observed [4] that a
thin layer of liquid separates two tiles that are essentially in contact. However,
the analysis of stable configurations (possible final aggregate shapes) (Section
1.3.4) is difficult with this model due to the piecewise and ad hoc nature of
the modified potential.

Third, we can suppose that two feet can overlap (occupy the same place).
If R � d, then two feet in contact is essentially the same as two feet in the
same place. For purposes of simulation, we smooth out the singularity in Upre

1 We assume that the potentials are simply additive as, for example, with particle
systems under the influence of gravity. It is not known whether this assumption
can be shown from first principles from the Laplace-Young Equation.
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with an appropriate polynomial potential that is in effect when ||wi,j−wk,l|| <

δ � 2R (see Figure 1.4). In this manner we are able to numerically simulate
systems of up to 40 tiles in a few hours. Further supposing that Utiles is in
effect only when tiles are “close by” results in efficient simulation of even
larger systems.

For analytical purposes, we proceed much as in the first case and con-
sider a system of waterbug tiles linked by certain feet to form a two dimen-
sional mechanical linkage of tiles (as in Figures 1.5 and 1.6). In particular,
let V = {1, ..., n}× {1, ..., 4} correspond to the set of all 4n feet and let E be
an equivalence relation over V that specifies which feet are collocated. The
submanifold corresponding to the constraints imposed by E is

ME , {q : [(i, j), (k, l)] ∈ E ⇒ wi,j(qi) = wk,l(qk)}.

(It may be that ME = ∅). The equations of motion are then similar to (1.4)
except projected onto ME . To obtain them, however, we can not use U(q)
since it is singular if E is nontrivial. Thus, define the set of non-collocated
feet by

FE , {(i, j, k, l) : [(i, j), (k, l)] 6∈ E}

and set

UE(q) , −
∑

(i,j,k,l)∈FE

ci,j,k,lK0(q||wi,j(qi) − wk,l(qk)||).

The equations of motion of the partially assembled system given by E are
then

d

dt

(

∂(K − UE)

∂q̇

)

−

(

∂(K − UE)

∂q

)

= Ffriction . (1.5)

subject to the constraints

[(i, j), (k, l)] ∈ E ⇒ wi,j(qi) = wk,l(qk) (1.6)

for all i, j, k and l.

1.3.4 Stable Assemblies

Given an assembly specified by E, any configuration q∗ for which −∇UE(q∗)
is normal to ME at q∗ is an equilibrium of (1.5) subject to (1.6). We have:

Proposition 1. If all points in ME are equilibria of (1.5) subject to (1.6),
then the assembly given by E is stable (modulo rotation and translation).
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(a) (b)

Fig. 1.5. The two possible assembled configurations of two waterbug tiles (up
to symmetry and excluding overlapping crossbars). (a) is stable, whereas (b) is
unstable but converges to (a).

(a) (b) (c)

Fig. 1.6. The three possible stable assembled configurations of three waterbug
tiles (up to symmetry and excluding overlapping crossbars). In similar tile systems,
configurations like (a) and (b) are desirable, while (c) may not be: If a system with
a larger number of tiles were “seeded” with (c), irregular aggregates with holes
would form (as in Figure 1.2).

In particular, for all Υi,j positive, the criterion in Proposition 1 is simply
another way of stating that the mechanical linkage described by E is in fact
rigid. Non-rigid assemblies can have unstable at equilibrium points. For exam-
ple, the assemblies in Figures 1.5(a) and 1.6(a)–(c) are stable. The assembly
in Figure 1.5(b) is an unstable equilibrium (with respect to θ1 − θ2).

It is also possible that an equilibrium of a non-stable assembly is itself
stable. In our simulations, such configurations seem to occur exclusively when
the beams of two different tiles overlap – although this remains to be con-
firmed.

Given an assembly specified by E, the system described by (1.5) and (1.6)
will have singularities at any point q∗ ∈ ME such that, for some i, j, k, and
l, wi,j(q

∗
i ) = wk,l(q

∗
k) since

lim
L→0

Up(L) = −∞.

Thus, at such a point, the equations of motion are not locally Lipschitz and
solution trajectories are not guaranteed to be unique. Nevertheless, such con-
figurations can be shown to be locally attracting using a variation of Lya-
punov’s direct method. For example, configuration 1.5(b) has two attracting
configurations isomorphic to 1.5(a).

In [4], the observation is made that some configurations are less stable
than others. They use this property to their advantage by adding enough
energy to the system (by gently shaking it) so that undesirable assemblies are
energetically unfavorable while desirable ones are. We have not yet developed
analytical means for determining the energy required to break up various
classes of waterbug assemblies – although we have observed in our simulations
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that, for example, the assembly in Figure 1.6(c) is less stable (in the presence
of disturbances resulting from collisions with other tiles and assemblies) than
the assemblies in Figures 1.6(a) or (b).

A complete catalog of possible waterbug assemblies is not known. More
generally, given a tile morphology, an automatic method for determining the
stable assemblies of a soup of such tiles (and their energies) is not known.

1.4 Discussion

The essential control task for an assembly system, in its most basic form, is
to bring the system from an initial assembly E0 to a final assembly EN that
is one of some prespecified family of final (stable) assemblies Efinal . Thus, we
desire a sequence E0, ..., EN where E0 is the identity relation, EN ∈ Efinal

for any t, Et ⊆ Et+1. Furthermore, there may be some set B of undesirable
configurations (an obstacle in a sense) so that we require that Et 6∈ B for any
t ∈ {0, ..., N} (see Figure 1.7).

We have so far supposed that the actuation model for these systems is the
variable wetabilities of the tile feet. Of course, less direct (and possibly more
practical) actuation models exist (such as shaking the system and thereby
keeping its energy at a certain level unfavorable to the formation of assemblies
in B). For the rest of this section though, we assume the first sort of actuation.
Of the many control tasks one might imagine for these self-assembling sys-
tems, we briefly consider two: eliminating defects and obtaining terminating
structures.

1.4.1 Eliminating Defects

Figure 1.2 shows an intermediate assembly containing the (possibly undesir-
able) sub-configuration shown in Figure 1.6(c). For a system of three tiles,
the domain of attraction of the configuration in Figure 1.6(c) is small but
nevertheless measurable. For example, for tiles with all-like wetabilities, the
initial configuration in Figure 1.7(a) leads to Figure 1.6(c). However, an open
loop controller defined by

Ψi,2(t) = Ψi,4(t) =

{

0 if t < t1
Ψ otherwise

and Ψi,1(t) = Ψi,3(t) = Ψ for all i ∈ {1, 2, 3} where Ψ > 0 is a constant, results
in a system that avoids Figure 1.6(c). Essentially, with t < t1, Figure 1.6(c)
is not an attracting configuration. Thus, with the wetabilities arranged as
they are with t < t1, the configuration in Figure 1.7(c) is obtained. Once this
is arrived at, there is no (energetically decreasing) way to get to 1.6(c) and
therefore, with all wetabilities positive (for t ≥ t1), Figure 1.7(e) is obtained.
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(a) (b) (c) (d) (e)

10 20 30 40 50
t
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q

b c switch point d e

Fig. 1.7. Trajectory (x1(t), y1(t), ...) of a three tile system with initial conditions
(a) very close to 1.6(c), controlled to avoid this configuration. From time t = 0 to
time t = 30, feet Ψi,2 = Ψi,4 = 0 and Ψi,1 > 0 and Ψi,3 > 0 for i ∈ {1, 2, 3}. For
t > 30, all Ψi,j > 0 for all i and j. Times (b)-(d) show intermediate configurations.

1.4.2 Terminating Structures

In general a given (uncontrolled) tile shape will result in a certain family of
structures that can be assembled. This family is the closure of the operation
of adding a new part to a given assembly, if possible. The waterbug tile
with all hydrophobic feet has an infinite family of assemblies: a new tile can
always be added onto any stable assembly to make a new stable assembly. The
problem of generating terminating structures is to add control algorithms to
the tiles so that the assembly family formed consists only of the desired finite
structures and their subassemblies (as, for example, in Figure 1.8).

In [9,10] we describe a method for assembling such terminating structures
out of 2D, self-actuated disk-shaped parts. In particular, any tree-shaped
structure (directed, acyclic graph) can be assembled and the local rules di-
recting the assembly can be automatically and efficiently synthesized. The
method is shown to be correct under certain assumptions about the assem-
bly dynamics. It requires that each tile be able to sense the discrete state
(defined below) of tiles near it and that it be able to change the wetabilities
of its feet. In the rest of this section, we outline how a simple variant of
this method can be used to assemble a certain tree-shaped assembly: num-
ber 6 in Figure 1.8. Although the controller described here is constructed by
hand for a particular assembly, the method in [9,10] can easily be adapted to
automatic synthesis of controllers for any tree-shaped assembly.



12 Eric Klavins

1 2 3

4 5 6

1

2

1

1
1

1
1

1
1

1

1

1

3

2

2

3

3

2

2

2

22

2

2

2 2 22

2

1
1

1
1

1
1

1
1

2 22

2

2

2

2

2 2 22

2

2222

2

2

21

1

1 1

1

1
1

2

33

3 3

3

3

1

1

Fig. 1.8. An example terminating structure (number 6) and its subassemblies up
to isomorphism. Each subassembly is given an index (1–6) and each foot of each
tile is given a role identifier. Thus, each foot in a subassembly has a discrete state
corresponding to its subassembly-role pair. The state is used to determine which
binding interactions between pairs of tiles should occur.

A desired assembly of n tiles is specified by an equivalence relation Espec

over 1, ..., n × {1, ..., 4} as in Section 1.3.3. The first step in generating rules
that result in the assembly of copies of Espec is to form a list E of its sub-
assemblies (including Espec). For the present example, this list is shown in
Figure 1.8 as subassemblies 1 through 6. The next step is to identify the role
of each foot of each tile in each subassembly. These are given by the small
numbers located next to the feet in the figure.

Given E and an assignment of roles, the discrete state of a waterbug foot
is defined to be its subassembly-role pair (s, r). For example, any tile that is
not joined to another tile has subassembly-role pair (1, 1). A foot in a two-
tile assembly will have subassembly-role pair (2, 1), (2, 2) or (2, 3). We now
construct an algebra of subassemblies.

Definition 1. Given (s1, r1) and (s2, r2), we define their join (s1, r1)⊕(s2, r2)
to be s if the action of joining subassemblies s1 and s2 at feet with roles r1

and r2 results in a subassembly isomorphic to a subassembly in E with index
s. Otherwise, (s1, r1) ⊕ (s2, r2) = ⊥. If (s1, r1) ⊕ (s2, r2) 6= ⊥, then the join
is called valid.

In our running example, the valid joins are given by

(1, 1) ⊕ (2, 2) = 3 (1, 1) ⊕ (2, 3) = 4 (1, 1) ⊕ (3, 3) = 5
(1, 1) ⊕ (4, 3) = 5 (1, 1) ⊕ (5, 3) = 6.

Note that because of the simplicity of the example, (1, 1) is a part of every
valid join although, in general, this is not the case.

Next we define discrete update rules for each possible join. For example,
if two tiles join via feet with states (1, 1) and (2, 2), then the roles of the
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(a) Attraction assignment (b) Repulsion assignment

Fig. 1.9. Wetability assignments used by two waterbug tile feet as a function of
their distance. If the two tiles are to attract (according to the rules described in
Section 1.4.2), then they use the assignment function in (a). Otherwise they use the
functions in (b) where the foot whose tile has the greater id forms a positive menis-
cus and the foot whose tile has the lesser id forms a negative meniscus, resulting in
a repulsive force between the two feet (as described in Section 1.3.1).

subassemblies involved change according to:

(1, 1), (2, 2)
(1,1)⊕(2,2)
−−−−−−−−−→

{

(3, 1) if interacting foot
(3, 2) else

(2, 1)
(1,1)⊕(2,2)
−−−−−−−−−→ (3, 1)

(2, 3)
(1,1)⊕(2,2)
−−−−−−−−−→

{

(3, 3) if interacting tile
(3, 2) else

With the join algebra and the update rules, we can define control laws for each
foot to run. We assume that the tiles are being gently shaken to encourage
interactions between feet. If two feet (i, j) and (k, l) come in close proximity,
they change their wetabilities to either attract or repel according to whether
their join is valid (see Figure 1.9). If two feet join, the subassembly-role pairs
of the feet in the subassemblies involved are updated according to the update
rules just described. Waterbug feet may also need to repel other feet in the
same subassembly to which they are not directly attached. If no interaction
is desired (there are no nearby feet), the wetability assignment is set to 0 (no
meniscus).

The method in [9,10] also accounts for deadlock situations arising either
geometrically (some tiles are blocking other tiles from useful interaction sites)
or logically (for example, all subassemblies with index 1 are used up before
any subassemblies of index 6 form). The deadlock mechanism is simple: If no
interactions have occurred with a non-final subassembly for longer than some
predetermined time, the assembly breaks up (using the repulsion assignment
in Figure 1.9) and tiles formerly joined “ignore” each other (so that different
interactions may occur). These rules are proved to assemble a maximum
number of final assemblies, in a perfect model of interaction (i.e. different
from the model described here), in [9].
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We are presently exploring possible implementations of the assembly al-
gorithm described above – with tiles or robots – and hope to report on our
results in forthcoming publications.

1.5 Conclusion

We have introduced a model of a self-assembling tile system based on the
physics of capillary forces. The tiles in the model are amenable to control
actions via changing their wetabilities. We have demonstrated a simple open
loop controller that can be used to avoid defects in the assembly process
and have suggested a way to use previous work [9,10] to direct the assembly
process even further to build arbitrary terminating structures.

There are many other avenues and opportunities for the control of assem-
bly systems based on different interaction and binding mechanisms, alternate
actuation paradigms, and so on. We hope that the model we propose here
will serve as a good starting point for such investigations.
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