Self-Assembly From the Point of View of Its Pieces

Eric Klavins
Electrical Engineering Department
University of Washington
Seattle, WA 98195
klavins@ee.washington.edu

Abstract— A graph grammar can be used to describe or We can solve several controller-synthesis problems for
direct the changing cqn_nection topology _of a_collection of, graph grammars. For example, given any graph, a
for example, self-organizing robots. Productions in a grammar grammard can be synthesized with rules involving at most

describe the legallocal interactions in which the robots may . . :
engage and the resulting global structures and processes that three vertices such that the unique stable assemblies of the

form can be analyzed by looking at the set of reachable grammar are isomorphic té:, [7]. We can also define
graphs generated by the grammar. In this paper we discuss the other processes such as self-replication and locomotiioig us
relationship between a grammar and itscharacteristic automata graph grammars.

set, which describes the trajectories of the grammar from the
“point of view” of the components of the initial graph. The We have used graph grammars to control the assembly of

automata set of a grammar is essentially ®etri-Net descripion ~ '0POtiC_ programmable parts [1], and are actively pursuing
of these pathways and is related to the grammar as a metabolic the application of these ideas to MEMs self-assembly and
network is related to a set of chemical reactions. It is useful molecular self-organization using DNA. The present paper
for the analysis of the behavior of the grammar. is particularly geared toward the molecular setting in that
we show the relationship between graph grammars and the
pathways that connected components may take in trajestorie
Building systems that self-organize into complex strucof the system. The relationship is similar to the relatigpsh
tures and processes presents us with the daunting probl@giween chemical reactions and metabolic networks [2].
of coordinating vast numbers of objects so that they perform In particular, we introduce theharacteristic automata
global tasks. Because of the potentially enormous quastitisetof a graph grammar, which contains one automaton for
of objects involved, uniquely addressing and manipulatingach component type in the initial graph of a given system.
each one is impossible. Nevertheless, there are examplesEsfch automaton describes the evolution of the correspgndin
complex machines, such as the ribosome or the motor #®mponent in terms of its state and local neighborhood.
a bacterial flagellum, that seem to assemble spontaneouélgtions shared by all of the automata describe the synchro-
out of large numbers of simple components. This seentdzation between processes. In this paper, we make these
to occur when simple components self-organize via localefinitions precise and prove a simple theorem about the
interactions into more complex aggregates which, in turngpresentation of the automaton. We also show that the
self-organize into larger aggregates and processes. Tiais, problem of determining the characteristic automata seb-s ¢
primary means tocontrol or direct these processes is to NP complete. Then we describe an approximate algorithm
engineer the allowable local interactions in such a way théltat generates the characteristic automata set of a system
these interactions lead to the desired global properties. and give several examples. Finally, we describe how to use
To this end, we have introduced [7] the use griph automata sets as specifications and then find grammars that
grammars[5], [4] to model local rules for the self-assembly satisfy them, and give examples of how this is done.
and self-organization of robotic devices [1]. In this geifi
a collection of robotic particles is modeled as a vertex- Il. DEFINITIONS
labeled graph, where vertices correspond to robots, labels
correspond to the internal discrete states of the robot$, an
edges correspond to the existence of a physical connection'f‘ this section we review the definitions related to our
between the robots. A graph grammar is a set of rules of th@tion of a graph grammar. A more complete treatment
form L = R whereL and R are (small) graphs. Rules are Of these definitions and their consequences can be found
interpreted as follows: If there exists a copylofn whatever ~€lsewhere [7].
graph currently describes the structure of the system, jt ma A simple labeled grapfover an alphabek is a triple
be replaced byR. The idea is that, if the rules are small,G = (V. E,l) whereV is a set ofvertices E is a set of
the robots can decide via local interactions whether the rudnordered pairs cedgesrom V, andl : V' — X is a labeling

applies, and they can apply the rule without knowledge diinction. We restrict our discussion to simple labeled hsap
the global structure. and thus simply use the tergraph We denote an edge

{u,v} € E by uv. We denote by, Es andiq the vertex
This work is partially supported by NSF Grant #0347955. set, edge set and labeling function of the graph

I. INTRODUCTION

Graph Grammars

We usually use the either the alphabet {a,b,c,...} or We write G " G’ to denote that’ was obtained fronG
the alphabet = {ay, a, ..., bo, b1, ..., co, c1, ...} for labels. by the application ofr, h).

We interpret a vertex labeled hy as having “type”a and
having state € N.

Definition 2.1: A rule is a pair of graphs = (L, R)
whereVy, = Vi. The graphd. and R are called théeft hand
side andright hand sideof r respectively. Thesizeof r is
V| = |Vr|. Rules whose vertex sets have one, two and three
vertices are calledinary, binary andternary, respectively.

Example 2.2:The first rule ;) in the gramma® 4147yt
defined in Example 2.1 is applicable to any graph=
(V, E, 1) having the property that there exist distinct vertices
u andv such that
1) I(u) =ag
2) I(v) = ¢ and
3) uv ¢ E.

Example 2.1:To illustrate the notions in this paper, we The witness to this fact is the functioh : {1,2} — V
will consider a running example that modelscatalytic defined byh(1) = « and h(2) = v. Finally, the application
system The system has three rules, which we have labelasf the action(ry,%) to G yields a graphG’ = (V, E',l")

r1,72 @andry: identical toG except that
1) U'(u) =ay
v 2l
P _ oo te 2 3) ww e E. A
catalyst Co Co
/ \ = Definition 2.4: A systemis a pair (Gy, ®) where Gy is
ai ai a2 —— a2 (rs) theinitial graph of the system an@ is a set of rules (called

The relative locations of the vertices represent theirtities. the rule setor grammay).

In the last of the three rules, for exampley, = Vi = Example 2.3:An initial graph Go = (V, Ey, o) for the
{1,2,3} and vertexl is labeled byl (1) = ay in the left grammar ® 4y defined in Example 2.1 would have
hand side and byr(1) = as in the right hand side. We [y(v) € {ao, co} for eachv € V. A

interpret the rules in this grammar as follows: We start with
a collection of robots, some of which are labetgdand some
of which are labeled,. When a robot labeled, bumps into

another labeled,, the two “connect” and change their labels i th it will b . q ib
to a; andc; respectively. When a robot labeleg bumps However, in this paper it will be more convenient to describe

into another labeled, , the two connect and changedpand € operational semantics of a system usingpmata which
¢, respectively. Finally, if a robot labeleg ever finds itself W do in the next sub-sections.

connected to two other robots both labeled it connects B. Automata

them, changes their labels &g and then disconnects itself
and changes its label back t. We will return to this
example throughout the paper.

In previous expositions on the basic definitions of graph
grammars, we would now describe how to obta@jectories

from a system starting witl, and using the " relation.

Let A be an alphabet different frotd. We use the symbol
A instead ofY (the alphabet of labels for labeled graphs) to
emphasize that elements ih representctions

We denote the set of all (simple labeled) graphs over By anautomaton over the alphabe#l, we mean a tuple
> by & and the set of all finite rules ovet by %. A M = (Q, 40, A, Qr) whereQ is a set ofstates the state
homomorphisnbetween graphé’, andGs is a functions : 40 € @ is a theinitial state the setQr C @ is the set of
Va, — Ve, that preserves edgesy € Eq, < h(z)h(y) € fmgl statgsand A C @ x Ax (@ is a transition relation.
E¢,. A monomorphisnis an injective homomorphism. An Trajectories ofM are of the form

isomorphisnis a surjective monomorphism: in this cagé, g2 g = an—1 PN
and G, are said to basomorphic A homomorphismh is "
said to belabel preservingf iz, = Ig, o h. where(g;, a;, gi+1) € A for all i. Trajectories may be either

Definition 2.2: A rule r = (L, R) is applicableto a graph finite (when and only when they end with a state@)
G if there exists a label-preserving monomorphismV;, — Or infinite. The set of actions € A for which there exists
V. In this case, the functioh is called awitness An action ~ Statesg, ¢’ € @ such that(q,a,¢’) € A is called theaction
on a graphG is a pair(r, h) such that- is applicable to¢ ~ setof the automata and is denoteth,.
with witnessh.

Definition 2.3: Given a graphG = (V, E, 1) and an action
(r,h) on G with r = (L, R), the applicationof (r,h) to G
yields a new graplt’ = (V, E’,1’) defined by

Remarks: This definition is equivalent to the standard defini-
tion of aBucci Automatorfound in the literature [10]. Bcci
Automata are usually studied with respect to the languages
(strings of actions) they accept. We think of automata as
y representing discrete event systems [9] with actionsdin
B = (E—{h(z)h(y)|zy € L}) representing events that change a system from one state to
U{h(2)h(y) | zy € R} another. Thus the tertnajectoryto refer to a string of states
and actions. Finally, we consider sets of automata over the
V@) = { l(z)if x & R(VL) same set of actions. In this setting, the full state of the set
g o h=1(x) otherwise. is a mapping from the automata set to the set of states (that

is, a vector of states). If we suppose that actions are taken a a
concurrently we arrive at the definition ofraarked graph b b\ h—-c b b\ b c

[3], a simple kind of Petri Net. In fact, Petri Nets have been d// d//
- L . c— a c— a
used to represent metabolic processes in biology [6] in a way / ¢ / ¢
that resembles characteristic automata sets. A e/ d e— _p e/ d
If ~ is an equivalence relation o with equivalence
classes[q] for all ¢ € @, then one may obtain a new a a
automatonM/~ = (@', ¢}, A’, Q%) (called the automaton ! 2
i ~ ; Fig. 2. Thek neighborhoods of a sdf with respect to two graphé&/;
mducecf by) defined by andGs for k € {0,1,2}. In this figure,U consists of two vertices labeled
1) Q' = {[Q] | qc€ Q} by ¢ and d respectively. The graphs shown &re-0, U-1 equivalent, but
2) q6 = [QO] not U-2 equivalent.

3) ([¢1], a,[g2]) € A’ if and only if there existy] € [¢1]
and ¢, € [¢2] such that(¢;,a,¢}) € A
4) Qrn=1{[qg|qeQr}. that are distancé or less away from some vertex .
There are many ways to compare automata, such as withDefinition 2.7: Let G; and G> be two graphs over the
simulation and bisimulation. For the purposes of this papefame vertex set’. Let U C V' andk be a natural number.
we will need to know when two automats/ and M’ are We say thatz; and G are U—k equivalent written

structurally equivalentby which we mean that there exists o e
a bijection f : Q1 — Q- an injectiong : Ay; — Ay such 1y V2
that if and only if there exists a map such that
/.
1) (%%%)%@ (f(a1), 9(a), fa2)) € A 1) h is a label-preserving isomorphism between
2) flao) = qo; Ng, (U, k) and Ng, (U, k) and
3) f(Qr) = Qf. 2) hly =idy.
When two automata are structurally equivalent, we write
M M Remarks: If & = 0, then Ng(U, k) is simply the graph
We can (somewhat indirectly) express the semantics ofiaduced by U. If the vertices inU are part of a finite
graph grammatGy, ®) in terms of an automaton. componentC' and the maximum distance from a vertexiin

Definition 2.5: Let (Go,®) be a graph grammar. Define to any other vertex in the componentlisthen N¢ (U, j) =
the associated automatof/ (Gy, ®) = (Q, g0, A, Qr) by N¢(U, k) = Cforall j > k. If G andG’ areU—k equivalent,

1) Q=6 then they ard/—(k — 1) equivalent. Figure 2 shows tlie 1

2) Ay = @; and 2-neighborhoods of a séf for two graphsG; and G2

3) (G,r,G') € A if and only if there exists arh such Over the same vertex séf. In the figure,U C V consists
that & " G of two vertices labeled by andd respectively. The graphs

4) qo = Go; shown areU-0 andU-1 equivalent, but not/—2 equivalent.

5) Qr = graphsG to which no rule in® is applicable. Given a collectiong of graphs over the same vertex set

Note that many graphs i& may not be reachable from 1, \ve denote the equivalence class@fe G with respect
G| via applications of rules ib. We will not be concerned 5 2, by

with these graphs in general even though they are techyicall * ko U
part of the automaton. [Gly ={H €G |G H}.

Example 2.4:Suppose thaty, is the first graph (on the pFyrthermore, thek-neighborhoods oft/ with respect to
left) in Figure 1. The rest of the figure shows the beginningy| of the graphs in a given equivalence clasgk, are

of one possible trajectory throught (Go, ®cataryst)- The all isomorphic. Thus, we may safely represdat’, by
entire automaton has many more states and actions th%(U’ k).

shown. Note: Graphs in this paper are often drawn in such

a way as to suggest a particular geometry, but the readerExample 2.5:The graphsz; and G, shown in Figure 2

is cautioned to remember that vertices in the graphs wae both elements dt7,]7;, whereU contains the vertices
consider have no “locations” — they simply have labels antbeledc andd located in the darkly shaded region of the
connections to other vertices. Any physical implementatiofigure. Every graph in this class has the property that the
of the grammars we describe here will have to interprétertices inU induce the subgraph — d, thus we use this
“label” and “connection” appropriately (as in, for example graph as the representation [6f]{). A

out robotic implementation of graph grammars [1]). a The main phenomenon we are concerned with in this paper

C. Point of View is how the local neighborhood of a collecti@n of vertices

changes as graph grammar rules are applied. This notion can

be captured by an appropriately instantiated automaton.
Definition 2.8: Let (Gy, ®) be a graph grammar over a

set of verticed/, let U C V. We define theé:-neighborhood

{v € V| there exists some u € U such that d(u,v) < k} automaton forU to be the automatonM/er induced by the

Definition 2.6: Given a simple labeled graplG =
(V,E,l), the k-neighborhoodof a vertex setU C V is
defined to be the grapWNq (U, k) induced by the vertices

ao ao ao ao ao ao ao ao ag ao ao ao aop al ag

T T
ap ¢ ap L, ap c1 ag 2, apg c2—ay 3, ap cop a2 REN ap c1 az

| | / /

ao ao ao ag al ag ao ai ag ao az ag ao az ag

Fig. 1. The initial part of one possible trajectory arisingrhi the systen(Go, ® cqrayst) WhereGl is the graph shown in the upper left of the figure.

d and C. i
> are components of7y with vertex setsl; and V5
(‘@/ @ respectively. IfC; and C, are isomorphic then
1
T @]\4/{\/1 = M/ fkv\‘z .
@ = Proof: Suppose tha€; and C, are distinct so thav; and
V, are disjoint. Leth be a witness to the fact théat; andCy

T2 <
@ @ are isomorphic and lgt be the extension of to V' defined
T3

. by
T3
— hly, = h7t
(w) (v} >
M ~ :M M ~ :M - .
/5 (<o) /s (a0) hlv—wi—vy) = idy.

Fig. 3. Thel-neighborhood automata with respect®,;,i,; for any
vertex sets{u} and {v} wherelo(u) = co andlo(v) = ao. These Let G’ be the graph defined by re-indexing each verteof

automata are structurally equivalent to the automata casrebpg to any 7 ; :
other vertices initially labeled, and ag, respectively. Therefore, we may G Fo h(v) tranSformmg the edges accordmgly (So that the

denote them by (co) and M (ao) as well. Together, these two automata Fe-indexing is an isomorphism) . Finally, defiff‘é[G]@l) =

form the characteristic automata set(Go, ® catatyst)- [G"]}, andg = idx to demonstrate structural equivalence.
|
. U, .
equivalence classes of, where M = M(Go, ®) is the au- Thjg result suggests that the automata associated with the
tomat%n associated Wnntio, ®) (Def. 2.5). In presentations o iqus componertypesin G, are sufficient to capture the
of M/, we representG|;; by Ne (U, k). neighborhood behaviors, leading to the following defimitio

Example 2.6:Figure 3(left) shows thel-neighborhood [N the definition, we denote by(Go) = {C1, Ca, ...} the set
automaton forU' = {u} for the grammar® .,;q1s¢, Where of components of up to isomorphism.
u € V is any vertex with the initial labelo(u) = co. Definition 3.1: Suppose that’; € C(Go) has vertex set
Figure 3(right) shows the-neighborhood automata for any Vi € Va,- Let M = M(Go, @) be the automaton associated
single vertex initially labeled by,. In the figures, the vertex With (Go, ®). The k-th characteristic automata seif the
in U is shown underlined, the initial states are indicated bgrammar(Go, ®) is the set
incoming arrows and the final states are indicated by double M(Go, @) = {M/él, M/?,)

circles around the states. According to Definition 2.8, each By Theorem 3.1, the choice of which componentstf

state is instantiated by an equivalence class of graphs. The X
y d grap use to represent their types does not matter. So we are

representation of the equivalence classes is via the grapfy. ..~ . . .
NE(U 1) q 9 ﬁsufled in calling M(Gy, ®) “the” characteristic automata

set. Furthermore, we will writé/(C') for M/rk‘ﬁ whenever
Remarks: The identification of final states is not entirely C' is label-preserving isomorphic 0.
straightforward. If we assume that the initial graph is &nit .)
and disconnected, that there is one vertex initially laeleR€Mark: As noted above, a characteristic automata set is
¢, and that there are an even number of vertices labeled essentially a Petri Net_ or marked graph. We thmk_ of the
then the final states are as shown in the figure. However, fiyll state of a characteristic automata sef as a “marking”
this is not the case, then other states may be final as well. W& : M — Uica @ that assigns each automaton to its
will not stress this difficulty in this paper, mainly becatge CUrrent state. A new marking,’ is determined when a rule
there are an enormous number of vertices, then the autométis @Pplied by unmarking the preset ofand marking the

in the figure describe the behavior of the system at least unROStset ofr.
most of the “reactants” are “used up”. Example 3.1:An initial graph of ® ... (S€€ 2.3) has

lIl. CHARACTERISTIC AUTOMATA two component types: A single vertex labelgdand a single

. . . vertex labeled:y. The characteristic automata set is, thus,
We are particularly interested in the paths that the compo-

nents in the initial grapltz, take in trajectories ofGy, @). M(Go, @ cataiyst) = {M(co), M(ao)},
We have the following result. o

Theorem 3.1:Let (G, ®) be a graph grammar over ver- WhereM(co) and M(ao) are as shown in Figure 3. &
tices V' with associated automaton/. Suppose that’y

endfor

The rest of the automaton is defined by
a) qo(Ve) = Ne, (Ve k)
b) (H,r, H:) € A(Vo) < there exists ary such
thatG; ~ H and G4 r:f H' andrj, =r.
¢) Qr(Ve) = {H € Q(Ve) | H ¥ Gy} if no
rules in® are applicable ta7,, andQ (Vo) = @
otherwise.
Next, suppose that’;,...,C; are all the components
of Gy isomorphic to a given componert = C.
From the setM(C4),...,M(C;) we can build an
approximation (in that it may not contain all possible
states) of the characteristic automaton for components
of this type. First, re-index the verticég;, to Vi, by
using any isomorphism betweet}. and C. Second,
let M, (V1) be the automaton obtained frofd; (V)
by this re-indexing. Third, define the characteristic
automaton for components of typ€ by M(C) =
(Q(C), q0(C), A(C), Qr(C)) where
a) Q(C) =UQi(V1)
b) ¢o(C) = qo(V1)

Fig. 4. The 1-characteristic automata set for the grammar impla 3.2
when Gy is the discrete graph containing exactly one vertex labeledd
one vertex labeled. The set can be written as a single automaton with
different start states for different components.

3)

Example 3.2:Two automata inM (G, ®) may be struc-
turally equivalent if one ignores the requirement that rthei
initial states should correspond. As an example, conskder t

grammar
v {

A system with these rules whose initial graph contains
a’s and b's, will have trajectories wherein particles whose
1-neighborhoods are initially the singleton grajph will
eventually change to having-neighborhoods equal to the
singleton graphb. The characteristic automata set therefore

a b = a-—->»
a—b = b a.

has two automata that are structurally equivalent, excépt w
different start states, as shown in Figure 4 for the case when

c) A(C)=UA:i(W)
d) Qr(C)=UQr:(V1).

G, contains exactly two vertices, one labeledand one
labeled b. This also shows the dependence bf(Gy,)
on Gy: For this example, the number of stateshi(G, ®)

We have implemented this algorithm Mathematicaalong
with a number of other graph grammar utilities. Each of
the characteristic automata sets presented in this paper wa

grows exponentially with the number of verticesGfy. o either generated by the above algorithm or it was generated
by hand and checked with the algorithm (and a number of
IV. CONSTRUCTION OF THECHARACTERISTIC corrections were made!).

AUTOMATA SET

The characteristic automata set(Gy, ®) is a useful tool
for analyzing the behavior of a graph grammar system. It can a ao = bo— by
be used to identify whether a grammar has cyclic behaviors; ©=4q b1 a = co—b (72)
how trajectories in a system can deadlock; and in general, bo b2 = co—co (73)
what the possible fates of a component(dy are. The set that constructs cycles of three vertices, all labeledchy
can be constructed by hand for small examples, but for largstarting from a soup of vertices all labelegl The character-
examples it is useful to have an automated method, whidbtic automata set contains one automaton (because tta init
we now describe. Fix a grammar and an initial grapiGy. graph contains one component type), which we generated
1) Let using the above algorithm and which is shown in Figure 5.
Go -2 Gy —% ... It is clear from that figure that a vertex may either end up
as part of a three-cycle af, vertices, or it may end up as a
be a finite trajectory of\/ (G, ®) (or a finite prefix of ., with two unconnected, vertices — which occurs when
an infinite trajectory). This can be found by simulatingyyo bo — co — by cOmMponents join to make a six-cycle via
the system forn steps, either probabilistically (in two applications of the rules. This a result of the fact that

which case we can only approximate the actual chathe reachable set of a binary rule setlesed under covers
acteristic automata set) or by enumerating all posablml A

trajectories (feasible only for small systems).
For each componentC with vertices Vg
of Gy, define an automaton M (V) =
(QVe),00(Ve), A(Ve),Qr(Ve)). The states of
Q(Ve) are defined by the following procedure:

QVe)=2
for i=0ton do .
if -=3H € Q such thatG; ~" H
then Q(Vc) — Q(Vc) U NGi(VCH k)
endif

Example 4.1:Consider the grammar

(r1)

Tip—1

Tig Tiq
— s G
n

Remark: In all of the examples we have so far considered,
the components otr, have been single vertices, perhaps
with different labels. In general, the characteristic audta
set “makes sense” for components whose vertices remain
connected in any trajectory, as, for example, proteins do
when forming supermolecular aggregates. If the vertices in
a component ever become disconnected, then they must
experience essentially separate evolutions. We plan tartrep
on a generalization of the ideas in this paper that can handle
this difficulty in a future paper.

2)

The resulting rule se® is then

o~ (0n)o (U0

i=1j=1

In all, there are2n + 54k rules (required for the reduction
of TAUTOLOGY to be polynomial). As long as there are
unassigned variables and unevaluated clauses, some ile in
will apply. Each trajectory of Gy, ®) explores one possible
Fig. 5. The characteristic automaton for the grammar described truth aSS|gnment (a_nd resulting clause evaluathn), ardyev
Example 4.1. In it, a vertex may either end up in a three-cyclingrart ~ truth assignments is represented by some trajectory of the
of a larger cycle. The Figure was redrawn from a figure gerdray the system.
Mathematicaimplementation of the algorithm described in Section IV. We next describe the candidate automata/éefThere is

one automata for each label in the initial graph. The autamat

The procedure outlined above for generatitg(Go, ®) for the vertices labeled and F" are trivial. The automata for

is clearly time consuming, which we can show formally. Lethe vertices initially labeledz;, 1) branch from this state to
CHARAUTbDe the following problem: Given a grammé@r a €ither (z;, T') or (z;, F').

finite initial grammarG, and a set of automata ¢, decide =~ The candidate automaton foiC;, L, 1, 1) is defined
whether M (G, ®) = M. We suspect the following. to have 26 states, one for each possible label assigning

Theorem 4.1:The decision problenCHARAUTis coNP- literals to values, except that we leave out the state ldbele
complete. (Ci, F, F, F). If the instance of TAUTOLOGY is in fact true

Proof: Begin with an instance of TAUTOLOGY [8, p.219] for all assignments, then this state of_the automatonCfor
o - should never be reached. The transitions of the automaton
consisting of clause€’,...,Cy over variablesz, ..., z,. d h | o hi and . Th h
Suppose that correspond to the rule¥ (i, j) for eachi and . T us, eac
clause-automaton has 26 states and 54 transitions.
The total number of states in the automata.sets then
wherew; ; is eitherz; or z; for somel € {1,...,n}. From 2+ 3n 4 26k and the number of transitions s+ 2n + 54k.
this instance, we first defin€y = (V, Ey, ly) by The reduction is, therefore, computable in polynomial time
Vo= {l,.on+k+2) Fu_rtherr_nore, the instanc@,...,Ok. is a tautology if and
only if A is the characteristic automata set {6¥,,). ®

Ci = (vig VviaVug)

By, = ©
(z;, L)if 1 <i<n
i) = Con bl L)ifnt1<i<ntk
Tifi=n+k+1
Fifi=n+k+2.
Thus, there is one vertex for each variable, one for each 1N€ Synthesis problem for graph grammars and charac-
clause, and two more vertices labelBcand F, respectively. teristic automata is stated as follows: Given a gdt of
Next, we define the rule sef. The vertex labeled automata, a grapht, and a one-to-one correspondence

(z;, L) corresponds to the truth assignment for To non- Petween the components @f, and the automata in\1,
deterministically explore all truth assignments, we use tpfind @ grammard such that the characteristic automata set

M(Gy, @) corresponds toM. The set M is called the
@) T = (@,T) T speciﬁcation_and the systen@Go,é) is calle_d thesquFion
v, { (@ 1) F = (2,,F) F An au'gomatlc method for this problem.hkely requires an
v v extensive search, and may be computationally tractable onl
The vertex labeledl” and the vertex labeledz;, L) can for small systems. In this section, we describe via examples
interact to change the labgl:;, L) to the label(x;,T), how a solution to a specification can be found and when they
leaving the vertex labele@ unchanged. cannot be found.
The vertex labeledC;, L, L 1) corresponds to the truth) o
value of the claus€’;. To determine the value of the clauses, Example 5.1:Consider the two automata, shown in Fig-
we use rules that allow the clause-vertices to interact with€ 6, for an initial graphGiy with lo(Ve,) = {a,b}. We

the variable-vertices. Suppose it happens that=z;. We ~ SUPpOse that these represent the 1-neighborhood automata
introduce the corresponding rules for some graph grammar. This example has many solutions.

We construct one of them here.
T, = { (Cr, Lo#t#) (o7, 1) = (C1, Fogtox) (27, T) gt we choose an instantiation of rute. Since an arc
7 (Cr, Li#) (2r, F) = (CL.T.#.%) (27, F) 9peleqd byr, exits the initial states of both automata, the
where 4" and “x” range over the sef L, T, F'}. Thus, there left hand side ofr; must have at least one and oneb
are 18 such rules: one for each of the three literals in tha it. Furthermore, either the labels or the 1-neighbortsood
clause. of these vertices must change, otherwise one of the arcs

V. GRAMMAR SYNTHESIS FROM THECHARACTERISTIC
AUTOMATA SET

rule sets

the components in the graph to automata describing how the

4
3 e g local neighborhoods of those automata change as a result of
1 o Ir1 rule applications. We also described how to find one object
b e e given the other, either by a formal procedure, or through

examples.
The two types of object discussed here are separated
Fig. 6. The specification discussed in Example 5.1. by significant computational complexity. Weo not find
this particularly discouraging, rather we hope that insgh
N T gleaned from one description may lead to insights into the
other. Furthermore, the method for generating the characte

istic automata set is one that produces a series of better and
. G . . better approximations of the actual result, each of which is
Fig. 7. An example specification with no solution, as discdgeeexample . . .
5.2, useful for analyzing possible behaviors of the system.

One of the goals of our research is to specify, at a high

level of abstraction, the behaviors of a system and then
labeledr; would be a self-loop. There are several choiceproduce a grammar that implements it (as in Section V).
For example, Thus we plan to spend considerable effort in the future
devising efficient methods for approaching this problem.
Also, in practice, real systems that implement grammars
Note that had we instead chosenb = a—b, we would (such as our self-organizing robot platform [1]) apply sule
end up with transitions not shown in Figure 6 because, féit random based on statistical-mechanical considerations
example, the graph — b — a would be reachable as well via Thus, in a real-world setting, the automata described here

a b = c—d. (r1)

rule rq would be labeled withrates that can be used to infer
Continuing along the same lines, we choose the followingie most likely pathways taken by components, and these
instantiations for, andrs: rates would have to be determined from properties of a
probabilistic implementation of a grammar. However, rates
c-d = eb (r2) are not preserved by the equivalence of graphs used to form
e e = a—a (r3)

the characteristic automata set, except, perhaps, inircerta
Once again, there are several choices for these rules; thituations. We plan to report on this complication in a fatur
reader can imagine others. A paper.

The argument outlined in the previous example hints at the REFERENCES
complexity of constructing a solution for a given automatayy] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malphe Napp,
set: We must instantiate rules that satisfy the constraints and T. Nguyen. Self-organizing programmable partsinternational

given by the presence of transitions labeled by the rule; We gg{g;ﬁ{i‘gﬁ Cs’r(‘)":?éf;"%%rgs'?c’bms and SystdfBE/RSJ Robotics and
must ensure that a rule instantiation does not generate nNe T. Chevalier, I. Schreiber, and J. Ross. Toward a systerdatermina-

transitions (which seems to involve solving tR¢HARAUT tion of complex reaction mechanismi¥ournal of Physical Chemistry

. ; ; iati 97(26):6776—6787, 1993.
problem); We must make sure that a particular instantiation,, (Cor)nmoner, A. W. Holt, S. Even, and A. Pnueli. Marked dieec
does not make later instantiations impossible. We speeulat ~ graphs.Journal of Computer and System Sciene®11-523, 1971.
the problem of finding a solution is provably intractable. [4] B. Courcelle. Handbook of Theoretical Computer Science, Volume
B: Formal Models and Sematicghapter on Graph Rewriting: An
Example 5.2:Not all specifications have solutions. A sim- Algebraic and Logic Approach, pages 193-242. MIT Pressp199

; ; ; ; ; [5] H. Ehrig. Introduction to the algebraic theory of graptagmars. In
ple example is shown in Figure 7, which shows a smgle V. Claus, H. Ehrig, and G. Rozenberg, edita®Baph-Grammars and

automaton for an initial graptry with 1o(Ve,) = {a}. The Their Application to Computer Science and Biolpgplume 73 of
rule r; must apply to graphs in both states. Since it applies Lecture Notes in Computer Sciengmges 1-69, 1979.
0n|y to the initial state of the automaton for the component[G] R. Hofestdt. A petri net application to model metabolic processes.

. Systems Analysis Modelling Simulatid®(2):113—-122, October 1994.
a, it must have only copies of in its left hand side. Also, it [7] Eric Klavins, Robert Ghrist, and David Lipsky. A grammatic

must change thé-neighborhood of components labeledo approach to self-organizing robotic systemi&EE Transactions on

; ; ; ; Automatic Contral 2005. To Appear.
some other structure, say. Finally, sincer; is applicable [8] C. H. Papadimitriou. Computational Complexity Addison-Wesley,

to graphs in state;, its left hand side must contain copies 1994,
of H in it, which is a contradiction. A [9] P.J. Ramadge and W. M. Wonham. Supervisory control of essabés
discrete-event processeSIAM Journal of Control and Optimization
25(1):206-230, January 1987.
VI. DIscussION [10] W. Thomas.Handbook of Theoretical Computer Science, Volume B:
We have demonstrated the relationship between a graph Egg:: '1“§§‘_’§f;";§|‘|$ %Tei’;t}?gg‘g_ter Automata on Infinite Objects,

grammar and its characteristic automata set, which relates

