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Abstract— A graph grammar can be used to describe or
direct the changing connection topology of a collection of,
for example, self-organizing robots. Productions in a grammar
describe the legallocal interactions in which the robots may
engage and the resulting global structures and processes that
form can be analyzed by looking at the set of reachable
graphs generated by the grammar. In this paper we discuss the
relationship between a grammar and itscharacteristic automata
set, which describes the trajectories of the grammar from the
“point of view” of the components of the initial graph. The
automata set of a grammar is essentially aPetri-Net description
of these pathways and is related to the grammar as a metabolic
network is related to a set of chemical reactions. It is useful
for the analysis of the behavior of the grammar.

I. I NTRODUCTION

Building systems that self-organize into complex struc-
tures and processes presents us with the daunting problem
of coordinating vast numbers of objects so that they perform
global tasks. Because of the potentially enormous quantities
of objects involved, uniquely addressing and manipulating
each one is impossible. Nevertheless, there are examples of
complex machines, such as the ribosome or the motor in
a bacterial flagellum, that seem to assemble spontaneously
out of large numbers of simple components. This seems
to occur when simple components self-organize via local
interactions into more complex aggregates which, in turn,
self-organize into larger aggregates and processes. Thus,the
primary means tocontrol or direct these processes is to
engineer the allowable local interactions in such a way that
these interactions lead to the desired global properties.

To this end, we have introduced [7] the use ofgraph
grammars[5], [4] to model local rules for the self-assembly
and self-organization of robotic devices [1]. In this setting,
a collection of robotic particles is modeled as a vertex-
labeled graph, where vertices correspond to robots, labels
correspond to the internal discrete states of the robots, and
edges correspond to the existence of a physical connection
between the robots. A graph grammar is a set of rules of the
form L ⇒ R whereL andR are (small) graphs. Rules are
interpreted as follows: If there exists a copy ofL in whatever
graph currently describes the structure of the system, it may
be replaced byR. The idea is that, if the rules are small,
the robots can decide via local interactions whether the rule
applies, and they can apply the rule without knowledge of
the global structure.
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We can solve several controller-synthesis problems for
graph grammars. For example, given any graphGd, a
grammarΦ can be synthesized with rules involving at most
three vertices such that the unique stable assemblies of the
grammar are isomorphic toGd [7]. We can also define
other processes such as self-replication and locomotion using
graph grammars.

We have used graph grammars to control the assembly of
robotic programmable parts [1], and are actively pursuing
the application of these ideas to MEMs self-assembly and
molecular self-organization using DNA. The present paper
is particularly geared toward the molecular setting in that
we show the relationship between graph grammars and the
pathways that connected components may take in trajectories
of the system. The relationship is similar to the relationship
between chemical reactions and metabolic networks [2].

In particular, we introduce thecharacteristic automata
set of a graph grammar, which contains one automaton for
each component type in the initial graph of a given system.
Each automaton describes the evolution of the corresponding
component in terms of its state and local neighborhood.
Actions shared by all of the automata describe the synchro-
nization between processes. In this paper, we make these
definitions precise and prove a simple theorem about the
representation of the automaton. We also show that the
problem of determining the characteristic automata set is co-
NP complete. Then we describe an approximate algorithm
that generates the characteristic automata set of a system
and give several examples. Finally, we describe how to use
automata sets as specifications and then find grammars that
satisfy them, and give examples of how this is done.

II. D EFINITIONS

A. Graph Grammars

In this section we review the definitions related to our
notion of a graph grammar. A more complete treatment
of these definitions and their consequences can be found
elsewhere [7].

A simple labeled graphover an alphabetΣ is a triple
G = (V,E, l) where V is a set ofvertices, E is a set of
unordered pairs oredgesfrom V , andl : V → Σ is a labeling
function. We restrict our discussion to simple labeled graphs
and thus simply use the termgraph. We denote an edge
{u, v} ∈ E by uv. We denote byVG, EG and lG the vertex
set, edge set and labeling function of the graphG.



We usually use the either the alphabetΣ = {a, b, c, ...} or
the alphabetΣ = {a0, a1, ..., b0, b1, ..., c0, c1, ...} for labels.
We interpret a vertex labeled byai as having “type”a and
having statei ∈ N.

Definition 2.1: A rule is a pair of graphsr = (L,R)
whereVL = VR. The graphsL andR are called theleft hand
side and right hand sideof r respectively. Thesizeof r is
|VL| = |VR|. Rules whose vertex sets have one, two and three
vertices are calledunary, binary and ternary, respectively.

Example 2.1:To illustrate the notions in this paper, we
will consider a running example that models acatalytic
system. The system has three rules, which we have labeled
r1, r2 andr3:

Φcatalyst =



















a0 c0 ⇒ a1 − c1 (r1)
a0 c1 ⇒ a1 − c2 (r2)

c2

a1a1



 JJ ⇒
c0

a2a2 (r3)

The relative locations of the vertices represent their identities.
In the last of the three rules, for example,VL = VR =
{1, 2, 3} and vertex1 is labeled bylL(1) = a1 in the left
hand side and bylR(1) = a2 in the right hand side. We
interpret the rules in this grammar as follows: We start with
a collection of robots, some of which are labeleda0 and some
of which are labeledc0. When a robot labeleda0 bumps into
another labeledc0, the two “connect” and change their labels
to a1 and c1 respectively. When a robot labeleda0 bumps
into another labeledc1, the two connect and change toa1 and
c2 respectively. Finally, if a robot labeledc2 ever finds itself
connected to two other robots both labeleda1, it connects
them, changes their labels toa2 and then disconnects itself
and changes its label back toc0. We will return to this
example throughout the paper. N

We denote the set of all (simple labeled) graphs over
Σ by G and the set of all finite rules overΣ by R. A
homomorphismbetween graphsG1 andG2 is a functionh :
VG1
→ VG2

that preserves edges:xy ∈ EG1
⇔ h(x)h(y) ∈

EG2
. A monomorphismis an injective homomorphism. An

isomorphismis a surjective monomorphism: in this case,G1

and G2 are said to beisomorphic. A homomorphismh is
said to belabel preservingif lG1

= lG2
◦ h.

Definition 2.2: A rule r = (L,R) is applicableto a graph
G if there exists a label-preserving monomorphismh : VL →
VG. In this case, the functionh is called awitness. An action
on a graphG is a pair(r, h) such thatr is applicable toG
with witnessh.

Definition 2.3: Given a graphG = (V,E, l) and an action
(r, h) on G with r = (L,R), the applicationof (r, h) to G
yields a new graphG′ = (V,E′, l′) defined by

E′ = (E − {h(x)h(y) | xy ∈ L})

∪{h(x)h(y) | xy ∈ R}

l′(x) =

{

l(x) if x 6∈ h(VL)
lR ◦ h−1(x) otherwise.

We write G
r,h
−−→ G′ to denote thatG′ was obtained fromG

by the application of(r, h).

Example 2.2:The first rule (r1) in the grammarΦcatalyst

defined in Example 2.1 is applicable to any graphG =
(V,E, l) having the property that there exist distinct vertices
u andv such that

1) l(u) = a0

2) l(v) = c0 and
3) uv 6∈ E.

The witness to this fact is the functionh : {1, 2} → V
defined byh(1) = u andh(2) = v. Finally, the application
of the action(r1, h) to G yields a graphG′ = (V,E′, l′)
identical toG except that

1) l′(u) = a1

2) l′(v) = c1 and
3) uv ∈ E′. N

Definition 2.4: A systemis a pair (G0,Φ) where G0 is
the initial graph of the system andΦ is a set of rules (called
the rule setor grammar).

Example 2.3:An initial graph G0 = (V,E0, l0) for the
grammar Φcatalyst defined in Example 2.1 would have
l0(v) ∈ {a0, c0} for eachv ∈ V . N

In previous expositions on the basic definitions of graph
grammars, we would now describe how to obtaintrajectories
from a system starting withG0 and using the

a,h
−−→ relation.

However, in this paper it will be more convenient to describe
the operational semantics of a system usingautomata, which
we do in the next sub-sections.

B. Automata

Let A be an alphabet different fromΣ. We use the symbol
A instead ofΣ (the alphabet of labels for labeled graphs) to
emphasize that elements inA representactions.

By an automaton, over the alphabetA, we mean a tuple
M = (Q, q0,∆, QF ) whereQ is a set ofstates, the state
q0 ∈ Q is a theinitial state, the setQF ⊆ Q is the set of
final statesand ∆ ⊆ Q × A × Q is a transition relation.
Trajectories ofM are of the form

q0
a0
−−→ q1

a1
−−→ ...

an−1

−−−−→ qn
an
−−→ ...

where(qi, ai, qi+1) ∈ ∆ for all i. Trajectories may be either
finite (when and only when they end with a state inQF )
or infinite. The set of actionsa ∈ A for which there exists
statesq, q′ ∈ Q such that(q, a, q′) ∈ ∆ is called theaction
setof the automata and is denotedAM .

Remarks: This definition is equivalent to the standard defini-
tion of aBücci Automatonfound in the literature [10]. B̈ucci
Automata are usually studied with respect to the languages
(strings of actions) they accept. We think of automata as
representing discrete event systems [9] with actions inA
representing events that change a system from one state to
another. Thus the termtrajectory to refer to a string of states
and actions. Finally, we consider sets of automata over the
same set of actions. In this setting, the full state of the set
is a mapping from the automata set to the set of states (that



is, a vector of states). If we suppose that actions are taken
concurrently we arrive at the definition of amarked graph
[3], a simple kind of Petri Net. In fact, Petri Nets have been
used to represent metabolic processes in biology [6] in a way
that resembles characteristic automata sets.

If ∼ is an equivalence relation onQ with equivalence
classes[q] for all q ∈ Q, then one may obtain a new
automatonM/∼ = (Q′, q′0,∆

′, Q′
F ) (called the automaton

induced by∼) defined by
1) Q′ = {[q] | q ∈ Q}
2) q′0 = [q0]
3) ([q1], a, [q2]) ∈ ∆′ if and only if there existq′1 ∈ [q1]

andq′2 ∈ [q2] such that(q′1, a, q′2) ∈ ∆
4) Q′

F = {[q] | q ∈ QF }.
There are many ways to compare automata, such as with

simulation and bisimulation. For the purposes of this paper,
we will need to know when two automataM and M ′ are
structurally equivalent, by which we mean that there exists
a bijectionf : Q1 → Q2 an injectiong : AM → AM ′ such
that

1) (q1, a, q2)∆⇔ (f(q1), g(a), f(q2)) ∈ ∆′;
2) f(q0) = q′0;
3) f(QF ) = Q′

F .
When two automata are structurally equivalent, we write
M ∼= M ′

We can (somewhat indirectly) express the semantics of a
graph grammar(G0,Φ) in terms of an automaton.

Definition 2.5: Let (G0,Φ) be a graph grammar. Define
the associated automatonM(G0,Φ) = (Q, q0,∆, QF ) by

1) Q = G

2) AM = Φ;
3) (G, r,G′) ∈ ∆ if and only if there exists anh such

that G
r,h
−−→ G′;

4) q0 = G0;
5) QF = graphsG to which no rule inΦ is applicable.
Note that many graphs inG may not be reachable from

G0 via applications of rules inΦ. We will not be concerned
with these graphs in general even though they are technically
part of the automaton.

Example 2.4:Suppose thatG0 is the first graph (on the
left) in Figure 1. The rest of the figure shows the beginning
of one possible trajectory throughM(G0,Φcatalyst). The
entire automaton has many more states and actions than
shown. Note: Graphs in this paper are often drawn in such
a way as to suggest a particular geometry, but the reader
is cautioned to remember that vertices in the graphs we
consider have no “locations” – they simply have labels and
connections to other vertices. Any physical implementation
of the grammars we describe here will have to interpret
“label” and “connection” appropriately (as in, for example,
out robotic implementation of graph grammars [1]). N

C. Point of View

Definition 2.6: Given a simple labeled graphG =
(V,E, l), the k-neighborhoodof a vertex setU ⊆ V is
defined to be the graphNG(U, k) induced by the vertices

{v ∈ V | there exists some u ∈ U such that d(u, v) ≤ k}

a

a

a

b b b c

c c

d

d

e e

a

a

b

b b b c

c c

d

d

e e

G1 G2

Fig. 2. Thek neighborhoods of a setU with respect to two graphsG1

andG2 for k ∈ {0, 1, 2}. In this figure,U consists of two vertices labeled
by c and d respectively. The graphs shown areU−0, U−1 equivalent, but
not U−2 equivalent.

that are distancek or less away from some vertex inU .
Definition 2.7: Let G1 and G2 be two graphs over the

same vertex setV . Let U ⊆ V andk be a natural number.
We say thatG1 andG2 areU−k equivalent, written

G1 ∼
U

k
G2,

if and only if there exists a maph such that

1) h is a label-preserving isomorphism between
NG1

(U, k) andNG2
(U, k) and

2) h|U = idU .

Remarks: If k = 0, then NG(U, k) is simply the graph
induced by U . If the vertices inU are part of a finite
componentC and the maximum distance from a vertex inU
to any other vertex in the component isk, thenNG(U, j) =
NG(U, k) = C for all j ≥ k. If G andG′ areU−k equivalent,
then they areU−(k− 1) equivalent. Figure 2 shows the0, 1
and2-neighborhoods of a setU for two graphsG1 andG2

over the same vertex setV . In the figure,U ⊆ V consists
of two vertices labeled byc andd respectively. The graphs
shown areU−0 andU−1 equivalent, but notU−2 equivalent.

Given a collectionG of graphs over the same vertex set
V , we denote the equivalence class ofG ∈ G with respect
to ∼

U

k
by

[G]kU = {H ∈ G | G ∼
U

k
H}.

Furthermore, thek-neighborhoods ofU with respect to
all of the graphs in a given equivalence class[G]kU are
all isomorphic. Thus, we may safely represent[G]kU by
NG(U, k).

Example 2.5:The graphsG1 and G2 shown in Figure 2
are both elements of[G1]

0
U , whereU contains the vertices

labeledc and d located in the darkly shaded region of the
figure. Every graph in this class has the property that the
vertices inU induce the subgraphc − d, thus we use this
graph as the representation of[G1]

0
U . N

The main phenomenon we are concerned with in this paper
is how the local neighborhood of a collectionU of vertices
changes as graph grammar rules are applied. This notion can
be captured by an appropriately instantiated automaton.

Definition 2.8: Let (G0,Φ) be a graph grammar over a
set of verticesV , let U ⊆ V . We define thek-neighborhood
automaton forU to be the automatonM/∼

U

k
induced by the
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Fig. 1. The initial part of one possible trajectory arising from the system(G0, Φcatalyst ) whereG0 is the graph shown in the upper left of the figure.
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Fig. 3. The1-neighborhood automata with respect toΦcatalyst for any
vertex sets{u} and {v} where l0(u) = c0 and l0(v) = a0. These
automata are structurally equivalent to the automata corresponding to any
other vertices initially labeledc0 anda0, respectively. Therefore, we may
denote them byM(c0) andM(a0) as well. Together, these two automata
form the characteristic automata setM(G0, Φcatalyst ).

equivalence classes of∼
U

k
, whereM = M(G0,Φ) is the au-

tomaton associated with(G0,Φ) (Def. 2.5). In presentations
of M/∼

U

k
, we represent[G]kU by NG(U, k).

Example 2.6:Figure 3(left) shows the1-neighborhood
automaton forU = {u} for the grammarΦcatalyst , where
u ∈ V is any vertex with the initial labell0(u) = c0.
Figure 3(right) shows the1-neighborhood automata for any
single vertex initially labeled bya0. In the figures, the vertex
in U is shown underlined, the initial states are indicated by
incoming arrows and the final states are indicated by double
circles around the states. According to Definition 2.8, each
state is instantiated by an equivalence class of graphs. The
representation of the equivalence classes is via the graph
NG(U, 1). N

Remarks: The identification of final states is not entirely
straightforward. If we assume that the initial graph is finite
and disconnected, that there is one vertex initially labeled
c0 and that there are an even number of vertices labeleda0,
then the final states are as shown in the figure. However, if
this is not the case, then other states may be final as well. We
will not stress this difficulty in this paper, mainly becauseif
there are an enormous number of vertices, then the automata
in the figure describe the behavior of the system at least until
most of the “reactants” are “used up”.

III. C HARACTERISTIC AUTOMATA

We are particularly interested in the paths that the compo-
nents in the initial graphG0 take in trajectories of(G0,Φ).
We have the following result.

Theorem 3.1:Let (G0,Φ) be a graph grammar over ver-
tices V with associated automatonM . Suppose thatC1

and C2 are components ofG0 with vertex setsV1 and V2

respectively. IfC1 andC2 are isomorphic then

M/∼
V1

k

∼= M/∼
V2

k
.

Proof: Suppose thatC1 and C2 are distinct so thatV1 and
V2 are disjoint. Leth be a witness to the fact thatC1 andC2

are isomorphic and let̃h be the extension ofh to V defined
by

h̃|V1
= h

h̃|V2
= h−1

h̃|V −(V1−V2) = idV .

Let G′ be the graph defined by re-indexing each vertexv of
G to h̃(v) transforming the edges accordingly (so that the
re-indexing is an isomorphism) . Finally, definef([G]kV1

) =
[G′]kV2

and g = idR to demonstrate structural equivalence.
�

This result suggests that the automata associated with the
various componenttypesin G0 are sufficient to capture thek-
neighborhood behaviors, leading to the following definition.
In the definition, we denote byC(G0) = {C1, C2, ...} the set
of components ofG up to isomorphism.

Definition 3.1: Suppose thatCj ∈ C(G0) has vertex set
Vj ⊆ VG0

. Let M = M(G0,Φ) be the automaton associated
with (G0,Φ). The k-th characteristic automata setof the
grammar(G0,Φ) is the set

M(G0,Φ) = {M/∼
V1

k
, M/∼

V2

k
, ...}.

By Theorem 3.1, the choice of which components ofG0

we use to represent their types does not matter. So we are
justified in callingM(G0,Φ) “the” characteristic automata
set. Furthermore, we will writeM(C) for M/∼

Vi

k
whenever

C is label-preserving isomorphic toCi.

Remark: As noted above, a characteristic automata set is
essentially a Petri Net or marked graph. We think of the
full state of a characteristic automata setM as a “marking”
m : M →

⋃

M∈M
QM that assigns each automaton to its

current state. A new markingm′ is determined when a rule
r is applied by unmarking the preset ofr and marking the
postset ofr.

Example 3.1:An initial graph of Φcatalyst (see 2.3) has
two component types: A single vertex labeledc0 and a single
vertex labeleda0. The characteristic automata set is, thus,

M(G0,Φcatalyst ) = {M(c0),M(a0)},

whereM(c0) andM(a0) are as shown in Figure 3. N
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Fig. 4. The 1-characteristic automata set for the grammar in example 3.2
whenG0 is the discrete graph containing exactly one vertex labeleda and
one vertex labeledb. The set can be written as a single automaton with
different start states for different components.

Example 3.2:Two automata inM(G0,Φ) may be struc-
turally equivalent if one ignores the requirement that their
initial states should correspond. As an example, consider the
grammar

Φ =

{

a b ⇒ a− b
a− b ⇒ b a.

A system with these rules whose initial graph contains
a’s and b’s, will have trajectories wherein particles whose
1-neighborhoods are initially the singleton grapha will
eventually change to having1-neighborhoods equal to the
singleton graphb. The characteristic automata set therefore
has two automata that are structurally equivalent, except with
different start states, as shown in Figure 4 for the case when
G0 contains exactly two vertices, one labeleda and one
labeled b. This also shows the dependence ofM(G0,Φ)
on G0: For this example, the number of states inM(G0,Φ)
grows exponentially with the number of vertices inG0. N

IV. CONSTRUCTION OF THECHARACTERISTIC

AUTOMATA SET

The characteristic automata setM(G0,Φ) is a useful tool
for analyzing the behavior of a graph grammar system. It can
be used to identify whether a grammar has cyclic behaviors;
how trajectories in a system can deadlock; and in general,
what the possible fates of a component inG0 are. The set
can be constructed by hand for small examples, but for larger
examples it is useful to have an automated method, which
we now describe. Fix a grammarΦ and an initial graphG0.

1) Let
G0

ri0
−−→ G1

ri1
−−→ ...

rin−1

−−−−→ Gn

be a finite trajectory ofM(G0,Φ) (or a finite prefix of
an infinite trajectory). This can be found by simulating
the system forn steps, either probabilistically (in
which case we can only approximate the actual char-
acteristic automata set) or by enumerating all possible
trajectories (feasible only for small systems).

2) For each component C with vertices VC

of G0, define an automaton M(VC) =
(Q(VC), q0(VC),∆(VC), QF (VC)). The states of
Q(VC) are defined by the following procedure:

Q(VC) = ∅

for i = 0 to n do
if ¬∃H ∈ Q such thatGi ∼

VC

k
H

then Q(VC)← Q(VC) ∪NGi
(VC , k)

endif

endfor

The rest of the automaton is defined by
a) q0(VC) = NG0

(VC , k)
b) (H, r,H ′) ∈ ∆(VC) ⇔ there exists anj such

that Gj ∼
VC

k
H andGj+1 ∼

VC

k
H ′ andrk = r.

c) QF (VC) = {H ∈ Q(VC) | H ∼
VC

k
Gn} if no

rules inΦ are applicable toGn andQF (VC) = ∅

otherwise.
3) Next, suppose thatC1, ..., Cj are all the components

of G0 isomorphic to a given componentC = C1.
From the setM(C1), ...,M(Cj) we can build an
approximation (in that it may not contain all possible
states) of the characteristic automaton for components
of this type. First, re-index the verticesVCk

to VC1
by

using any isomorphism betweenCk and C1. Second,
let Mi(V1) be the automaton obtained fromMi(VCi

)
by this re-indexing. Third, define the characteristic
automaton for components of typeC by M(C) =
(Q(C), q0(C),∆(C), QF (C)) where

a) Q(C) =
⋃

Qi(V1)
b) q0(C) = q0(V1)
c) ∆(C) =

⋃

∆i(V1)
d) QF (C) =

⋃

QF,i(V1).
We have implemented this algorithm inMathematicaalong
with a number of other graph grammar utilities. Each of
the characteristic automata sets presented in this paper was
either generated by the above algorithm or it was generated
by hand and checked with the algorithm (and a number of
corrections were made!).

Example 4.1:Consider the grammar

Φ =







a0 a0 ⇒ b0 − b1 (r1)
b1 a0 ⇒ c0 − b2 (r2)
b0 b2 ⇒ c0 − c0 (r3)

that constructs cycles of three vertices, all labeled byc0

starting from a soup of vertices all labeleda0. The character-
istic automata set contains one automaton (because the initial
graph contains one component type), which we generated
using the above algorithm and which is shown in Figure 5.
It is clear from that figure that a vertex may either end up
as part of a three-cycle ofc0 vertices, or it may end up as a
c0 with two unconnectedc0 vertices — which occurs when
two b0 − c0 − b2 components join to make a six-cycle via
two applications of the ruler3. This a result of the fact that
the reachable set of a binary rule set isclosed under covers
[7]. N

Remark: In all of the examples we have so far considered,
the components ofG0 have been single vertices, perhaps
with different labels. In general, the characteristic automata
set “makes sense” for components whose vertices remain
connected in any trajectory, as, for example, proteins do
when forming supermolecular aggregates. If the vertices in
a component ever become disconnected, then they must
experience essentially separate evolutions. We plan to report
on a generalization of the ideas in this paper that can handle
this difficulty in a future paper.
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Fig. 5. The characteristic automaton for the grammar describedin
Example 4.1. In it, a vertex may either end up in a three-cycle orin part
of a larger cycle. The Figure was redrawn from a figure generated by the
Mathematicaimplementation of the algorithm described in Section IV.

The procedure outlined above for generatingM(G0,Φ)
is clearly time consuming, which we can show formally. Let
CHARAUTbe the following problem: Given a grammarΦ, a
finite initial grammarG0 and a set of automata ofM, decide
whetherM(G0,Φ) =M. We suspect the following.

Theorem 4.1:The decision problemCHARAUTis coNP-
complete.
Proof: Begin with an instance of TAUTOLOGY [8, p.219]
consisting of clausesC1, ..., Ck over variablesx1, ..., xn.
Suppose that

Ci = (vi,1 ∨ vi,2 ∨ vi,3)

wherevi,j is eitherxl or xl for somel ∈ {1, ..., n}. From
this instance, we first defineG0 = (V,E0, l0) by

V = {1, ..., n + k + 2}

E0 = ∅

l0(i) =















(xi,⊥) if 1 ≤ i ≤ n
(Ci−n,⊥,⊥,⊥) if n + 1 ≤ i ≤ n + k
T if i = n + k + 1
F if i = n + k + 2.

Thus, there is one vertex for each variable, one for each
clause, and two more vertices labeledT andF , respectively.

Next, we define the rule setΦ. The vertex labeled
(xi,⊥) corresponds to the truth assignment forxi. To non-
deterministically explore all truth assignments, we use the
rule sets

Ψi =

{

(xi,⊥) T ⇒ (xi, T ) T
(xi,⊥) F ⇒ (xi, F ) F

The vertex labeledT and the vertex labeled(xi,⊥) can
interact to change the label(xi,⊥) to the label (xi, T ),
leaving the vertex labeledT unchanged.

The vertex labeled(Cj ,⊥,⊥⊥) corresponds to the truth
value of the clauseCj . To determine the value of the clauses,
we use rules that allow the clause-vertices to interact with
the variable-vertices. Suppose it happens thatv1,1 = x7. We
introduce the corresponding rules

Υ1,1 =

{

(C1,⊥,#, ∗) (x7, T ) ⇒ (C1, F,#, ∗) (x7, T )
(C1,⊥,#, ∗) (x7, F ) ⇒ (C1, T,#, ∗) (x7, F )

where “#” and “∗” range over the set{⊥, T, F}. Thus, there
are 18 such rules: one for each of the three literals in the
clause.

The resulting rule setΦ is then

Φ =

(

n
⋃

i=1

Ψi

)

∪





k
⋃

i=1

3
⋃

j=1

Υi,j



 .

In all, there are2n + 54k rules (required for the reduction
of TAUTOLOGY to be polynomial). As long as there are
unassigned variables and unevaluated clauses, some rule inΦ
will apply. Each trajectory of(G0,Φ) explores one possible
truth assignment (and resulting clause evaluation), and every
truth assignments is represented by some trajectory of the
system.

We next describe the candidate automata setN . There is
one automata for each label in the initial graph. The automata
for the vertices labeledT andF are trivial. The automata for
the vertices initially labeled(xi,⊥) branch from this state to
either (xi, T ) or (xi, F ).

The candidate automaton for(Ci,⊥,⊥,⊥) is defined
to have 26 states, one for each possible label assigning
literals to values, except that we leave out the state labeled
(Ci, F, F, F ). If the instance of TAUTOLOGY is in fact true
for all assignments, then this state of the automaton forCi

should never be reached. The transitions of the automaton
correspond to the rulesΥ(i, j) for eachi andj. Thus, each
clause-automaton has 26 states and 54 transitions.

The total number of states in the automata setN is then
2+3n+26k and the number of transitions is2+2n+54k.
The reduction is, therefore, computable in polynomial time.

Furthermore, the instancesC1, ..., Ck is a tautology if and
only if N is the characteristic automata set for(G0,Φ). �

V. GRAMMAR SYNTHESIS FROM THECHARACTERISTIC

AUTOMATA SET

The synthesis problem for graph grammars and charac-
teristic automata is stated as follows: Given a setM of
automata, a graphG0 and a one-to-one correspondence
between the components ofG0 and the automata inM,
find a grammarΦ such that the characteristic automata set
M(G0,Φ) corresponds toM. The setM is called the
specificationand the system(G0,Φ) is called thesolution.
An automatic method for this problem likely requires an
extensive search, and may be computationally tractable only
for small systems. In this section, we describe via examples
how a solution to a specification can be found and when they
cannot be found.

Example 5.1:Consider the two automata, shown in Fig-
ure 6, for an initial graphG0 with l0(VG0

) = {a, b}. We
suppose that these represent the 1-neighborhood automata
for some graph grammar. This example has many solutions.
We construct one of them here.

First, we choose an instantiation of ruler1. Since an arc
labeled byr1 exits the initial states of both automata, the
left hand side ofr1 must have at least onea and oneb
in it. Furthermore, either the labels or the 1-neighborhoods
of these vertices must change, otherwise one of the arcs



r3
a b

q1

q2

q3

r1
r1 r2

r2

Fig. 6. The specification discussed in Example 5.1.

a q1

r1

r1

Fig. 7. An example specification with no solution, as discussed in example
5.2.

labeledr1 would be a self-loop. There are several choices.
For example,

a b ⇒ c− d. (r1)

Note that had we instead chosena b ⇒ a− b, we would
end up with transitions not shown in Figure 6 because, for
example, the grapha− b−a would be reachable as well via
rule r1

Continuing along the same lines, we choose the following
instantiations forr2 andr3:

c− d ⇒ e b (r2)
e e ⇒ a− a (r3)

Once again, there are several choices for these rules; the
reader can imagine others. N

The argument outlined in the previous example hints at the
complexity of constructing a solution for a given automata
set: We must instantiate rules that satisfy the constraints
given by the presence of transitions labeled by the rule; We
must ensure that a rule instantiation does not generate new
transitions (which seems to involve solving theCHARAUT
problem); We must make sure that a particular instantiation
does not make later instantiations impossible. We speculate
the problem of finding a solution is provably intractable.

Example 5.2:Not all specifications have solutions. A sim-
ple example is shown in Figure 7, which shows a single
automaton for an initial graphG0 with l0(VG0

) = {a}. The
rule r1 must apply to graphs in both states. Since it applies
only to the initial state of the automaton for the component
a, it must have only copies ofa in its left hand side. Also, it
must change the1-neighborhood of components labeleda to
some other structure, sayH. Finally, sincer1 is applicable
to graphs in stateq1, its left hand side must contain copies
of H in it, which is a contradiction. N

VI. D ISCUSSION

We have demonstrated the relationship between a graph
grammar and its characteristic automata set, which relates

the components in the graph to automata describing how the
local neighborhoods of those automata change as a result of
rule applications. We also described how to find one object
given the other, either by a formal procedure, or through
examples.

The two types of object discussed here are separated
by significant computational complexity. Wedo not find
this particularly discouraging, rather we hope that insights
gleaned from one description may lead to insights into the
other. Furthermore, the method for generating the character-
istic automata set is one that produces a series of better and
better approximations of the actual result, each of which is
useful for analyzing possible behaviors of the system.

One of the goals of our research is to specify, at a high
level of abstraction, the behaviors of a system and then
produce a grammar that implements it (as in Section V).
Thus we plan to spend considerable effort in the future
devising efficient methods for approaching this problem.
Also, in practice, real systems that implement grammars
(such as our self-organizing robot platform [1]) apply rules
at random based on statistical-mechanical considerations.
Thus, in a real-world setting, the automata described here
would be labeled withrates that can be used to infer
the most likely pathways taken by components, and these
rates would have to be determined from properties of a
probabilistic implementation of a grammar. However, rates
are not preserved by the equivalence of graphs used to form
the characteristic automata set, except, perhaps, in certain
situations. We plan to report on this complication in a future
paper.
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