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Abstract— We describe how a graph grammar pro-
gram for robotic self-assembly, together with measure-
ments of kinetic rate data yield a Markov Process
model of the dynamics of programmed self-assembly.
We demonstrate and evalidate the method by apply-
ing it to a physical testbed consisting of a number
of “programmable parts”, which are able to control
their local interactions according to their on-board
programs. We describe a technique for obtaining kinetic
rate constants from simulation and a comparison of
the behavior predicted by the Markov model with the
behavior predicted by a low-level simulation of the
system.

I. Introduction

This paper is about modeling a class of robotic systems
that can be programmed to self-assemble into specific
structures. We believe this work to be in the same vein
as the initial work in modeling, for example, traditional
robot manipulators using classical mechanics. Although
the language of classical mechanics was well established
at that point, adapting it to the application of feedback-
controlled manipulators in a natural way required sub-
stantial effort. The analogous theory for programmed self-
assembly is statistical mechanics, or more specifically, sta-
tistical dynamics. Although the theory of programmable
self-assembly is not by any means unexplored (e.g. [5] is
also in this vein), much work needs to be done before self-
assembling systems can be reliably engineered.

The class of systems we consider consist of a number of
robotic parts that are randomly stirred in some container.
Upon chance collisions, the parts may bind, communicate
and update their internal states. At any time they may
detach from each other. The engineering goal is to program
the particles so that a desired structure emerges in a
predictable and reliable fashion (see Figure 1). We believe
that this will lead to a variety of applications from macro-
scale multi-robot coordination to novel manufacturing
techniques of micro-scale devices.

We consider both an abstract theoretical model of this
process based on graph grammars and Markov Processes,
and a physical testbed that has been constructed to
validate the theory [2].
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Fig. 1. (a) An initial configuration of programmable robotic parts
(See Figure 4). The parts are stirred randomly so as to produce
collisions. (b) An assembly parts after the assembly process has
completed. A complete final assembly and several partial assemblies
are shown.

Our main contribution is a method by which to define
a discrete state continuous time Markov Process model
that can be directly obtained from (1) a description of the
program used by the parts and (2) values of the kinetic
rate constants defining the rates at which sub-assemblies
form and decay. Such a model is more useful than a low-
level simulation (based on rigid body dynamics, friction,
collisions, etc.) of the system for a number of reasons.
First, statistical sampling of a fast implementation of
Gillespie’s method [6] can be used to quickly evaluate
the performance of a given program, whereas a low-level
simulation might require considerable computation time.
Second, such a model can be used in analysis of the system
dynamics using, for example, statistical model checking
[14], [9].

In this paper, we first define a model of self-assembly
based on graph grammars [8] and statistical mechanics [4].
In particular, we describe how a graph grammar induces
a Markov Process model of the system. We then show
how to use the model to describe the dynamics of a
particular robotic self-assembly system [2]. We describe
how to obtain kinetic rate constants from a low-level
simulation of the system and discuss for what values
of the parameters (average kinetic energy, density) the
assumptions of our model hold. Finally, we compare the
two modeling methods to show that they predict similar
results.



II. Related Work

The present paper owes much to the work of Hosokawa,
Shimoyama and Miura who described a self-assembling
system using chemical kinetics [7]. Their system consisted
of passive triangular parts in a vertical shaker. Using an
approximation for the kinetic rate constant based on (an
oversimplification of) the geometry of sub-assemblies, they
obtained mass-action-kinetics equations for their system.
Furthermore, they showed that the kinetics model roughly
matched experiment. The approach in the present paper
is similar, with the following differences: (1) The parts we
consider are programmable, meaning that the system dy-
namics are programmable as well. This leads to questions
of design and performance; (2) We measure the kinetic
rate constants from experiments and use a Markov-Process
model instead of a continuum model; (3) We explore the
parameter space of our system to identify where it is
appropriate.

The modeling techniques in the present paper are ap-
plicable to robots, built by several groups, that either
float on an air table [12], [2] or even that float in oil
[11]. We also believe that these ideas will be applicable
to micro- and nano-scale self-assembly problems [3], [13].
No comprehensive dynamical systems model or program-
ming discipline has yet been developed for these systems,
although the graph grammar approach built on here and
introduced elsewhere [8] is an important start. Besides
the grammatical approach, the most relevant work toward
understanding self-assembly “programs” in a stochastic
setting is in nucleic acid design [5], where the free-energy
landscape associated with DNA hybridization reactions
can be engineered. The present work differs in that we
suppose that local interactions are controllable, whereas
in the DNA work the oligo sequences are the controllable
elements.

III. The Dynamics of Programmed Self-Assembly

We describe a general mathematical model of pro-
grammed self-assembly. The model is phrased in the lan-
guage of graphs, rewrite systems and Markov processes.

The state of a programmable self-assembling system is
described by a labeled graph over a fixed set of vertices and
having two edge types:

G = (V,Ebond , Etemp , l)

where

1) V = {1, 2, 3, ..., n} is a finite set of particles;
2) Ebond is a set of “bonded” undirected edges of the

form {u, v} with u, v ∈ V .
3) Etemp is a set of “temporary” undirected edges of

the form {u, v} with u, v ∈ V .
4) l : V → Σ is a labeling function that associates to

each particle u a label l(u) in the alphabet Σ.

The absence of an edge between two parts indicates that
they are not physically connected. A “temporary” edge
indicates that the parts have attached to each other, but
have not yet communicated their states. A “bonded” edge
indicates that the parts have decided to remain attached.

In this paper, we simply use the term graph for graphs
of this type. We use the notation uv for the set {u, v} rep-
resenting an edge. We draw graphs with elements of Σ rep-
resenting labeled vertices, solid lines representing bonded
edges and dashed lines representing temporary edges. We
generally use the alphabet Σ = {a, a′, a′′, ..., b, b′, b′′, ...}
and assume that it is closed under priming (i.e. x ∈ Σ ⇒
x′ ∈ Σ).

We assume the following concepts as standard. Graph
isomorphism is written G ' H. Isomorphism implies the
existence of a witness h that maps the vertices of G to the
vertices of H and preserves structure and labels. If U ⊆ V ,
then G|U denotes the graph induced by U . The degree of a
vertex is d(v) = dbond (v) + dtemp(v), the number of edges
involving u. If {Gi}i∈N is a sequence of graphs, then we
may refer to the sequence of labeling functions by {lk}k∈N
or the sequence of degrees of a vertex v by {dk(v)}k∈N,
and so on.

A. Graphs and Rewrite Rules

We consider two types of rewrite rules that model local
interactions among particles. The first type is the binary
rule, of the form L ⇀ R where L and R are graphs over
the vertex set {1, 2}. For example, the rule

a ···· a ⇀ b− b
describes how two parts that are both labeled a and that
have initiated communications may form a bond.

The second type of rule is the unary rule, of the form
L ⇀ R, where L and R are graphs over one vertex, which
allows a part to change its own label. For example, the
rule

b′ ⇀ a (1)

allows a part that has no neighbors to change its label
from b′ to a.

The following definition is similar to that in [8], except
adapted for graphs with two edge types and restricted
to rules of the form described above. It states formally
how trajectories are obtained by rewriting a graph locally
according to a binary or unary rule.

Definition 3.1: Given an initial graph G0 over vertex
set V0 = V and a set Φ of binary and/or unary rules, a
sequence

σ = {Gi}i∈N
is a trajectory of (G0,Φ) if for all i, there exists a rule
L ⇀ R ∈ Φ such that:

i. If L ⇀ R is binary, there exist distinct vertices u, v ∈
V such that

a. Gi|{u,v} ' L and Gi+1|{u,v} ' R via the same
witness h.

b. Gi|V−{u,v} = Gi+1|V−{u,v}.
ii. If L ⇀ R is unary, there exists a vertex u ∈ V such

that

a. Gi|u ' L and Gi+1|u ' R
b. Gi|V−u = Gi+1|V−u .



If G = Gi for some trajectory of (G0,Φ), then G is reach-
able. The set of all reachable graphs is denoted R(G0,Φ).

A set of rules and an initial graph determine the set of
assemblies, the components of reachable graphs, that can
be formed.

Definition 3.2: If C is a component of G for some G ∈
R(G0,Φ) and C has no temporary edges, then C is called
a reachable component. The set of all such components (up
to isomorphism) is denoted C(G0,Φ).

The goal of the self assembly problem is to define Φ so
that C(G0,Φ) contains desirable assemblies.

B. The Grammar Induced by a Program

The program stored on the parts induces a dynamical
system when they are allowed to interact. By a program
Φprog , we mean a set of unary or binary rules, where
each binary rule has a connected left hand side. Thus, the
binary rules in a program may change a temporary edge to
a bond, change the labels of bound parts, or disassociate
a bond (e.g. see the example in Section III-F).

Given Φprog , we define three other sets of rules. For
convenience, we denote by LHS (Φ) the set

LHS (Φ) = {L | L ⇀ R ∈ Φ}.
The induced rule sets are as follows.

1) Formation rules are applied by the environment
when parts collide and temporarily attach:

Υform = {x y ⇀ x ···· y | x, y ∈ Σ}.
2) No-op rules apply when no rule in Φ applies to a

newly attached pair:

Φnoop = {x ···· y ⇀ x y | x ···· y 6∈ LHS (Φ)}.
3) Break rules are applied by the environment when

bonds are broken due to energetic collisions:

Υbreak = {x− y ⇀ x′ y′ | x, y ∈ Σ}.
The labels on the parts are “primed” by this rule
to reflect the fact that the parts are programmed to
“notice” when their local connectivity has changed
unexpectedly.

The grammar induced by a given program Φprog is thus

Φsystem = Φprog ∪Υform ∪ Φnoop ∪Υbreak . (2)

C. Natural Components

Given a system of particles that can attach to form
assemblies, we wish to know what types of graphs can
emerge, regardless of their programming. Thus, consider
the system induced by the grammar

Φnat =
{
a ···· a ⇀ a− a

}

except with

Υbreak = {a− a ⇀ a a}.
In this system, everything sticks to everything else. The
set Cnat = C(G0,Φnat ) of all components of this system

are called the natural component types. If C ′ ∈ C(G0,Φ) is
a component of some other system Φ and C ′ is isomorphic
to some component C ∈ Cnat , not including labels, we call
C the type of C ′. For example,

a− b ···· c has type a− a ···· a.
We denote the type of a component C by T (C).

D. Reaction Types and Kinetic Rate Constants

The grammatical formulation of self-assembly describes
only what behaviors are possible, but not how probable
they are or how long they take. However, under the
assumptions that (1) assemblies diffuse through their en-
vironment and (2) the system is “well mixed”, we may use
the reaction-diffusion model from chemical kinetics. In this
case, a grammar together with a set of kinetic rate con-
stants leads to a continuous time, discrete space Markov
Process. In Section IV-D we explore the appropriateness
of these assumptions for the robot testbed in [2].

There are two types of rate constants. First are the
rates at which temporary edges form and bonds break.
These rates are fundamental physical constants associated
with the geometry of the interacting assemblies and the
“temperature” and density of the system. The other type
is the communications rate kcom . It results from the time
it takes for two parts to apply a rule in their program (or
a no-op rule). We assume that kcom is significantly higher
than all other rate constants.

Rates are associated with actions. An action consists of
a rule and a place in the current graph to apply it. For
example, one application of a particular rule may be to
attach two single parts together while another may be to
attach two complicated sub-assemblies together. To make
the distinction, we associate a reaction type µ to each
action, which has one of the following forms:

A ⇀ B (R1)
A+B ⇀ C (R2)
A ⇀ B + C, (R3)

where A,B,C ∈ C(G0,Φ).
We assume that it is possible to measure or otherwise

obtain a natural reaction rate kµ for each reaction type µ
(e.g. see Section IV-C). This is the rate associated with
the reaction type µ in Φnat when A, B and C are replaced
by their natural component types T (A), T (B) and T (C)
(i.e. they are relabeled with all a’s). We assume that these
rates are measured at a fixed temperature and density and
that subsequent experiments (with programs) occur at the
same temperature and density.

For each reaction µ and rule r, we define the caliber of
the reaction via r, denoted n(µ, r), to be the number of
ways that the reaction µ can occur via the rule r. Also,
for each reaction µ, we define the caliber of the reaction
type, denoted n(µ), to be the number of ways that the
reaction can occur by the addition or deletion of an edge,
independent of labels. For example, if r is the rule a−b ⇀
a′ b′ and µ is the reaction

a− b− c ⇀ a′ + b′ − c



then n(µ, r) = 1 while n(µ) = 2.

Definition 3.3: Given Φ defined by Equation (2), sup-
pose that G′ can be obtained from G ∈ R(G0,Φ) via the
rule r ∈ Φ and a reaction of type µ. Then the rate at which
G transitions to G′ is given by

kµ,r(G,G
′) = kcom (3)

if r ∈ Φprog ∪ Φnoop and

kµ,r(G,G
′) =

n(µ, r)

n(µ)
kµ (4)

otherwise. If G′ cannot be obtained from G via any rule,
we set k(G,G′) = 0.

The result is a continuous time, discrete state Markov
Process with states R(G0,Φ) and rates k(G,G′). If Φ is
induced by from Φprog , then this process is called the
Markov Process induced by Φprog and the natural rates kµ.

E. Macrostates and Markov Processes

It is useful to represent the equivalence class of graphs
isomorphic to a given graph by listing the number of
each component type present in graphs in the class. To
this end, suppose that C(G0,Φ) = {C1, C2, C3, ...}. Then
v : C(G0,Φ) → N represents all graphs G ∈ R(G0,Φ)
with v(1) components isomorphic to C1, v(2) components
isomorphic to C2 and so on. We write these representatives
in vector notation as in, for example,

v = ( 4 3 0 1 0 . . . )T

which denotes that v(1) = 4, v(2) = 3 and so on. If v
represents the equivalence class [G] and H ∈ [G], we write
G |= v. In statistical mechanics, G is called a microstate
and v is called a macrostate.

The multiplicity of the reaction µ in the macrostate v,
denoted Mµ(v), is the number of ways µ can happen in v.
For example, if µ is C1 + C2 → C3, then

Mµ(v) = v(1)v(2).

Finally, if G |= v and G′ |= v′, then the rate from v to v′

is
k(v,v′) =

∑

µ,r

Mµkµ,r(G,G
′).

As implied by Definition 3.3, this rate can be determined
solely by examining the components represented in the
vector v.

We interpret macrostates and the rates between them
as describing a continuous time, discrete state Markov
Process. More concretely, suppose that macrostates are
ordered somehow v1,v2,v3, ...,vN . The system can be
summarized by a rate matrix K ∈ RN×N where

1) If i 6= j, then Ki,j = k(vi,vj) ≥ 0
2) Ki,i = −∑j 6=iKi,j .

We denote the ratio −Ki,j/Ki,i by Pi,j , for i 6= j. Setting
Pi,i = 0 results in a new matrix P that is called the
embedded Markov Chain associated with the process. The
average behavior of the system is then described by

v̇ = KTv. (5)

Distinct trajectories through the system in this paper
are obtained using the method of Gillespie [6]. Given an
initial state vj0 ∈ S at time t0 = 0, we produce a random
trajectory {(vji , ti)}i∈N as follows. At step i

1) Choose the state vji+1
randomly according to the

jith row of the embedded Markov Chain P.
2) Choose τ > 0 randomly according to the probability

density function p(τ) = λ exp(−λτ) where λ =
−Kji,ji and set ti+1 = ti + τ .

Often, distinct trajectories of the system differ consider-
ably from the average behavior. Sampling distinct tra-
jectories can describe how the system behaves at ther-
modynamic equilibrium, while Equation (5) predicts an
essentially static picture. Note that if a sample trajec-
tory {Gi}ni=1 is obtained using rates kµ,r(G,G

′), it can
be “lifted” to a trajectory {vji}ni=1 where vji is the
macrostate corresponding to the equivalence class [Gi].

Remark: One may also use the basic rates kµ as described
here and measured in Section IV-C to describe a contin-
uous mass action kinetics model. However, such models
assume a vast number of reactants, which is not appropri-
ate for the present setting. Furthermore, the continuous
model essentially predicts the average behavior (5), which
does not capture many interesting details that may be
important to programming and correctness arguments.
Finally, a continuous model must describe the rate of
change of the concentration of each component type in
Cnat . The number of such types in our systems is not
usually known a priori and is in any case so prohibitively
large as to render the approach analytically unwieldy and
possibly useless.

F. An Example

Consider a toy system with natural rates as follows. If
µ is a reaction that deletes an edge, then kµ = kr > 0, a
constant. If µ is a reaction that joins two components C1

and C2, then

kµ =
kf

|C1|+ |C2| − 1
(6)

as long as vertices in the newly created component have
degree 2 or less. Otherwise, set kµ = 0. Here kf > 0 is a
constant. The natural components of the system are thus
chains and cycles of parts.

Suppose that Φ is induced by the program

Φprog =

{
a ···· a ⇀ b− c
b ···· b ⇀ d− d

and that G0 contains parts all initially labeled by “a”.
The goal of Φprog is to build graphs of the form c − d −
d − c. Some example rates are shown in Table 1. There
are many others, easily determined. In the third reaction,
the 1

4 comes from Equation (4) and the 1
3 comes from

Equation (6).
Because of the rules in Υbreak , all components generated

by Φ eventually break apart, yielding single parts labeled
by primed symbols. Thus, it is useful to define a recovery



µ kµ,r
a+ a ⇀ a ···· a kf
a ···· a ⇀ b− c kcom

c− b+ b− c ⇀ c− b ···· b− c 1
4 · 1

3kf
c− d− d− c ⇀ c′ + d′ − d− c kr.

Table 1. Example reaction rates for the program defined in Sec-
tion III-F.
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Fig. 3. The number U of final graphs (c− d− d− c) versus time for
the systems induced by Φprog (dashed line) and Φprog ∪ Φrec (solid
line) described in Section III-F. Each curve represents the average of
50 simulations of 10 parts for 10 seconds.

program

Φrec =





c− d′ ⇀ c− b c′ ⇀ a
d− d′ ⇀ b a d′′ ⇀ a
b′ ⇀ a

Figure 2 shows an example initial trajectory of the sys-
tem induced by Φprog∪Φrec . Figure 3 shows the behavior of
the systems induced by Φprog and Φprog∪Φrec respectively.
Each curve represents the average of 50 simulations of 10
parts for 10 seconds. The value plotted is the number U
of final graphs (c− d− d− c) as a function of time.

IV. A Robotic Testbed

A. Hardware

The methods in this paper were implemented on a
set ten of robots called programmable parts [2]. A pro-
grammable part (Figure 4) consists of an equilateral tri-
angular chassis that supports three controllable latching
mechanisms, three IR transceivers, and control circuitry.

Each latch consists of three permanent magnets: one
fixed and the other two mounted on the end of a small
geared DC motor. The default position of the magnets
is such that the north pole of the fixed magnet and the
south pole of the movable magnet are pointing out. When
two latches from different parts come into contact, they
temporarily bind – the fixed magnet of one attaching to
the movable magnet of the other. At that point, a contact
switch on each part is pressed and the parts communicate.
If at any point they mutually decide to detach from each
other, each temporarily rotates its movable magnet 180◦,
forcing the parts apart. The movable magnets then return
to their default positions.

The parts float on a custom-made air table. To maximize
useful collisions, we use various methods for stirring the

Motor


Motor mount


Movable magnets

and holder

Fixed magnet


Circuit board


IR Transmitter


IR Receiver

Chassis


Fig. 4. The components of the programmable part include low
power magnetic latches, infrared communications, and an on-board
microcontroller.

parts. For the simulations and experiments in this paper,
oscillating fans are placed over the table.

We primarily explore the programmable parts system in
a simulation environment that allows us to “experiment”
with a greater number of parts [2]. The simulation uses the
Open Dynamics Engine [1] library, which can compute tra-
jectories of hundreds of parts and determine the result of
collisions and contact situations. The 1000’s of simulations
in this paper were run on an 16 processor Blade server and
the data was collected and interpreted in MATLAB.

B. Applying the Grammatical Approach

To apply the grammatical approach to the pro-
grammables parts, we associate a label in Σ to each latch
of each of the N robots. Thus, the vertex set is

V = {(i, j) | 1 ≤ i ≤ N, 0 ≤ j ≤ 2}.

Binary rules have the form

a
b

c�
Q .... d

f

eQ
� ⇒ a

b

c�
Q d

f

eQ
�

where the orientation of the vertices is important. In
particular, this rule applies to parts i and k in the graph
G = (V,Ebond , Etemp , l) if for some j1 and some j2 it is
the case that {(i, j1), (k, j2)} ∈ Etemp ,

l(i, j1) = a, l(i, j1 + 1) = b, l(i, j1 + 2) = c

and

l(k, j2) = d, l(k, j2 + 1) = e, l(i, j2 + 2) = f

where arithmetic on the edge indices is done modulo 3.
The update to the labels of the two parts also must
preserve orientation. In general, the extension to the defi-
nitions in Section III is straightforward – with orientation-
preserving isomorphism replacing simple isomorphism. It
is a somewhat surprising fact that this configuration model
for the triangular parts along with appropriately defined
rates is enough to capture the geometry of the system:
Geometrically impossible assemblies simply have zero flux.
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Fig. 2. An initial trajectory of the system induced by Φprog ∪ Φrec along with the time in seconds at which the transitions occured. The
trajectory was obtained using Gillespie’s method.

C. Obtaining Kinetic Rate Constants From Simulation

To build a Markov Process describing the dynamics of
the programmable parts system, we require values for the
kinetic rate constants. For this, we use the simulation
tool discussed above. We fix the average kinetic energy
of Kave = 5× 10−4, which is the kinetic energy measured
from experiments using the actual robots in the labora-
tory. We also fix a density of ρ = 5 parts/m2 and table size
of A = 12m2 that (1) approximately match the physical
testbed and (2) come from a parameter regime where the
reaction-diffusion model is valid (see the next section).
This results in simulations with N = ρA = 60 parts.

We describe the procedure used to estimate rates with
an example. To determine the rate k1+2⇀3 (see Figure 5)
for a single part (component type 1) combining with a
“dimer” (component type 2) to form a “trimer” (compo-
nent type 3), we choose a macrostate of the form

v0 = (N1 N2 0 0 ...)T

with N1 single parts and N2 dimers. We run n simulations
from random initial conditions with the initial velocities
chosen from a Gaussian distribution with mean equal to
Kave/m, where M is the mass of a part. As soon as a
reaction occurs, in this case either 1 + 2 ⇀ 3 or 2 ⇀
1 + 1, we restart the simulation with a new random initial
condition. We do not reset the time t. Suppose that the
times at which the first reaction occurs are

τ1+2⇀3 = (t1, t2, ..., tr).

The hypothesis is that the intervals ∆ti = ti+1 − ti are
distributed according to a Poisson waiting process with
mean λ = 1/k1+2⇀3. We thus arrive at the estimate

k1+2⇀3 ≈
1

N1N2

(
1

〈∆t〉 ±
std(∆t)√
n〈∆t〉2

)

where 〈∆t〉 is the average waiting interval for the reaction
and std(∆t) is its standard deviation. Said differently,
the approximate rate constant is the rate at which the
reaction occurs starting at v0 divided by the multiplicity
of the reaction in v0. From the same set of simulations,
we also obtain an approximation of the rate k2⇀1+1 from
the times τ2⇀1+1 . In the next subsection we discuss the
parameter regime where we expect that the basic rates are
independent of the multiplicity.
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Fig. 5. Index of component types used in Figure 2.

1 + 1 ⇀ 2 : 3.26± .07 3 + 3 ⇀ 17 : 0.36± .04
1 + 2 ⇀ 3 : 3.25± .06 3 + 3 ⇀ 18 : 0.35± .03
1 + 3 ⇀ 4 : 0.75± .04 3 + 3 ⇀ 19 : 0.39± .04
1 + 3 ⇀ 5 : 0.66± .04 3 + 3 ⇀ 22 : 0.32± .03
1 + 3 ⇀ 6 : 1.46± .06 3 + 3 ⇀ 23 : 0.20± .03
1 + 3 ⇀ 7 : 0.71± .04 3 + 3 ⇀ 24 : 0.39± .04
2 + 2 ⇀ 4 : 0.66± .04 3 + 3 ⇀ 25 : 0.31± .03
2 + 2 ⇀ 5 : 0.83± .04 3 + 3 ⇀ 26 : 0.18± .02
2 + 2 ⇀ 6 : 1.85± .06 3 + 3 ⇀ 27 : 0.40± .04
2 + 3 ⇀ 8 : 0.81± .09 3 + 3 ⇀ 28 : 0.36± .03
2 + 3 ⇀ 9 : 0.49± .08 3 + 3 ⇀ 30 : 0.20± .03
2 + 3 ⇀ 10 : 0.93± .08 3 + 3 ⇀ 31 : 0.16± .03
2 + 3 ⇀ 11 : 0.76± .07 3 + 3 ⇀ 32 : 0.14± .03
2 + 3 ⇀ 12 : 0.76± .10 2 ⇀ 1 + 1 : 0.19± .05
2 + 3 ⇀ 13 : 0.48± .06 3 ⇀ 1 + 2 : 0.55± .12
3 + 3 ⇀ 14 : 0.15± .03 6 ⇀ 1 + 3 : 0.93± .29
3 + 3 ⇀ 15 : 0.38± .03 6 ⇀ 2 + 2 : 0.96± .31

Table 2. Some kinetic rate constants measured for the programmable
part system with N = 60, A = 12m2, ρ = 5parts/m2 and Kave = 5×
10−4. The initial macrostate for each approximation is chosen so that
there are an approximately equal number of the forward reactants
(see Figure 5 for a listing of the reactant types). Data reflecting
reverse rates were combined from those simulations in which reverse
reactions occurred. All rates are to be interpreted ×10−4s−1. Not all
rates have been measured: Only those rates needed for the grammars
explored in this paper are included.
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Fig. 6. The diffusion coefficient D versus ρ from simulations of
N = 60 parts, Kave = 5× 10−4 and no binding between parts after
collisions.

In Table 2 we summarize the basic rates obtained from
simulation for a number of the most primitive reactions
of the system. These reaction rates are sufficient to test
several simple grammars.

D. Where the Model is Valid

The main assumption allowing us to use the reaction-
diffusion model is that the system is “well-mixed”: The
rate at which novel collisions occur is greater than the
rate at which reactions occur [6]. In our system, diffusion
drives mixing. Thus, a quantifiable notion of “well-mixed”
is to require that D/kav > A where D is the diffusion
coefficient, kav is a typical basic rate and A is the area of
the table.

The diffusion coefficient D depends on the density ρ of
parts on the table and the average kinetic energy Kave ,
which we have fixed to 5× 10−4. Figure 6 shows D versus
ρ measured at a fixed A. According to the figure and taking
kav to be approximately 10−4, we conclude that a density
of 5 parts/m2 and an area of A = 12m2 satisfies our well-
mixed criterion. The experiments in this paper occur at
this density.

To further test that these values capture the regime
where the proposed model fits our system, we checked
the method for measuring rates in the previous section.
Figure 7 shows the basic rate for the reaction 1 + 1 ⇀ 2
measured from various macrostates. The figure shows that
at 5 parts / m2, the measured rate varies only slightly with
the choice of macrostate. At higher densities, however, this
is not the case, as the figure also shows.

V. Design and Experiments

The ultimate goal of this effort is to use the model
we have described in this paper to build grammars for
given tasks. The model allows us to quickly (without a full
mechanics-based simulation) evaluate the performance of
a grammar with respect to a given task. In fact, we can
rigorously use the model for (1) stochastic search for and
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Fig. 7. Kinetic rate constant for the 1 + 1 ⇀ 2 reaction measured
at different densities and from different macrostates. The variation
is low at the density ρ = 5parts/m2 used in the experiments in this
paper.

optimization of rules sets and (2) stochastic model check-
ing of grammars with respect to formal logic specifications.
We plan to report on both of these possibilities in future
papers.

For now, we consider the task of building a chain of four
programmable parts (assembly 6 in Figure 5) in a manner
similar to that described in Section III-F. We consider
three different grammars for this task:

1) Φ1 : build chains one-by-one to get a chain of four;
2) Φ2 : build pairs and then chains of four from pairs;
3) Φ3 : allow all interactions, even those that build

larger structures. When a larger structure that has
assembly 6 as a sub- structure is built, detach any
part not in the substructure.

These grammars are easily constructed. To save space, we
omit the listing of Φ1 and Φ3. The grammar Φ2 is listed
in the appendix to this paper.
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of the programmable parts system.

Figure 8 shows the results of using the full simulation



with each grammar. We used N = 10 parts, Kave =
5 × 10−4 and ρ = 5 parts/m2. Each curve represents
the number of assemblies of type 6 averaged over 15
trajectories. The grammar Φ3 clearly out-performs the
other two grammars in terms of the average number of
product assemblies at the end of the simulation and in
terms of the initial rate at which product assemblies are
formed.
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Fig. 9. Comparison of the systems induced by Φ1, Φ2 and Φ3 using
the average of 15 Gillespie simulations of the Markov process induced
by the grammars.

Figure 9 shows exactly the same data, except that it
was generated using a Gillespie simulation of the systems
induced by the grammars and the measured basic rates in
the table. The data sets from the two simulation methods
are in agreement with respect to how well the grammars
perform – although the timescale in Gillespie simulation
is different. This is most likely due to the fact that the
simulations are with N = 10 instead of N = 60 parts.

These experiments suggest that the two methods of
simulating the actual system yield the same results when
evaluating grammars.

VI. Discussion

We have developed a framework for programmed robotic
self-assembly that describes how a model of the system
can be induced by a given graph grammar program. The
model requires that the kinetic rate constants for the
allowable reaction types are known or can be measured.
We demonstrate how a low-level simulation can be used
to generate the rate constants so that any grammar can
be represented in terms of rates and an induced grammar.

The model applies low-density systems that are well-
mixed. As we stray away from such systems, we expect
the model to be less able to predict the behavior of the
system. However, grammars that perform well under the
assumption of low-density are very likely to perform well
at other densities – making the approach still useful in
these regimes.

The next step in our research is to generate and op-
timize graph grammar programs for specific tasks such
as assembling copies of a desired structure. We believe
that the representation of the system as we have described
here will facilitate this process, allowing us to do both

stochastic search [10] and optimization quickly, and to
perform stochastic model-checking [14], [9] and controller
synthesis. This will hopefully lead to a practical method
for designing and programming robotic self-assembling
systems in general.

Appendix

A. 2x2 Pacman Grammar

Binary rules have the form

a
b

c�
Q .... d

f

eQ
� ⇒ a

b

c�
Q d

f

eQ
�

which can be rewritten more compactly as

abc ∼ def ⇀ abc− def ,

where the first character in a triple (e.g. “a” in “abc”)
labels the programmable part edge involved in the in-
teraction, the remaining characters labeling a tile in the
counter-clockwise direction from this face. Thre are three
possible connection types with this notation: “ ” represents
no connection, “∼” represents a physical connection which
hasn’t carried communication, and “−” represents an
established connection. Unary rules have the form a′bc ⇀
def . Using this notation, we write Φ2 as follows:

aaa ∼ aaa ⇀ baa− baa
aab ∼ aba ⇀ ead− eda
dea− baa ⇀ dea− iaa
dae− baa ⇀ dae− iaa
eah− eda ⇀ aaa hda
dah− baa ⇀ baa− baa
eha− ead ⇀ aaa had
dha− baa ⇀ baa− baa
dah− iaa ⇀ baa− baa
dha− iaa ⇀ baa− baa

b′aa ⇀ aaa i′aa ⇀ aaa
e′ad ⇀ had e′da ⇀ hda
d′ea ⇀ hea d′ae ⇀ hae
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