
Graph Grammars for
Self Assembling Robotic Systems

Eric Klavins
Electrical Engineering

University of Washington
Seattle, WA 98195

klavins@washington.edu

Robert Ghrist David Lipsky
Department of Mathematics

University of Illinois
Urbana, IL 61801

{ghrist,dlipsky}@math.uiuc.edu

Abstract— In this paper we define a class of graph
grammars that can be used to model and direct dis-
tributed robotic assembly or formation forming pro-
cesses. We focus on the problem of synthesizing a
grammar so that it generates a given, prespecified
assembly. In particular, to generate an acyclic graph
we synthesize a binary grammar (rules involve at most
two parts), and for a general graph we synthesize a
ternary grammar (rules involve at most three parts).
We then show a general result that implies that no
binary grammar can generate a unique stable assembly.
We conclude the paper with a discussion of how graph
grammars can be used to direct the synthesis of parts
floating in a fluid or for self-motive robotic parts.

I. Introduction

Engineering in the realm of the very small presents us
with the daunting problem of manipulating and coordi-
nating vast numbers of objects so that they perform some
global task. Nevertheless, there are examples of sophisti-
cated machines, such as the ribosome or the mechanical
motor in the bacterial flagellum, that seem to be built in
bulk spontaneously. One hypothesis for how this occurs
is that simple small components self assemble into more
complex aggregates which, in turn, self assemble into
larger aggregates.

Our starting point in understanding self assembly is the
idea of conformational switching [17]: Each part (molecule,
robot, etc.) exists in one of several conformations or
shapes. When two parts come into close proximity, they
attach or not based on whether their conformations are
complimentary. If they do attach, their conformations
change (mechanically for example), thereby determining in
what future assembly interactions the parts may partake.

In this paper, as in other work [16], [9], we consider
the conformation of a part as corresponding to a discrete
symbol, and we model an assembly as a simple graph
labeled by such symbols. Vertices in these graphs represent
parts, and the presence of an edge between two parts
represents the fact they are attached. An assembly rule,
then, is a pair of such labeled graphs interpreted as follows.
If a subset of parts with their labels and edges matches the
first part of an assembly rule, then it may be replaced by
the second part of the rule to achieve a new state of the
system. We are in particular interested in (1) the situation
where the parts decide in a distributed fashion whether
and how to execute an assembly rule and (2) how to
synthesize a set of assembly rules, called a graph grammar,
so that only copies of a desired (prespecified) assembly are

obtained from the bottom-up execution of the grammar by
a set of parts.

Specifically, the contributions of this paper are the
introduction of a class of graph grammars suitable for
describing distributed assembly; rule synthesis procedures
for trees and graphs; a theorem about the impossibility of
assembling a unique stable graph using rules consisting of
acyclic graphs; a discussion of how assembly rules can be
implemented in a distributed fashion by simple commu-
nication protocols, leading to a notion of the algorithmic
communication complexity of an assembly sequence; and,
finally, the introduction of a physical model based on
programmable parts floating passively in fluids that can
be used to implement the above grammars and protocols.

II. Previous and Related Work

Conformational switching was first described as a sym-
bolic process for self assembly by Saitou [16], who con-
sidered the assembly of strings in one dimension. Self
assembly as a graph process has been described by the first
author of this paper [9], [10], although the graph grammar
formalism is new to this paper, and a rule synthesis
procedure for trees was given that is somewhat more
complex than the one described here. A method for using
potential fields and deadlock avoidance to implement the
rules on with a group of mobile robots was also described
[10].

Graph grammars were introduced [5], [4] at least two
decades ago and have been used to describe a broad array
of systems, from data structure maintenance to mechan-
ical system synthesis. Graph grammars are, of course, a
generalization of the standard “linear” grammars used in
automata theory and linguistics and thus (incidentally),
can perform arbitrary computation. The use of graph
grammars to model distributed assembly, to the best of
our knowledge, is new.

There are many other models of self assembly besides
graph grammars, a complete list of which is beyond the
scope of this paper. But, for example, several groups [21],
[3] have explored self assembly using passive tiles floating
in liquid. The tiles attach along complimentary edges (due,
for example, to capillary forces or the assembly of com-
plimentary strands of DNA) upon random collisions. A
simple dynamical model of the physics of tile assembly has
been described [11]. Somewhat similar to the stable set in
this paper (Definition 3.7), the identification of “unique”

assemblies has been explored [18]. There is also prelimi-
nary work on supplying tile systems with conformal-like
state information [8]. Such systems can in fact be used
to perform arbitrary computations [20] and are best un-
derstood as two or three dimensional symbolic processes.
Another approach uses geometrical constraints on part-
part interactions to model, for example, the assembly of
proteins into spherical shells called capsids [2]. The addi-
tion of simple processing to each part, similar in capability
to that assumed in the present paper, is considered in
models of the assembly of the T4 bacteriophage [19].

The proof of Theorem 3.1 is topological, utilizing tools
from covering space theory (see e.g., [7]). Our notion
of commutative assembly actions and parallelization is
related to the second author’s work state complexes for
reconfigurable robots [1], [6].

III. Graph Grammars for Assembly

A. Definitions

A simple labeled graph over an alphabet Σ is a triple
G = (V,E, l) where V is a set of vertices, E is a set of pairs
or edges from V , and l : V → Σ is a labeling function. We
restrict our discussion to simple labeled graphs and thus
simply use the term graph. We denote by VG, EG and lG
the vertex set, edge set and labeling function of the graph
G or by V , E and l when there is no danger of confusion.
We will usually use the alphabet Σ = {a, b, c, ...}.

Given graphs G1 and G2, we write f : G1 → G2 and f :
VG1
→ VG2

equivalently to mean that f is a function from
the vertex set of G1 to the vertex set of G2. A function
h : G1 → G2 is a label preserving embedding if

1) h is injective,
2) {x, y} ∈ EG1

⇔ {h(x), h(y)} ∈ EG2
,

3) lG1
= lG2

◦ h.
If h is also surjective then it is called an isomorphism.
The graphs G1 and G2 are said to be isomorphic (written
G1 ' G2) if there exists an isomorphism relating them.

Definition 3.1: A rule is a pair of graphs r = (L,R)
where VL = VR. The graphs L and R are called the left
hand side and right hand side of r respectively. The size
of r is |VL| = |VR|. Rules whose vertex sets have one, two
and three vertices are called unary, binary and ternary,
respectively.
We may refer to rules as being constructive (EL ⊂ ER),
destructive (EL ⊃ ER) or mixed (neither constructive or
destructive). A rule is acyclic if its right hand side contain
no cycles (the left hand side may contain cycles). Several
examples of rule sets are given in Examples 3.1-3.3.

Definition 3.2: A rule r is applicable to a graph G if
there exists an embedding h : L → G. In this case the
function h is called a witness. An action on a graph G is
a pair (r, h) such that r is applicable to G with witness h.

Definition 3.3: Given a graph G = (V,E, l) and an
action (r, h) on G with r = (L,R), the application of (r, h)
to G yields a new graph G′ = (V ′, E′, l′) defined by

V ′ = V

E′ = (E − {{h(x), h(y)} | {x, y} ∈ L})
∪{{h(x), h(y)} | {x, y} ∈ R}

l′(x) =

{
l(x) if x 6∈ h(VL)
lR ◦ h−1(x) otherwise.

We write G
r,h−−→ G′ to denote that G′ was obtained from

G by the application of (r, h).
Definition 3.4: A graph assembly system is a pair

(G0,Φ) where G0 is the initial graph and Φ is a set of
rules (called the rule set).

We often refer to a system simply by its rule set Φ and
assume that the initial graph is the infinite graph defined
by

G0 , (N, ∅, λx.a) (1)

where a ∈ Σ is the initial symbol (here λx.a is the function
assigning the label a to all vertices).

Definition 3.5: An assembly sequence of a system
(G0,Φ) is a finite sequence {Gi}ki=0 such that there exists
a sequence of actions {(ri, hi)}ki=1 where ri ∈ Φ and

Gi
ri,hi−−−−→ Gi+1

for i ∈ {0, ..., k − 1}.
Thus, a system (G0,Φ) defines a non-deterministic dynam-
ical system whose states are the labeled graph over VG0

.
The system is non-deterministic since, at any step, many
rules in Φ may be simultaneously applicable, each possibly
via several witnesses. Figure 1 illustrates several assembly
sequences arising from Examples 3.1-3.3.

Two vertices in a graph G are connected if there is a path
(sequence of edges) connecting them in G. The connectiv-
ity relation on V is an equivalence relation partitioning
V into sets {Vi}i∈I where v1 and v2 are connected if and
only if v1, v2 ∈ Vi for some i. The sets Vi are called the
components of G. A graph G is connected if it has exactly
one component.

Definition 3.6: A connected graph G is reachable in
a system (G0,Φ) if there exists an assembly sequence
{Gi}ki=0 of (G0,Φ) such that G is isomorphic to some
component of Gk. The set of all such reachable graphs
is denoted R(G0,Φ), or just R(Φ) if G0 defined by (1).

Definition 3.7: A graph G ∈ R(G0,Φ) is stable if for
all G′ there does not exist an action (r, h) on the disjoint
union G q G′ such that r = (L,R) ∈ Φ and h(L) ∩ VG
is nonempty. The set of all such stable graphs is denoted
S(G0,Φ), or just S(Φ) if G0 defined by (1).

Our focus in this paper is the problem of constructing
a rule set so that a prespecified graph or graphs are the
only stable graphs of the system:

B. Examples

Example 3.1: Define a constructive rule set by

Φ1 =

{
a a ⇒ b− b,
a b ⇒ b− c,
b b ⇒ c− c

We use the position of the nodes in the presentation of the
rules to denote the re-labeling. For example, the first rule
in Φ1 is given by

L = ({1, 2}, ∅, λx.a)

R = ({1, 2}, {{1, 2}}, λx.b)
An example assembly sequence for Φ1 set is shown in Fig-
ure 1(a). The reachable set R(Φ1) consists of all cycles and
chains. Only cycles are stable however. This is because,
once a chain closes into a cycle (using the last rule), all

(a)

(b) (c)
Fig. 1. Example assembly sequences arising from the rule sets defined in Examples 3.1-3.3. The symbol⇒∗ denotes the application of more
than one rule and, in the first transition of (a), for example, demonstrates the concurrent application of rules. (a) Φ1 produces unstable
chains and stable cycles. (b) The stable set of Φ2 is only the four-cycle. (c) Φ3 defines a dynamical system, wherein a part “ratchets” along
a substrate.

of its nodes are labeled by c, which does not appear in
the left hand side of any rule. Thus, the stable set S(Φ1)
consists only of cycles.

Example 3.2: Define a mixed rule set with three binary
constructive rules, two ternary constructive rules and one
binary destructive rule by

Φ2 =





a a ⇒ b− c,
d

fb

 JJ ⇒

d1

f1b1

 JJ

,

a c ⇒ e− d,
f1

gb1

 JJ ⇒

f2

g1b2

 JJ

,

a e ⇒ g − f, b2 − f2 ⇒ b3 f3

An example assembly sequence for Φ2 is shown in Figure
1(b). The three binary constructive rules yield chains of
length 4. The two constructive and cyclic ternary rules
“triangulate” the cycle. The last rule, removes one the first
triangulating edge to yield a length 4 cycle, which is the
unique stable graph of the system. Theorem 3.1 implies
that binary rules are insufficient to construct a unique
stable cycle. In Section III-D, we describe the triangulating
procedure in for general graphs.

Example 3.3: A rule set need not define an assembly
process, as in the following set, containing constructive
and destructive rules as well as mixed rules that simply
re-label nodes.

Φ3 =





e g ⇒ c− h,
a− c ⇒ d e,
b− h ⇒ f − b,
d− f ⇒ g − a

An “assembly sequence” of Φ3 is shown in Figure 1(c).
The sequence starts with a cycle labeled with a, b and
c attached to substrate of parts labeled g. As the figure
shows, the rule set “ratchets” the cycle along the substrate.

C. Properties

Given a system (Φ, G0), we bound the size of the reach-
able and stable sets using a basic topological tool: covering

Fig. 2. Two examples (above) of covers of a simple labelled graph
(below). The cover on the left is a 3-fold cover; that on the right is
2-fold.

space theory.1 A clear and comprehensive introduction to
these classical techniques can be found in [7, pp. 60-68].

Definition 3.8: Given a labeled graph G, a cover of G is
a labeled graph G̃ together with a covering projection — a
continuous map p : G̃ → G which is a local isomorphism.
That is, p : (Ṽ , Ẽ) → (V,E) preserves all labels and
preserves the index of each vertex (the number of incident
edges).

Examples appear in Figure 2. Note that p is not injec-
tive except in the case of a trivial cover in which G̃ is
isomorphic to G.

Theorem 3.1: Let Φ denote an acyclic rule set. Then any
cover of a graph in the reachable set R(Φ) is also in R(Φ).
In particular, R(Φ) has infinitely many isomorphism types
of graphs if it contains any graph with a cycle.
Proof. Assume that GK is the terminal element of an
assembly sequence consisting of graphs {Gi}Ki=0 with cor-
responding actions {(ri, hi)}Ki=1 from the rule set Φ. Con-
sider any finite covering projection pK : G̃K → GK of
the terminal graph. We will reverse the assembly sequence
on GK and lift this disassembly procedure to a sequence
of disassembly steps for the cover G̃K . This yields an
assembly sequence for G̃K .

1We have modified the definitions and suppressed most of the
explicit topological terminology for the sake of clarity.

b− e− f − b− e− f

Fig. 3. A rule with this left hand side can de-stabilize the covers in
Figure 2 even though they do not apply to the (stable) graph being
covered.

For each i, the set hi(Ri) is the subtree of Gi which
is the image of the right hand side of the ith rule. Since
the rule set is acyclic, the lifting criterion [7, pp. 61-64]
is automatically satisfied, and it follows that the inverse
image R̃K := p−1

K (RK) is a disjoint union of isomorphic
copies of RK .

Replace each copy of RK in R̃K with its left hand side
LK , as per Definition 3.1. Call this new graph G̃K−1 and
denote by L̃K the disjoint union of copies of LK within
G̃K−1. Define a new projection map pK−1 : G̃K−1 →
GK−1 to be (1) pK on the complement of L̃K ; and (2)

the natural projection L̃K → LK identifying the disjoint
copies. This graph G̃K−1 is clearly a cover of GK−1 via
pK−1 since labels and indices are preserved.

Continue this procedure inductively, lifting Ri to R̃i,
replacing it in parallel with copies of Li, and then defining
the projection map pi−1 : G̃i−1 → Gi−1. This terminates
in a covering projection p0 : G̃0 → G0. Since the lift of
any discrete set is again a discrete set, we have that G̃0 is
the correct initial set for an assembly sequence for G̃.

In the case where G possesses a cycle, one has that there
are infinitely many non-isomorphic covers, corresponding
to subgroups of the fundamental group of G: see [7, Thm.
1.38]. 2

The stable set, S(Φ) ⊂ R(Φ), does not enjoy this
property. Indeed, there may be additional rules in Φ which
have “large” connected regions of G̃ in their left hand
sides. If the left hand sides are sufficiently large, then these
rules can apply to covers even though G itself is inert. See
Figure 3.

The following is a sample of the type of result that can
be obtained using covering space theory.

Theorem 3.2: Assume that Φ is an acyclic rule set, and
that the stable set contains a graph G ∈ S(Φ) but not any
of its covers. Then for each edge e ∈ E(G), there exists
a rule in Φ whose left hand side contains a copy of every
edge of some cycle in G passing through e.
Proof. Consider the 2-fold cover of G lifted along the edge
e; that is, take two copies of G, snip each copy of e, and
chain them end-to-end to form the connected graph G̃, as
in Figure 2[right] using the edge e——f . One checks that
this is indeed a cover of G. (The more rigorous definition
is to use the correspondence theorem for covers via the
fundamental group.)

Since the rule set is acyclic, Theorem 3.1 implies that
G̃ ∈ R(Φ). By hypothesis, this graph is not stable; hence
there is some rule (r, h) applicable to G̃ but not to G.
Consequently, p∗(h(L)) must not be isomorphic to h(L).
From the choice of cover G̃, we conclude that p∗(h(L))
contains a loop in G passing through the edge e. 2

Corollary 3.1: If Φ is an acyclic rule set all of whose
left hand sides are vertex sets, then the stable set is closed

Algorithm 1 MakeTree(V,E)

Require: T = (V,E) is an unlabeled tree
1: if V = {x} then
2: return (∅, λz . if z = x then a else ⊥ endif)
3: else
4: let (x, y) be an edge of (V,E)
5: let (V1, E1) be the component of (V,E − {x, y})

containing x
6: let (V2, E2) be the component of (V,E − {x, y})

containing y
7: let (Φi, li) = MakeTree(Vi, Ei) for i = 1, 2
8: let u, v be new labels
9: let Φ = Φ1 ∪ Φ2 ∪ {l1(x) l2(y) ⇒ u− v}

10: let l = λz .
11: if z = x then u
12: else if z = y then v
13: else if l1(z) 6= ⊥ then l1(z)
14: else l2(z)
15: return (Φ, l)
16: end if

under covers.
Additional results and extensions to non-acyclic rules

are possible if one carefully tracks cycles. A more de-
tailed analysis will appear in future work. In particular,
since rules with large vertex sets require high levels of
communication to assemble (see Section IV), one could
hope for topological bounds on the maximal amount of
communication required to build a unique stable graph.

D. Synthesis Algorithms

In this section we consider the problem: Given a graph
G, find Φ such that R(Φ) = {G′} and G′ ' G.

E. Trees

We define in Algorithm 1 a recursive function MakeTree
that, given any tree T , produces a set of binary rules ΦT so
that S(ΦT) = {T ′} where T ′ ' T , not considering labels.
MakeTree takes as an argument an unlabeled tree (V,E)
and returns a pair (Φ, l) where Φ is a rule set and l is
a labeling function on V . The base case (lines 1-2) labels
the single point with the label a. For the recursive step, an
edge (x, y) is chosen and MakeTree is called recursively on
the two tree components that result from removing (x, y)
from E. The recursive calls return rule sets Φ1 and Φ2 and
labeling functions l1 and l2. The rule set Φ for (V,E) is
constructed from these in line 9 and the labeling function
l is constructed in lines 10-13. The construction uses two
new labels u and v that we suppose have not been used
before by any recursive call to MakeTree.

Theorem 3.3: Let (Φ, l) = MakeTree(V,E) where (V,E)
is an unlabeled tree. Then S(Φ) = {T}.
Proof: By general induction on the definition of MakeTree.
2

The algorithm MakeTree(V,E) produces exactly |V |−1
rules and uses 2|V | − 2 labels.

F. Arbitrary Graphs

Given a graph G, Algorithm 2 defines a function
MakeGraph that produces a rule set ΦG such that
S(ΦG) = {G} (with a new label scheme) using rules
which are at most ternary. A prioi, this would appear
to be difficult, given the constraints of Theorem3.2. The
ingredients which make this low-communication synthesis
possible include using rules which may be both cyclic and
deconstructive: see the discussion of Section IV.

The function MakeGraph takes as input an unlabeled
graph (V,E) and produces a pair (Φ, l) where, Φ is a rule
set and l a labeling function on V . We begin in lines 1-2 by
finding a maximal spanning tree T = (V,ET) for (V,E),
and constructing a rule set Φ for this tree using MakeTree.
We let r denote the last vertex of G visited while executing
MakeTree.

The loop in lines 6-14 adds rules to Φ that, in effect,
triangulate the spanning tree until the resulting graph
contains a subgraph isomorphic to G. At each step, ES de-
notes the edges that have been used in this triangulation.
In other words, at all times we have S(Φ) = {(V,ES)}.

The triangulation proceeds as follows. For each edge
{v, v′} in E−ET , we find a minimal path in (V,ES) from
r to v, and append rules that add edges from r to each
successive vertex along this path. We then update ES to
include these edges, and then repeat the procedure for a
minimal path from r to v′. Finally, we add an edge from
v to v′. At each step, we change the label on the root
node, ensuring that the rules can only be applied in the
order given. The triangulation for one edge cannot begin
until the triangulation for the previous one is complete.
This is especially important for the implementation of the
final step of the algorithm. After the loop on lines 6-14
has finished, the resulting rule set will have a single graph
in its stable set, and this graph will contain a subgraph
isomorphic G. The rules added by the loop on lines 15-
20 serve to remove the excess edges between the root
node r and the other vertices. The left side of each of
these rules contains a label that only appears on the root
node after the entire triangulation process is complete.
Thus the removal of excess edges can begin only after
the triangulation is complete. In effect, the label on the
root node tracks the progress towards completion of the
triangulation. After all the rules given in lines 15-20 have
been applied, the resulting graph will be isomorphic to G.
As shown above, this graph will be the only element of the
stable set for Φ.

This discussion constitutes the following:
Theorem 3.4: Let (Φ, l) = MakeGraph(V,E) where G =

(V,E) is an unlabeled graph. Then S(Φ) = {G}.
IV. Communication

In this section we consider the amount of communi-
cation required to implement an assembly rule or a set
of assembly rules. We consider as a basic unit of com-
munication, the cost of executing a binary rule (of any
type) in a distributed environment. Of course, in certain
circumstances the cost of a binary rule could be further
subdivided into, for example, the time spent transmitting
a request to execute a rule and the time spent waiting for
an acknowledgment. We do not do this here, but suppose

Algorithm 2 MakeGraph(V,E)

Require: G = (V,E) is an unlabeled connected graph
1: let T = (V,ET) be a maximal spanning tree of (V,E)
2: let (Φ, l) = MakeTree(V,ET)
3: let r be the last vertex visited while executing

MakeTree
4: let a = l(r)
5: let ES = ET
6: for all e = {v, v′} ∈ E − ET do
7: let (Ψ, ES , a) = Triangulate(V,ES , r, v, l, a)
8: let (Ψ′, ES , a) = Triangulate(V,ES , r, v

′, l, a)
9: let b be a previously unused label

10: let ψ be the rule denoted in Figure 4(a)
11: let Φ = Φ ∪Ψ ∪Ψ′ ∪ ψ
12: let ES = ES ∪ {{v, v′}}
13: let a = b
14: end for
15: for all v ∈ V do
16: if {r, v} ∈ ES − E then
17: let ψ be the rule a− l(v) ⇒ a l(v)
18: let Φ = Φ ∪ ψ
19: end if
20: end for
21: return (Φ, λz. if z = r then a else l(z) endif)

Subroutine: Triangulate(V,E, r, v, l, a)

1: let Ψ = ∅
2: let (v1, . . . , vn) = MinimalPath(V,E, r, v)
3: for i = 1 to n− 1 do
4: let b be a previously unused label
5: let ψ be the rule denoted in Figure 4(b)
6: let Ψ = Ψ ∪ {ψ}
7: let E = E ∪ {{r, vi+1}}
8: let a = b
9: end for

10: return (Ψ, E, a)

that binary rules are the fundamental building block of
bigger rules.

To reduce a larger rule to a set of binary rules within
the graph grammar system we have proposed and expect
to get the same stable set is not possible, as Corollary 3.1
implies. We can, however, augment the graph grammar
system by supposing that each part is able to store an
unique id number and possibly other information.

A. Binary Rules for Ternary Rules

Using an infinite set of symbols and an infinite set of
rules, we can, for example, implement ternary rules with
a set of binary rules.

To proceed, we start with an alphabet Σ, and introduce
a new, infinite set of labels of the form x : i : S where
x ∈ Σ, i ∈ N and S ⊂ N. The symbol x denotes the label
of the part with unique “address” i. The set S consists
of a set of other part addresses which have committed
to executing a given ternary rule2. For example, suppose
we wish to implement, with binary (and unary) rules, the

PSfrag replacements

(a)

(b)

l(v) l(v′)

a

l(v) l(v′)

b

a l(vi+1)

l(vi)

b l(vi+1)

l(vi)

Fig. 4. The two ternary rules used in Algorithm 2.

ternary rule r defined by

a

bc

 JJ ⇒

a′

b′c′

 JJ

. (2)

We can do so with the following rules:

Φr =





b : k : ∅ − a : j : ∅ ⇒ b : k : j − a : j : k
c : i : ∅ − a : j : ∅ ⇒ c : i : j − a : j : i
b : k : ∅ − a : j : i ⇒ b : k : j − a : j : ik
c : i : ∅ − a : j : k ⇒ c : i : j − a : j : ik
c : i : j b : k : j ⇒ c : i : jk − b : k : ij
a : j : ik ⇒ a′ : j : ∅
b : k : ij ⇒ b′ : k : ∅
c : i : jk ⇒ c′ : i : ∅

We have, in fact, specified an infinite set of rules: Eight
for each triple (i, j, k) ∈ N3, with i, j, k distinct.

The set S in the symbols denotes the state of a protocol
for executing r. For example, the symbol b : k : ∅ is
the state of a part k labeled by b that has not started
to execute r. The symbol b : k : j is the state of a
part k that has initiated execution of r by communicating
with a part j labeled by a. The symbol b : k : ij
denotes a part that has proceeded through the execution
of r by communicating with parts i and j labeled by a
and c respectively. Notice that in the fifth rule, where the
edge between c and b is actually added, we require that
c and b are connected to the same part j labeled with
a. This restriction is possible since the parts have unique
addresses. In particular, it follows that

R(Φr) = R({r}) and S(Φr) = S({r}).
This does not contradict Theorem 3.1 since, by assigning
unique addresses to parts, we violate the hypotheses of
having an infinite supply of identically labeled vertices as
the start graph G0.

B. Parallelism and Communication Cost

The number of binary rules in a reduced rule set does
not correspond directly to the communication cost of the
set, however. One must take into account the paralleliz-
ability of the set as well. In this section we define the cost
of an assembly G ∈ R(Φ) as the longest parallel assembly
sequence of G.

Definition 4.1: A set {(ri, hi)}ki=1 of actions is commu-
tative if

hi(VLi) ∩ hj(VLj) = ∅ ∀ i 6= j.

2We use the notation ijk (or jki, etc) to represent the set {i, j, k}.

Fig. 5. The state complex [1], [6] coordinates all possible assembly
sequences of (2) using the binary rules in Φr. The 2-dimensional
squares correspond to commutative pairs of rules; the 3-dimensional
cube corresponds to a commutative triple.

Definition 4.2: Given an assembly sequence σ =
{Gi}ki=0 produced by {(ri, hi)}ki=1, a parallelization of σ
is a finite increasing sequence j0, ..., jN−1, where j0 = 1
and jN−1 = k, such that the sets

Ai , {(rm, hm) | ji ≤ m < ji+1}

are commutative. A shortest parallelization is called min-
imal and the communication cost of σ is defined to be the
length of a minimal parallelization of σ.

In the next definition, we consider all assembly se-
quences for a given graph G ∈ R(Φ), in the sense that
VGi = VG for each Gi in the assembly sequence3.

Definition 4.3: Given a rule set Φ and an assembly
G ∈ R(Φ), the worst case communication cost of G with
respect to Φ is the maximum cost of all assembly sequences
for G.

One can a construct transition graph representing all
possible assembly sequences for a given graph: The nodes
are sub-assemblies and the edges correspond to single
actions taking one subassembly to the next. In [15] it was
noted that such a transition graph is the 1-d skeleton of
a cubical complex, where higher dimensional cubes corre-
spond to parallel assembly steps. The geometry of such
complexes has recently been explored in [6], [1]: geodesics
correspond to time-optimal solutions. In Figure 5 we
illustrate this construction with the right hand side of
the rule r in (2) with respect to the set of binary rules
Φr. Vertices represent assembly states, edges represent the
application of a single rule, and higher-dimensional cubical
cells identify all commutative sets of actions. This diagram
shows that the communication cost of that particular
graph is four, since each possible assembly sequence using
the eight rules in Φr can be compressed into four parallel
steps.

We plan to use Definitions 4.2 and 4.3 in future work,
examining the communication cost of synthesis algorithms
(such as those in Section III-D) and characterizing a graph
in terms of the communication cost of the minimal rule set
that uniquely produces it.

3If G is obtained by building a “scaffolding” and then deleting
certain parts, we consider those parts as part of G, dropping the
requirement that G be connected in Definition 3.6.

(a)

(b)

Fig. 6. (a) Snapshots of a simulation of Equation 3 with disk-
shaped parts and a complete communications protocol implementing
the rules in Example 3.1. The location of the part and its label (a, b
or c) is suggested by the gray level used. The force due to stirring is
modeled as the sum of five divergent force fields focused in different
locations on the plane (which may result from jets perpendicular to
the plane of the figures). The magnitudes of the components of the
field oscillate out of phase. The parts start out evenly distributed
and eventually form chains and cycles. (b) A snapshot of a system
that builds trusses. The rule set that produces these structures and
several other examples are described elsewhere [13].

V. Physical Models of Assembly

A. Self-Motive Robots

In previous work [10] we showed how to use graph
grammars as a basis for multi-robot formation forming (al-
though we did not recognize our formalism as grammatical
at the time). To each robot i we associate two sets: The
set Ai of robots j such that either i is “attached” to j
or l(i) l(j) matches a rule in Φ, and the set Ri of the
robots where no rule matches. We then define an artificial
potential function Ui of the form

Ui =
∑

j∈Ai
Uattract (xi, xj) +

∑

j∈Ri
Urepel (xi, xj)

where xk is the position of robot k. The function Uattract

is defined so that −∇xiU(xi, xj) has the set ||xi − xj || =
R as a global attractor. The Urepel is defined so that
−∇xiU(xi, xj) has the set ||xi − xj || = R as a global
repellor. Here R is the desired distance between “attached”
robots. Each robot i simply follows the negative gradient
of Ui to move toward robots in Ai and away from robots in
Ri. When two attracting robots come in close proximity,
they execute the appropriate rule and change their states.
This has the effect of changing Ak and Rk, and therefore
Uk, for each k.

If the number of robots is finite, then deadlock can occur
in the above system due to groups forming incompatible
subassemblies. We thus add the rule

(V,E, l)⇒ (V, ∅, λx.a)

for each non-final subassembly of the goal assembly.
Robots randomly, with low probability, choose to disas-
sociate using this rule. Note that this rule may be large.
We do not at this time have a general construction for
turning large rules into a set of infinite binary rules, as we
did for ternary rules in Section IV.

B. Stirred Robotic Parts

We now introduce a new model of “robotic” assembly
that requires less capable robots, in that they do not need
to be able to move. Instead we suppose that large number
of robotic parts float in a stirred fluid. Upon colliding (by
chance), two parts will latch onto each other or not based
on whether their current labels match the left hand side of
a rule in Φ (See Figure 6. If they do latch together, then
they change their labels according to the rule. A similar
scheme works for mixed or destructive rules.

To model this system, we suppose that each part i with
position xi has a latch variable Li,j ∈ {0, 1} associated
with every other robot j. When the parts come in close
proximity, they communicate their current labels to each
other in an attempt to find an applicable rule4. If one is
found, they both set their latch variable for the other to 1
and change their labels. Otherwise the latch variable is set
to 0 and the parts bounce off each other. The dynamics of
robot i are

mẍ = F1(xi, t)− cẋi +
∑

j 6=i
Li,jLj,iF2(xi, xj) (3)

where F1 is a time varying force field that models the effect
of the fluid on the part and

F2(xi, xj) , −∇xiU(xi, xj)− b
ẋi(xj − xi)
||xj − xi||

(xj − xi)

is a damped spring, with spring potential U , modeling the
latching mechanism. We suppose that U has a minimum
at ||xi−xj || = R as before. In other work [11] we describe,
for example, how such a mechanism would work using
capillary forces.

We have explored the behavior of the above model in
simulation using the rule systems we explored in this

4A complete communications protocol for implementing binary
rule sets (finite or infinite) can be formally defined using tools for
modeling concurrency [12] for example. A complete description of the
protocol we have in mind is beyond the scope of this paper, however.

paper. Figure 6(a) shows snapshots of a system of parts
using the rules in Example 3.1 and Figure 6(b) shows a
snapshot of a system using a more complex rule set. We
plan to report on quantitative properties of this model in
future work.

VI. Discussion

We have defined a class of graph grammars that de-
scribe self assembling graph systems. We focused on the
properties of the reachable and stable graphs that rule
sets produce. We noted in Section III-C that some rules
(those without cycles in their right hand sides) are in
a sense less powerful than cyclic rules, because acyclic
rules cannot produce a unique stable cyclic graph while
cyclic rules can. We then described two algorithms that
can be used to synthesize rule sets for arbitrary trees and
graphs. Indeed our algorithm for arbitrary graphs uses
cyclic rules. In Section IV we introduced infinite rule sets
that can, with binary rules, implement ternary cyclic rules.
To work around Corollary 3.1, we added a unique identifier
to each node, in a similar fashion to symmetry breaking
methods in found in distributed algorithms [14]. Finally,
we discussed how graph grammar rules can be used as a
basis for robot assembly by describing two physical models
appropriate to the task.

The methods we propose show that algorithms for col-
lective tasks, here distributed self-assembly of a prespeci-
fied structure, can be engineered. The model is one of con-
trolling the pairwise (or subgroup-wise) local interactions
of a system so that global properties result. We believe
that similar methods will be applicable to other systems,
as may possibly someday provid a predictive model for
distributed tasks observed in nature.

There are many aspects of the self-assembly model
described here that we plan to explore more completely in
the future: We showed how to produce binary infinite rules
from ternary additive rules, but have not devised a pro-
cedure for this in general. We have described algorithms
for producing rule sets that produce a desired graph as
uniquely stable, but have not shown how to produce rule
sets that have minimal communication cost (in the sense
defined in Section IV). We have not defined an effective
method for determining the communication cost (or the
state complex) of a given reachable graph.

Finally, there are many aspects of natural and artificial
self-assembly that the graph assembly model described
here does not capture. For example, our model is not
geometrical. But geometry is crucial in most self-assembly
processes from meso-scale tile assembly to the formation of
supra-molecular aggregates. Also, even if it may somehow
be possible to encode a finite set of labels in the conforma-
tion of a part, the infinite set of identification symbols we
propose to recover binary rules is unreasonable. However, a
set of appropriately shaped parts (using a graph grammar
or not) can easily form a uniquely stable, cyclic graph. The
interplay between symbolic descriptions of self-assembly
and geometric descriptions will be a main focus of or future
research in this area.

Acknowledgments

Klavins is supported in part by AFOSR grant number
F49620-01-1-0361. Ghrist is supported in part by NSF CA-
REER grant number DMS-0337713. Lipsky is supported
in part by NSF VIGRE grant number DMS-9983160.

References

[1] A. Abrams and R. Ghrist. State complexes for metamorphic
robot systems. To appear, Intl. J. Robotics Research.

[2] B. Berger, P.W. Shor, L. Tucker-Kellogg, and J. King. Local
rule-based theory of virus shell assembly. Proceedings of the
National Academy of Science, USA, 91(6):7732–7736, August
1994.

[3] N. Bowden, A. Terfort, J. Carbeck, and G. M. White-
sides. Self-assembly of mesoscale objects into ordered two-
dimensional arrays. Science, 276(11):233–235, April 1997.
http://www.sciencemag.org/.

[4] B. Courcelle. Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics, chapter on Graph
Rewriting: An Algebraic and Logic Approach, pages 193–242.
MIT Press, 1990.

[5] H. Ehrig. Introduction to the algebraic theory of graph gram-
mars. In V. Claus, H. Ehrig, and G. Rozenberg, editors, Graph-
Grammars and Their Application to Computer Science and
Biology, volume 73 of Lecture Notes in Computer Science, pages
1–69, 1979.

[6] R. Ghrist. Shape complexes for metamorphic robot systems. In
Workshop on the Algorithmic Foundations of Robotics, Decem-
ber 2002.

[7] A. Hatcher. Algebraic Topology. Cambridge University Press,
2001.

[8] C. Jones and M. J. Matarić. From local to global behavior
in intelligent self-assembly. In International Conference on
Robotics and Automation, Taipei, Taiwan, 2003.

[9] E. Klavins. Automatic synthesis of controllers for distributed
assembly and formation forming. In Proceedings of the IEEE
Conference on Robotics and Automation, Washington DC, May
2002.

[10] E. Klavins. Automatically synthesized controllers for dis-
tributed assembly: Partial correctness. In S. Butenko, R. Mur-
phey, and P. M. Pardalos, editors, Cooperative Control: Models,
Applications and Algorithms, pages 111–127. Kluwer, 2002.

[11] E. Klavins. Toward the control of self-assembling systems. In
A. Bicchi, H. Christensen, and D. Prattichizzo, editors, Control
Problems in Robotics, pages 153–168. Springer Verlag, 2002.

[12] E. Klavins. A formal model of a multi-robot control and
communication task. In 42nd IEEE Conference on Decision
and Control, Maui, HI, December 2003.

[13] E. Klavins. Directed self-assembly using graph grammars. In
Foundations of Nanoscience: Self Assembled Architectures and
Devices, Snowbird, UT, 2004. Invited Paper.

[14] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[15] V. Pratt. Modeling concurrency with geometry. In Proc. 18th

ACM Symposium on Principles of Programming Languages,
1991.

[16] K. Saitou. Conformational switching in self-assembling mechan-
ical systems. IEEE Transactions on Robotics and Automation,
15(3):510–520, 1999.

[17] K. Saitou and M. Jakiela. Automated optimal design of me-
chanical conformational switches. Artificial Life, 2(2):129–156,
1995.

[18] Y. S. Smentanich, Y. B. Kazanovich, and V. V. Kornilov. A
combinitorial approach to the problem of self assembly. Discrete
Applied Mathematics, 57:45–65, 1995.

[19] R. L. Thompson and N. S. Goel. Movable finite automata
(MFA) models for biological systems I: Bacteriophage assembly
and operation. Journal of Theoretical Biology, 131:152–385,
1988.

[20] H. Wang. Notes on a class of tiling problems. Fundamenta
Mathematicae, pages 295–305, 1975.

[21] E. Winfree. Algorithmic self-assembly of DNA: Theoretical mo-
tivations and 2D assembly experiments. Journal of Biomolecu-
lar Structure and Dynamics, 11(2):263–270, May 2000.

