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Abstract—In this paper we describe a software tool
called CCLi (for CCL interpreter) that implements the
Computation and Control Language (CCL). CCL is a
language for modeling and programming of robotic and
control systems. CCLi is used to simulate CCL models
and programs and can also be used to execute CCL
programs on actual robots. The language is particu-
larly well suited to concurrent, partially synchronized
processes interacting via communications and the en-
vironment, such as would describe cooperative control
tasks. This paper describes the syntax and semantics of
the language and gives examples of its use in modeling
and programming cooperative control and multi-robot
systems.

I. Introduction

We are interested in engineering algorithms and software
for cooperative control systems, which consist of possibly
large numbers of vehicles or robots. In cooperative control,
we usually assume that robots are coupled to each other
via communication and that they are embedded in a
common, physical, environment. For these systems, the
algorithm design process ideally involves a rigorous anal-
ysis of the properties (stability, robustness, performance)
of candidate algorithms. Meanwhile, the software design
process usually involves debugging, testing and simulating
an implementation of a verified algorithm. Often, there is a
disconnect between these two aspects of system that delays
the development of working prototypes and introduces
bugs and complexity into the system.

One way to bridge this gap is to write control algorithms
and environment models in the same language as the
implementation of the control algorithms. Algorithms so
written could then be analyzed using the operational
semantics of the language, and the same code that is
analyzed can be executed on actual hardware, or used in
simulation and testing. This is, for example, the paradigm
used by Esterel [5] for reactive system design and verifica-
tion of synchronous systems.

The Computation and Control Language (CCL) is a
modeling and programming language specific to the do-
main of distributed and possibly asynchronous control
algorithms. A CCL program consists of a set of guarded
commands each of which represents a possible action of
the system. One supposes that the each processor (robot,
vehicle,...) owns a number of guarded commands defining
the processor’s program. The environment may also be

modeled by a set of guarded commands that define (a
discrete-time model of) the physical dynamics of the
system. Concurrency is achieved by allowing the execution
of the commands to be interleaved in various different
ways. In particular, execution may follow a number of
different schedules (or, equivalently, obey certain fairness
constraints). The most relaxed schedule requires only that
all guarded commands be executed infinitely often. A more
restrictive schedule requires that each guarded command
be executed at essentially the same frequency.

CCLi allows us to write down concurrent, guarded com-
mand programs; compose programs into larger programs;
and execute the programs with various scheduling options.
CCLi is type-safe [14], so that incorrectly typed programs
are identified at compile time. It provides a number of
libraries containing math, graphics, interprocess commu-
nications and TCP/IP functionality. Finally, the syntax
of the language closely follows the formal semantics of
CCL [10]. Thus, CCLi programs bear a strong resemblance
to formal notation for concurrent programs. In future
work, we plan to exploit this resemblance by encoding
the semantics of CCLi in an automated theorem proving
environment [3].

The contribution of this paper is the introduction of
CCLi. In Section III, we describe the syntax of CCLi,
the CCLi compositional operators, how to schedule CCLi
programs, and the interface between CCLi and other
programming languages and libraries. In Section IV, we
give a number of examples of the use of CCLi to model
cooperative control systems. In Section V, we describe the
formal semantics of CCLi.

II. Related Work

Much of the work in robot programming languages
focuses on making robots easy to program by defining a
library of commonly used functions, or syntax especially
suited for robotics. Many such efforts are oriented toward
seamlessly combining descriptions of high level tasks (such
as patrolling a room) with intermediate and low level code
(such as interfacing with device drivers) [15]. In contrast,
CCLi is intended to be as much a notation for modeling
decentralized robotic or control systems as it is a language
for simulating and programming robots. In this sense,
CCLi is closer to Esterel [5] or Charon [4], in that the goal
is to write down small models of systems and use them



for stability and performance analysis, simulation, control
and possibly, because the operational semantics of these
languages is relatively simple, verification.

While many such modeling languages are based on
hybrid state machines, CCLi is based on an interleav-
ing model of commands appropriate for decentralized,
asynchronous systems. In appearance CCLi is much like
UNITY [6], which is a language for writing parallel algo-
rithms and, when interprocess communication is used, I/O
Automata [12]. In fact, an implementation of UNITY has
been explored, called ImpUNITY [16], that is somewhat
similar to CCLi. The difference between CCLi and UNITY
or I/O Automata is CCLi’s focus on alternative scheduling
options, program composition and an easy interface to
other programming languages.

The semantics of CCLi, and the formal reasoning they
enable, are based on transition systems and temporal logic
[11], [13]. As in the Simple Programming Language [13], we
write P |= φ to mean that all the behaviors allowed by the
program P satisfy the temporal logic formula φ.

III. CCLi Syntax and Scheduling

In this section we describe most of the basic syntax
of CCLi. The reader should consult the CCLi manual
[1] for complete details. In particular, various shorthand
expressions and syntactic sugar are not covered here, as
well as certain useful operators. The first sub-section, on
basic expressions, is meant only to aid in presentation.
The low-level syntax of CCLi is not necessarily new nor
especially unique. However, the manipulation of programs
described in the Section III-C is one of the main features
of CCLi, and requires some familiarity with the basic
expression syntax of CCLi.

A. Basic Expressions

CCLi supports values the with following atomic types:
unit, boolean, integer, real (floating point) and
string. Compound types can be lists, records, lambda
abstractions and external functions. In CCLi, variables
are assigned a type by their first usage. For example, the
assignments

x := { 1, 2, 3 };
y := [ a := "ccl", b := true, c := 3.14 ];

initialize the variable x to be of type integer list and y
to be a record of type [ a : string, b : boolean, c :
real ]. Future occurrences of x and y must be consistent
with these initial assignments, or CCLi reports an error
and aborts.

Expressions in CCLi may use any of the common arith-
metic operations, comparisons and boolean connectives.
Strings may be concatenated using the <> operator. An
element may be prepended to a list using the @ operator
and lists may be concatenated using the # operator. An
element of a list L may be extracted, as in L[5], as though
the list were an array, although the user must check for
out-of-bounds conditions to avoid a run-time error. For
example, the following expressions evaluate to true:

"a" <> "b" = "b";
1 @ { 2, 3 } = { 1 } # { 2, 3 };

Here, “=” is the equality operator in CCLi.
Because of the frequency with which one would like to

obtain the recent history of a variable in control code,
CCLi makes available the previous value ’v of all variables
v. Thus, one may write

t := t + ’t

which, loosely, corresponds to the difference equation
tk+1 = tk+tk−1. In general, one may similarly “prevify” an
entire expression e, which is syntactic sugar for changing
all free occurrences of variables v in e with ’v.

If b is a boolean expression and e1 and e2 are expres-
sions of type T , then

if b then e1 else e2 end

is an expression of type T that evaluates to e1 if b
evaluates to true and e2 otherwise. If e1 is an expression
of type T1 and e2 is an expression of type T2 that may
contain free occurrences of a variable x (occurring with
type T1), then

let x := e1 in e2 end

is an expression of type T2 that evaluates to e2 with e1
substituted for x in e2. This allows the programmer to
declare local variables.

Functions in CCLi have two types: Lambda abstractions
and external functions. If e is an expression of type T1 and
x occurs free in e with type T2, then

lambda x . e

is an expression of type T2 → T1. The above expression
may be applied to an expression f as in

( lambda x . e ) f

to yield the expression e with all free occurrences of x in e
replaced by f (as in standard lambda calculus [8]). Lambda
expressions are polymorphic. Thus, if f is declared

f := lambda x . lambda y . x @ y

then f has type T → T list → T list. For example,
with the above definition of f, the following expressions
are both legal

a := f 1 {};
b := f true {};

Lambda abstractions may also be declared with the fun
operator, which allows them to be recursive. For example,
the factorial function is defined by

fun f x . if x = 1
then 1
else x * f (x-1)

end;

Remark: There are no pointers in CCLi and all functions
are call-by-value. Thus, memory is allocated and freed
during every evaluation, thereby avoiding periodic garbage
collection episodes that interfere with real-time execution.

External functions are declared as in

external [ x := int, ... ] f ( ’a list )
"library.so" "func";



which declares an external function f to take a list of any
type (’a is a type variable) and return a record that has an
integer field x and any number of other fields of arbitrary
type. The implementation of f in this case should be in
the shared object library named library.so and should
be called func. External functions are how CCLi programs
interface to the outside world. For example, there is a
library of external functions for showing graphics on the
screen, for communicating via UDP, and so on. We have
also implemented an interface to the Caltech Multi-Vehicle
Wireless Testbed [7] hardware, allowing CCLi programs
to send commands to vehicle effectors and receive input
from vehicle sensors. The CCLi manual [1] explains the
more of the details of external functions and their calling
conventions.

Remark: CCLi is a strongly typed language and, as was
noted above, CCLi infers the type of a variable by its
initial assignment. CCLi performs type inference [14] on
all expressions (and guarded commands and programs,
as defined in the sequel), and reports an error before
executing any program, if an expression has a type incon-
sistency. The benefit of type checking and inference is that
programmers do not need to separately define the types of
variables (as in C-like languages) and, more importantly,
type checking catches a great number of initial coding
errors. Type checking and inference is, thus, a form of
verification (of weak, but important, properties). This is,
for example, very useful when composing CCLi programs,
as described below.

B. Guarded Commands

A guarded command is an expression that can only
appear inside the scope of a program (see Section III-C).
Such an expression consists of a boolean guard and a list
of assignments making up the command. For example,

x > 0 : {
x := -x,
mode := "waiting"

}

is a guarded command that tests whether the value of x
is positive, and if it is, re-assigns the variables x and mode
according to the list of assignments inside the brackets. If
the value of x is not positive, then the assignments within
the command are not executed.

The intent is that the guarded command gets executed,
along with other guarded commands, repeatedly in a CCLi
program. The system state, defined to be the current value
of all variables, is thus tested by the guard and certain
variables updated if the test comes out true. In Section V
on the operational semantics of CCLi, this notion is made
formal.

C. Programs and Composition

A program in CCL consists of (1) a set of variable ini-
tializations and (2) a set of guarded commands. Programs
may be declared with parameters. For example,

program p(x0,k) := {
x := x0,

x < 0.0 : { x := x + k },
x >= 0.0 : { x := x - k }

};

is a simple program with two parameters, x0 and k, and
one local variable x. CCli infers the types of the parameters
to be real since that is how they are used. The general
syntax for atomic programs is:

atomic prog ::= { statement list }
statement ::= initializer | needs decl | command
initializer ::= var := expr ;
needs decl ::= needs var1, ..., varn ;

where expr refers to a basic CCLi expression as described
in Section III-A and command refers to a guarded com-
mand as defined in Section III-B. The needs keyword
is used to declare a list of variables as local without
initializing them. Their types will be inferred from how
they are used in the rest of the program and their values
must be initialized elsewhere by some other program (see
below).

Programs are interpreted as follows:

1) All variables are initialized according to their initial
assignments;

2) The guarded commands are executed repeatedly
according to some schedule (see Section III-D).

Thus, a program defines a dynamical system that runs
forever, and not a sequence of statements that are executed
once each (this notion is defined formally in Section V).
For example, if the above program p is instantiated as
p(10,1.25) and the guarded commands are scheduled
in order, then a trajectory of the system defined by
p(4,1.25) is

step 0 1 2 3 4 5 . . .
x 4.0 2.75 1.5 0.25 -1.0 0.25 . . .

which goes on forever (until the user kills the program),
settling into a limit cycle where x alternates between −1.0
and 0.25.

Programs may be composed, meaning that their variable
initializations and guarded command sections are essen-
tially concatenated (so ordering is important). A variable
v appearing in both sub-programs of a composed program
may be specified as shared, meaning that references to v
in the sub-programs will be to the same object. Other
variables will remain local to the sub-programs. For exam-
ple, we can write a program that implements an output
function x 7→ x/2 for the dynamical system defined by p:

program q(h) := {
needs x;
y := h x;
true : { y := h x }

};

program main() := p ( 4, 0.1 )
+ q ( lambda x . x/2 )
sharing x;

where p is defined as before. The program main has three
variable declarations (one from p and two from q) and two



guarded commands (one each from p and q). The variable
x appearing in p and q refers to the same object. Any
variables with the same name in p and q but not shared
(there are none in this example) would refer to different
objects. For example, if y appeared in p, it would be a
different object than the y appearing in q above, since y is
not declared as shared. Program composition with sharing
is defined explicitly in Section V. An example trajectory
for the above program main is

step 0 1 2 3 4 5 . . .
x 4.0 2.75 1.5 0.25 -1.0 0.25 . . .
y 2.0 1.375 1.25 0.125 -0.5 0.125 . . .

Programs may be composed more generally, as in

program main() :=
compose x0 in L : p ( x0, 0.1 );

where L is an arbitrary list of type real (in this particular
case). If the list L has n elements, then a program main so
defined contains n distinct copies of the variable x, each
one initialized to one of the values in L. The general syntax
for program composition is

prog ::= atomic prog | inst | composite | ( prog )
inst ::= var ( expr1, ..., exprk )
composite ::= binary comp | nfold comp
binary comp ::= prog + prog sharing var1,...,vark
nfold comp ::= compose var in expr : inst

The CCLi type checker and inference engine checks that
the types of shared variables match, that parameters are
instantiated correctly and so on, producing useful compile-
time error messages if a type inconsistency is found. More
examples of program composition appear in Section IV.

D. Scheduling and Execution

Programs are written in ASCII files, which may
include other files in the standard way. Executing “ccli
file.ccl” causes CCLi to parse the expressions in
file.ccl. When parsing is complete and no type errors
have been found, CCLi will look for a program with no
parameters called main in the CCLi symbol table, initialize
the variables in main, and begin executing the guarded
commands in main and its subprograms.

As we have noted, the execution of guarded commands
can be scheduled in various ways during execution. The
most simple schedule is in-order scheduling, and is the
default method for CCLi. CCLi has two other ways of
scheduling: The first is called epoch (ccli -r) and the
second is unity (ccli -u).

In in-order scheduling guarded commands in main are
executing in order of appearance (which is why order may
be important when composing programs).

In epoch scheduling, execution is segmented into
“epochs”. In each epoch, each guarded command is ex-
ecuted exactly once. The order in which commands are
executed in any given epoch is (pseudo)random. The intent
behind epoch scheduling is to mimic the possible interleav-
ings of commands supposing that they were executing on
different processors running at essentially the same rate.

In unity scheduling, a guarded command in main is cho-
sen (pseudo)randomly at each step and executed. There is
no guarantee that at any point each clause will eventually
be executed (as is required by the formal UNITY fairness
constraint [10]), but given the state of the art of pseudo-
random number generators, it is a virtual certainty that
they will. The intent behind unity scheduling is to mimic
the possible interleavings of commands supposing that
they are executing on different processors each running
at totally random and uncorrelated rates.

E. CCLi Libraries

CCLi provides libraries of convenience functions as well
as for interfacing CCLi with the real world. We describe
these briefly here, the reader is directed to the CCLi
manual [1] for details.

Standard Libraries: There are libraries of functions
for printing to the screen, reading console input, com-
mon mathematical functions, and operating on lists. Also
provided are timers (in seconds, milliseconds and mi-
croseconds) useful for real time code. Some of these are
defined in CCLi as lambda abstractions, and others as
external functions. Several libraries for other functionality
(such as a numerical integrator or trajectory generator)
are in development, but not yet included in the CCLi
distribution.

Graphics: There is a library for displaying simple graph-
ics (such as simulation data) that is essentially a wrapper
around the GDK/GTK open source graphics libraries [2].

Interprocess Communications: Sub-programs may
communicate via “mailboxes” using CCLi’s iproc.ccl
library. It provides three functions: send, recv and inbox.
The first, send, is used to send a message (of any CCLi
type) to the mailbox (a simple queue) of another process.
Mailboxes are indexed by integer ID numbers. The second
function, recv, is used to pop the first message off the top
of a given mailbox. recv is non-blocking if the intended
mailbox is not empty. The last function, inbox, returns
false if the designated mailbox is empty, and true oth-
erwise. In Section IV, we give an example of the use of
this library.

TCP/IP: Multiple instances of CCLi running on sepa-
rate machines connected via TCP/IP may communicate
via UDP datagrams. Messages of any type may be sent
(something that CCLi can not type check, unfortunately)
and, as is usual with UDP, may or may not arrive at
their destination. If messages do arrive, they may arrive
in or out of order. The interface to the message passing
functions is virtually the same as with the interprocess
communications library already described. Thus, it is easy
to prototype concurrent sequential code in a single process
and then “distribute” it to multiple processors without
changing much.

Hardware Interfaces: The distribution of CCLi in-
cludes our own library for interfacing with the Caltech
Multi-Vehicle Wireless Testbed [7] hardware. The basic



methodology is to wrap an external CCLi function around
C++ code that interfaces with device drivers for sensors
and effectors, and is very straightforward. Although the
MVWT library released with the distribution may not be
directly useful for other users, it can serve as an example
of how to interface CCLi with actual hardware.

IV. An Extended Example

In this section we describe a complete example. The
system we consider is a scheme for robot “flocking”.
Recently, a rigorous analysis [9] of this system has spurred
interest in similar algorithms for decentralized robot tasks,
wherein each robot averages some value obtained from its
neighbors and uses that average in its own control. In
flocking, a robot with position Xi(k) ∈ R

2 and heading
θi(k) ∈ [0, 2π) at step k uses the average heading of its
neighbors to adjust its own according to the rule

θi(k + 1) =
1

|Ni(k)|

∑

j∈Ni

θj(k) (1)

where Ni(k) is the set of neighbors of robot i, defined by

Ni(k) , {j | ||Xi(k) −Xj(k)|| ≤ r}

with r being the maximum distance a message can be com-
municated (due, say, to power constraints). The position
of robot i is adjusted by moving it in the direction of its
heading, as in

Xi(k + 1) := Xi(k) + δ(cos θi(k), sin θi(k)). (2)

A. Flocking in CCLi

From a distributed systems perspective, the algorithm
exactly as described above is not well decentralized, requir-
ing, as it does, some way of synchronizing the robots. That
is, they must first send their data, then receive all of their
neighbors data and then move. However, the algorithm
can be used as the basis of a more decentralized version.

We first define a function that filters incoming data
according to whether it is coming from a nearby robot
or not:

fun recv_filter r i x N .
let m := recv ( i ) in
if dist x (m.X) <= r
then replace N (m.from) (m.a)
else N

end
end;

Here, the recv command returns a record of type

[ to : integer, from : integer,
a : real, X: real list ]

containing the receiver and sender IDs, the heading (m.a)
of the sender and the position (m.X) of the sender. The
parameter N is a vector (actually a CCLi list) of known
headings of all robots. The recv filter function checks
whether the distance between the receiver x and the sender
m.X is less than r. If it is, it replaces the appropriate
component of N with the received heading. Otherwise, no
update is made.

Next, we define a program that receives heading data
from a robot’s neighbors. The program also initializes the
position, orientation and identity of the robot (passed as
parameters X0, a and i).

program receiver ( X0, a0, i, n, r ) := {
X := X0;
a := a0;
N := makelist n 0.0;
inbox ( i ) : {
N := recv_filter r i X N

}
}

The single guarded command simply checks, over and over,
whether the robot has received a message. If it has, it at-
tempts to update the neighbor vector. It may seem strange
that the robot has to enforce the distance constraint in
the communications scheme. This is a modeling detail,
however, that could be handled in several other more or
less satisfactory ways.

We next define a program that sends data to other
robots. It takes as a parameter a number delta that
defines how often it sends its heading. Each time it sends,
it sends to a different robot j, thereby attempting to
send its heading to any particular robot approximately
every n * delta seconds. The dclock() external function
gives the number of seconds (as a real, accurate to the
microsecond) since the process started.

program sender ( i, n, delta ) := {
needs X, a;
t := dclock();
j := 0;
dclock() - t > delta : {
send ( [ to := j, from := i,

a := a, X := X ] ),
t := dclock(),
j := ( j + 1 ) mod n

}
}

Finally, we define a program that periodically updates
the robot’s heading and position. It also clears the neigh-
bor heading vector for the next round of communication.
Note that we are assuming that no robot has heading
identically zero, as we are using that as a placeholder for
a robot that has not communicated its heading.

program mover ( delta ) := {
needs X, a, N, t;
dclock() - t >= delta : {
a := update_heading a N,
X := update_pos delta X a,
N := smult 0.0 N,
t := dclock()

}
}

The functions update heading and update pos are CCLi
encodings of Equations (1) and (2) and are not listed for
the sake of brevity.

The program for a single robot is then

program robot ( X0, a0, i, n, r, d1, d2 ) :=
receiver ( X0, a0, i, n, r )

+ mover ( d1 ) sharing X, a, N, t
+ sender ( i, n, d2 ) sharing X, a;

and the program for an entire flock of robots is



program main() := compose i in range n :
robot ( Xlist, alist, i, n, r, d1, d2 )

We assume that the initial conditions (Xlist and alist),
the number n of agents and the parameters r, d1, d2
have been defined (they could be read from the command
line, for example). If these program definitions and the
supporting code are contained in a file called flock.ccl,
then executing, for example,

ccli flock.ccl -r

will initialize the variables of the system and then repeat-
edly execute the 3n guarded commands in the main pro-
gram in random order. Other programs could be composed
with the above to, for example, print data or to create an
animation of the system. See the distribution code [1] for
the complete code of flock.ccl and some variations.

B. Experimenting with flock.ccl

The various parameters affecting the performance of
the algorithm are r, the radius of communication, d1,
the amount of time between updates to the position
X and heading a, and d2 the amount of time between
transmissions of the robot’s heading. Figure 1 shows three
data sets obtained by running flock.ccl with different
values for these parameters, and for 20 robots with random
initial conditions.

Several phenomena can be observed in the data. First, as
is expounded upon in analysis of the flocking algorithm [9],
the radius affects the connectivity of the communication
graph and therefore number of unique headings eventually
found by the group. In addition, by describing a more
distributed realization of the flocking algorithm, we ob-
serve other behaviors. For example, the ratio between d1
and d2 affects the convergence time of the algorithm —
if it converges at all. This is because, if d2 is not small
compared to d1, the individual robots may update their
headings before receiving information from all of their
neighbors. Of course, if d2 is small enough, this is not a
problem. But a small d2 requires more bandwidth, which
may be at a premium as the number of robots increases.

We also notice from the data that the robots become
less synchronized as the simulation progresses: Initially the
(time,heading) pairs form columns, and later they are more
spread out. The frequency with which the robots is still
essentially the same, but offsets drift.

Bringing to light phenomena similar to the above, that
arise from the decentralization of an algorithm (even one
that supposedly is decentralized), is one of the main
advantages of CCLi.

Furthermore, the code above could be easily extended to
run on actual robots, if a suitable interface to the sensors,
effectors and communication hardware were defined (e.g.
as external functions) to replace the iproc.ccl library
and the assignments in the mover sub-program.

V. CCLi Semantics

The goal is to make CCLi programs be essentially the
formal notation for distributed dynamical systems. Thus,
the operational semantics of CCLi need to be precisely

a) r = 8, d1 = 1, d2 = 0.1

b) r = 4, d1 = 1, d2 = 0.1

c) r = 8, d1 = 1, d2 = 0.25

Fig. 1. Data obtained from executing flock.ccl as defined in
Section IV-A. Each point represents a (time,heading) pair, reported
by inserting a print statement into the program mover. In each data
set, 20 robots were initially randomly positioned in a 20×20 m square.
(a) and (b) demonstrate that the communication radius affects the
number of connected groups, each moving along a common heading.
(a) and (c) demonstrate that sending data less frequently compared
to the update time in the mover program lengthens the convergence
time of the algorithm, as in the last data set.

defined. By operational semantics, we mean the inter-
pretation of a static object as a trajectory (or behavior).
For example, the equation ẋ = −ax defines an object in
the language of differential equations whose operational
semantics is a flow (set of solutions of the equation)
induced on R. In this section, we briefly outline how to
define the semantics of CCLi, focusing on the unique
aspects of CCLi (i.e. those not found in CCL). A more
complete treatment of CCLi can be found elsewhere [10].

A. States and Actions

We let V be the set of all variable symbols and Val be
the set of values that the variables may take under the



CCLi typing system. Since CCLi type checks programs, we
can suppose that the type of a variable does not change,
even though its value might. The following definitions are
similar to those found in the temporal logic literature [11].

Definition 5.1: A state s is a function from V to Val .
The value of a particular variable v ∈ V with respect to a
state s is denoted s[[v]]. The set of all states in denoted by
S.

Definition 5.2: The meaning of a CCLi expression f ,
denoted [[f ]], is a function from states into values and is
defined to be the value obtained by replacing all (free
occurrences of) variables in f by their values under the
state s and then evaluating all lambda expressions using
β-reduction.

Definition 5.3: An action is a boolean valued expres-
sion over variables in V , primed variables in V ′ and
constant symbols.

The only actions in CCLi are assignments and guarded
commands. The assignment x := y in CCLi is equivalent
to the action x′ = y in the above. Guarded commands are
discussed below.

Definition 5.4: The meaning of a an action a, denoted
[[a]], is a function from S × S into values and is defined to
be the value obtained by replacing all (free occurrences of)
unprimed variables in a by their values under the state s
and replacing all (free occurrences of) primed variables in
a by their values under t and then evaluating all lambda
expressions (and external functions).

Definition 5.5: A guarded command is a pair (g, r),
usually written g : r, where g is a predicate and r is an
action (a list of assignments in CCLi). The meaning of
g : r is a function from S×S into values and is defined by

s[[g : r]]t , (s[[g]] ∧ s[[r]]t) ∨ (¬s[[g]] ∧ s = t).

We give the name skip to the guarded command

true : {} (3)

Definition 5.6: A program is a pair P = (I, C) where
I is a predicate called the initial condition and C is a set
of guarded commands. If P1 = (I1, C1) and P2 = (I2, C2)
are programs, their simple composition is P1 ◦ P2 =
(I1 ∧ I2, C1 ∪ C2).
In a CCLi program, the initial condition is obtained by
evaluating all variable initializations in the program.

Definition 5.7: If P = (I, C) is a program and U ⊆ V is
a set of variable symbols, the program obtained by hiding
the variables in U is defined by

hide(P,U) = P (∀v ∈ U : P.v / v, P.v′ / v′),

that is, the program obtained by replacing all free occur-
rences v ∈ U in either I or a command in C with the new
variable symbol P.v.

Definition 5.8: If P1 and P2 are programs and U is a set
of variables, then their shared variable composition is

P1 • P2 sharing U ,

hide(P1, V (P1) − U) ◦ hide(P2, V (P2) − U).

Thus, a variable v not in U but appearing in both P1 and
P2 is renamed to P1.v within P1 and to P2.v within P2 –
that is, it is local to those programs. On the other hand,
if v ∈ U , then the symbols u and u′ in P1 and P2 refer to
the same object in P1 • P2 sharing U . In this manner we
see that program composition, as discussed in Section III,
is concatenation of programs, with non-shared variables
being renamed.

B. Behaviors and Schedules

Definition 5.9: A behavior is a sequence σ : N → S of
states. We denote σ(k) by σk. A schedule for a program
P = (I, C) is a function ω : N → C ∪ {skip} that assigns
to each step either a guarded command from C or the
command skip of Equation (3). The behavior σ is an ω-
behavior for the program P = (I, C) if

1) σ0[[I]]
2) ∀k . σk[[ω(k)]]σk+1.

If ω(k) = skip then we call step k a stutter step.
Based upon these definitions, we will provide several

scheduling tactics that define what it means for a behavior
σ to satisfy a program P . Each scheduling approach is
defined by a fairness constraint, that limits how often each
guarded command may be selected for execution. For each
constraint M we will define the M -meaning of P , denoted

[[P ]]M : (N → S) → {true, false}

to be a boolean valued function on behaviors. We use the
usual prefix notation σ[[P ]]M to denote the (boolean) value
that [[P ]]M assigns to σ.

The default schedule for CCLi is to execute the guarded
commands in order. This is defined formally by:

Definition 5.10: (ORDER FAIRNESS) Given a pro-
gram P = (I, C) with C = {c0, c1, ..., cn−1} considered as
an ordered set, and a behavior σ, then σ[[P ]]

ORDER
= true

if and only if there exists a schedule ω such that

1) σ is an ω-behavior for P
2) ω(k) = ck mod n.
On the other hand, the least restrictive schedule for

a program is one that eventually applies each guarded
command, interleaving them in any order. This schedule
can be approximated by CCLi using the -u flag. This is
essentially the same as the semantics of UNITY [6]. The
fact that each guarded command is eventually applied
is equivalent to saying that each command enjoys weak
fairness.

Definition 5.11: (UNITY FAIRNESS) Given a program
P = (I, C) and a behavior σ, then σ[[P ]]

UNITY
= true if

and only if there exists a schedule ω such that

1) σ is an ω-behavior for P
2) for all c ∈ C, the set ω−1(c) is infinite.
A reasonable assumption for scheduling a program is

that the entire set of guarded command is fired over and
over again. That is, that no command is fired again until
all commands have been fired once. The set of steps during
which each command is fired once is called an epoch. This
notion is defined formally in the next definition.



Definition 5.12: (EPOCH FAIRNESS) Given a pro-
gram P = (I, C) and a behavior σ, then σ[[P ]]

EPOCH
=

true if and only if there exists a schedule ω such that

1) σ is an ω-behavior for P
2) there exists an increasing sequence of natural num-

bers {ni}i∈N with n0 = 0 such that for all i, if
ni ≤ k < l < ni+1 then either

ω(k) 6= ω(l) or ω(k) = ω(l) = skip.

The subsequence 〈σni
, ..., σni+1−1〉 is called the ith epoch

of σ under ω.

Remark: In the programs defined in Section IV we
made heavy use of the dclock() function, which in the
implementation of CCLi, gives the system time as the
number of seconds since the CCLi process was started.
Technically, this is a function outside of the operational
semantics as we have described here. One can approxi-
mate the meaning of the dclock() function by (roughly)
defining a global time variable T and appending the (non-
deterministic) action T ′ ∈ (T, T + δ) to the rule in each
guarded command.

In other work on CCL [10], we define for each fairness
constraint M , the models relation P |=M φ, where P is a
CCL program and φ is a formula in temporal logic [11].
We say that P |=M φ is true if and only if every behavior
allowed by P satisfies the formula φ. We further define
inference rules of the form: To prove that P |=M φ, it
suffices to prove that P |=M ψi for i = 1, ..., k where each
ψi is a simpler formula than φ. Such rules are the basis of
mathematical reasoning and provide a basis, introduced in
other papers [10], for determining what properties a given
program enjoys. When carefully formulated, a complete set
of inference rules can be encoded into an automatic theo-
rem prover to help automate the verification process. We
have begun to extend the work by Paulson on automating
temporal logic in Isabelle [3] to reason about CCLi. We
hope to report on this in future work.

VI. Discussion

CCLi represents an attempt to encode the CCL formal-
ism in a usable piece of software. It allows researchers to
quickly encode distributed and decentralized algorithms
in a fashion that is at once similar if not identical to
mathematical notation and executable. The compositional
operators in CCLi are powerful and useful for (1) building
up programs from simpler programs and (2) defining
systems composed to large numbers of communicating,
asynchronous processes, as the Example in Section IV
shows.

Our investigation into CCL and related formalisms has
so far been focused on two separate issues: defining a
formalism and notation for distributed robot algorithms

and defining software based upon it. Eventually we will
encode CCLi into a theorem proving environment so that
we may use automated tools to help prove properties of
the systems we define. The goal will be to use the same
syntax in the theorem prover as with executable programs.
As far as the language is concerned, we are continuing to
refine and expand it to make it even more useful both a
research and educational setting.
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