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Abstract—Systems biologists are often faced with competing
models for a given experimental system. Unfortunately, per-
forming experiments can be time-consuming and expensive.
Therefore, a method for designing experiments that, with
high probability, discriminate between competing models is
desired. In particular, biologists often employ models comprised
of polynomial ordinary differential equations that arise from
biochemical networks. Within this setting, the discrimination
problem is cast as a finite-horizon, dynamic, zero-sum game
in which parameter uncertainties in the model oppose the
effort of the experimental conditions. The resulting problem,
including some of its known relaxations, is intractable in
general. Here, a new scalable relaxation method that yields
sufficient conditions for discrimination is developed. If the
conditions are met, the method also computes the associated
random experiment that can discriminate between competing
models with high probability, regardless of the actual system
behavior. The method is illustrated on a biochemical network
with an unknown structure.

I. INTRODUCTION
Systems biologists are often faced with competing dy-

namical models of experimental systems. For example, a
newly discovered regulatory protein identified as an inhibitor
may act on one of several possible genes in a pathway,
leading to different possible biochemical network models.
One way to distinguish between different models is to create
knockout cell-lines and examine the steady-state behavior
of the resulting mutants. However, such experiments are
tedious and may be quite difficult depending on how vital the
considered network is to the normal operation of the cell. An
alternative approach is to run dynamical experiments on cells
and interpret their transient response to distinguish between
competing models. For example, a nutrient or a chemical
signal can be changed in a time-varying manner (i.e. it is an
input signal to the system) and the intensity of a fluorescent
marker incorporated into the network can be observed, as
was recently demonstrated with osmotic pressure regulation
in yeast [1].
Dynamical experiments are still expensive to set up, but

they are potentially less invasive and much more informative
than static experiments. Within this setting, we address the
question: What experiments should be performed on the
physical system to ensure that as many candidate models
are invalidated by the experimental results as possible? In
particular: given a set of candidate models, can we define a
probability distribution, which we call a disparity certificate,
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over the possible input signals that maximally distinguishes
the candidate models? If no input signals distinguish the
candidate models, the experiments are not worth doing until
better candidates are derived. If the candidate models are
distinguishable, probing the actual experimental system with
the resulting disparity certificate must invalidate at least one
of the models (see Figure I).
Invalidation is made difficult by uncertainty in the ex-

perimental system. In systems biology, uncertainty arises
particularly from unknown and even time varying reaction
rates (e.g. some functions slow down during cell division).
Thus, an erroneous model may not be invalidated by an
experiment because the uncertain parts of the physical system
‘conspire’ against the researcher to produce outputs that seem
consistent with the model. In our search for a disparity
certificate we must expect that uncertainty in the system
will work to make candidate models indistinguishable. The
resulting problem becomes a game: the input signal tries to
force the outputs of two candidate models to be different
while the uncertainty tries to make the outputs the same.
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Fig. 1. Model Discrimination for experimental design. X represents
the disparity certificate. Shaded regions represent all possible trajectories
corresponding to the input u. Trajectories A, B, C are possible outputs of
the physical system. For output A model 2 is invalidated, for output B,
model 1 is invalidated and for output C both models are invalidated.

In this paper, we suppose we are given two different
candidate models that have the same input and output spaces.
We put uncertainty in the initial conditions and parameters of
the models. We pose two problems: Model Discrimination
and Model Invalidation. The first problem we set up as a
maximin problem (maximizing over all input signal distri-
butions and minimizing over all disturbances the difference
between the outputs of the two models). Since the resulting
optimization problem is intractable, we introduce a relaxation
(based on the theory of moments [2]) that we can solve more
efficiently. The second problem is then easily solved using
the disparity certificate produced by the first problem. We
have implemented the method in MATLAB and demonstrate



it on two problems involving candidate parameter regimes in
biochemical networks.

II. RELATED WORK

Model discrimination is widely studied in the literature.
Experimental design based on model discrimination has
also received a considerable attention [3–7]. The traditional
approach is to apply Bayesian conditioning and discriminate
models using criterion such as the maximum likelihood [3,
8, 9]. Methods based on the Bayesian approach assume that
the real world system behaves according to a given candidate
model with a known probability. As a result, the success of
these methods depends on the quality of prior information.
More recent methods are based on deterministic models [4–
6], as is the case in this paper. In [6], a method is developed
that computes the initial state to maximize an upper bound
on the distance between outputs of competing models. The
models, however, are deterministic and, by maximizing the
upper bound, the method cannot guarantee discrimination.
In [4] algorithms for efficiently discriminating models from
experimental data are developed, however, no inputs are con-
sidered. Finally, a great deal of literature on auxiliary input
design for fault detection deals with model discrimination [8,
10]. The majority of this work is based on linear models and
Bayesian conditioning. In our work, nonlinear (polynomial)
systems of difference equations with unstructured uncertainty
are considered and input signal distributions guaranteeing
discrimination are computed.

III. PROBLEM STATEMENT
A. Informal Description
The work herein is motivated by biochemical experimental

design. The following is an informal description of our
work; the formal description is in the next section. We
consider models comprising polynomial difference equations
and linear outputs. An experiments controlled variables
are modeled as control inputs to the system. We assume
feedback is not possible or practical during the execution
of the experiment and, therefore, restrict the control inputs
to be functions of only time. An experiments uncontrolled
variables are modeled as disturbances. Disturbances are un-
structured, i.e., can be effected by past events in an arbitrary
way, and the only known information about them is their
domains. Note that disturbance information is part of the
model. The methods herein do not require that the actual
experiments uncontrolled variables have the same domain as
the disturbances.
Computation in experiments is performed in two steps: 1)

experimental design and 2) data analysis. The two steps are
matched by the two problems considered in this paper. The
first problem considers feasibility of model discrimination
and the computation of discriminating inputs, called disparity
certificates.
Model Discrimination Problem (MDP) (informal). Given
a pair of candidate models with the same input and output
spaces, find an input, called the disparity certificate, that
yields different outputs for all possible disturbances.

If a disparity certificate exists, we can hope to implement it
in the experiment and learn which model does not represent
the system. Identifying the inconsistent model is called
model invalidation. The second problem seeks to invalidate
the candidate models based on experimental data from a
series of experiments.
Model Invalidation Problem (MIP) (informal). Given the
inputs and outputs for a series of executed experiments, find
which candidate model maps the inputs to different outputs
for all possible disturbances.
Model invalidation is studied in [11]. As will be shown,

disparity certificates enable a model to be invalidated by
simultaneously comparing it with experimental data from
multiple trials. The method in [11] does not consider such
comparisons and the extension is not clear. We address the
problem within the framework of this paper and show that if
we can find a disparity certificate, we can invalidate a model.

B. Formal Description

The following notation is used. Lowercase letters are used
to denote functions and vectors. A sequence of vectors
{r (1) , . . . , r (K)} is written as rK . Uppercase letters are
used to denote matrices and random variables. As with
a sequence of vectors, a sequence of random variables
{R (1) , . . . , R (K)} is written as RK . For any discrete
random variable R, P (r) is the probability that R = r
(the random variable associated with R will be clear from
the context). For any sequence of random variables RK ,
P

(
r (K) |rK−1

)
is the probability that R (K) = r (K) given

that RK−1 = rk−1. Uppercase script letters denote sets. For
a given set R, RK is the cartesian product ×K

i=1R. The set
of all probability distributions over R is denoted by ∆ (R).
For a vector β ∈ NK , we use the notation from [2] and write
the monomial rβ1

1 · · · rβK

K as rβ .
Throughout this paper, we consider a pair of models

described by discrete time difference equations of the form

Mi =
{

xi (k + 1) = fi (xi (k) , wi (k) , u (k)) ,
yi (k) = Cixi (k) ,

(1)

where k ∈ {1 . . . , K} and i ∈ {1, 2}. The initial state
satisfies xi (1) ∈ Xi (1) ⊂ Rni , the control input satisfies
u (k) ∈ U ⊂ Rm, and the disturbance satisfies wi (k) ∈
Wi ⊂ Rdi . Throughout the paper, we concatenate a pair
of models to form a composite model M with state x =
(x1, x2) ∈ Rn, state transition function f = (f1, f2), control
input u, disturbance w = (w1, w2) ∈ Rd, and output
y = y1 − y2.
We make the following assumptions.

Assumption
A1. State transition function f is a polynomial function with

respect x and w, i.e.,

f (x, w, u) =
∑

α

aα (u) (x, w)α . (2)

A2. The set of control inputs U is finite.



A3. The sets X (1) and W are compact intervals in their
respective Euclidean spaces.

Before we proceed to address the issue of model dis-
crimination, we must define how the values of the control
inputs and the disturbances are selected. Experimental data
is often evaluated after the completion of an experiment.
Hence, we require that open loop control input be selected.
Open loop evaluation, however, does not imply that the
input is selected deterministically. Indeed, random control
inputs are commonly used in system identification to provide
persistent excitation [12], and in game theory it is well
known that random decisions often outperform deterministic
decisions [13]. In this work we consider random control
inputs, and, through example, show that this increases the
class of systems that can be discriminated.
Due to physical, experimental, or computational con-

straints, not all possible trajectories in UK may be allowed.
Define the set of control inputs allowed to follow uk−1 by
Sk

(
uk−1

)
⊆ U. The set of allowable control input trajecto-

ries of length k is denoted by Tk and is defined recursively by
Ti =

{
ui ∈ Ui|ui−1 ∈ Ti−1, u (i) ∈ Si

(
ui−1

)}
. Therefore,

a control input is a random sequence UK with the sample
space TK .
Whether an input discriminates two models depends on

how the disturbance is realized. The disturbance may be
unknown but fixed a priori. This would imply that no matter
what the input is, the uncertainty remains unchanged. If the
inputs do affect the disturbance, the effect may be causal.
This would imply that the uncertainty can change if any of
the past inputs are changed. If the inputs affect the uncertain
parts in a noncausal manner, the uncertainty can change if
any inputs (past or future) are changed. Which of the three
alternatives is chosen depends on the system. However, in
biological systems, the uncertainty (e.g., the reaction rates)
is assumed to depend on the current state of the system
and is therefore causal. Moreover, viable experiments are
duplicable. Therefore, we assume that the disturbance at any
time instance is a function of all past exogenous inputs
to the system and this function is the same for different
experimental trials. Note that the initial state is treated as
part of the disturbance, which leaves the control inputs as
the only exogenous inputs. The value of the disturbance
given that the control inputs up to time k − 1 are given
by uk−1 is denoted by w

(
k;uk−1

)
. Similarly, x

(
k;uk−1

)

and y
(
k;uk−1

)
denote the state and output, respectively,

that result from the control inputs uk−1 and the disturbances
w

(
i;ui−1

)
, i ∈ {1, . . . , k}. A random control input Uk−1

yields the random disturbance w
(
k;Uk−1

)
, the random state

x
(
k;Uk−1

)
, and the random output y

(
k;Uk−1

)
.

The disparity of a pair of models is defined in terms of a
disparity certificate.

Definition 1 (Disparity Certificate). A pair of models
(M1,M2) is said to have a disparity certificate UK if, for all
conditional disturbances w

(
k;uk−1

)
∈ W, k ∈ {1, . . . , K},

the output is nonzero with positive probability, i.e., for some

k ∈ {1, . . . , K},

P
(∣∣∣∣y

(
k;Uk−1

)∣∣∣∣
2

> 0
)

> 0.

The two problems considered in this paper can now be
formally defined. The model discrimination problem is cast
as a dynamic game where the disturbance uses information
about all past control inputs to try and keep the outputs of
the two models equal.
Model Discrimination Problem (MDP) . Given a composite
model M , find a U∗ with the distribution P ∗ that solves the
following maximin problem:

max
P

min
w

∑

uK∈TK

P
(
uK

) K+1∑

k=1

∣∣∣∣y
(
k;uk−1

)∣∣∣∣
2
,

subject to

x
(
k + 1;uk

)
= f

(
x

(
k;uk−1

)
, w

(
k;uk−1

)
, u (k)

)

y
(
k;uk−1

)
= Cx

(
k;uk−1

)
.

Note that the cost in MDP is just the expected value with
respect to the control input U∗. A disparity certificate exists
if and only if the optimal cost in MDP is positive. Note that
the polynomial constraints make MDP nonconvex in general.
Next we address the model invalidation problem. Suppose

that " trials of a particular experiment have been performed.
We would like to know if one of the models is inconsistent,
and thereby invalidated, by the trials. Recall that the condi-
tional disturbances are assumed to be the same in different
trials. Therefore, if a model is consistent, it should be able
to approximate outputs from all trials at the same time.
Model Invalidation Problem (MIP) . Let the results of "
experimental trials be given by the set of input-output pairs{(

uK
e,1, y

K
e,1

)
, . . . ,

(
uK

e,#, y
K
e,#

)}
. For a given model Mi, the

model invalidation problem is defined as follows.

minimize
w

#∑

j=1

K+1∑

k=1

∣∣∣∣yi

(
k;uk−1

e,j

)
− ye,j (k)

∣∣∣∣2
2
,

subject to

xi

(
k + 1;uk

e,j

)
= fi

(
xi

(
k;uk−1

e,j

)
, wi

(
k;uk−1

e,j

)
, ue,j (k)

)

yi

(
k;uk−1

e,j

)
= Cixi

(
k;uk−1

e,j

)
.

If the optimal cost of MIP is positive for model Mi, then
the model is invalidated. Notice that MIP also presents a
nonconvex optimization problem.
The following result follows directly from Definition 1,

MDP, and MIP.

Proposition III.1. Let a pair of models (M1,M2) have a
disparity certificate U∗. Let |SUP (U∗)| be the cardinality of
the sample space of U∗. Then at most |SUP (U∗)| different
experiments are required to invalidate at least one model.

Therefore, the existence of a disparity certificate implies
that, given enough experimental trials, useful information
(i.e., invalidation of a model) must eventually result. Note
that experiments are typically expensive and difficult to



organize but executing multiple parallel trials is relatively
easy.

IV. SOLUTION

To discriminate two models, one must solve MDP. First,
for any control input U , the corresponding global minimizer
(the worst disturbance) w∗ must be found. However, find-
ing a global minimizer in MDP is in general numerically
intractable due to the polynomial state transition equality
constraints. Second, the maximizing control input must be
found. The first part of this section develops a method for
computing the lower bound on the optimal cost for a given
control input. The second part of the section appends this
method to allow for simultaneous computation of the lower
bound maximizing control input.

A. Worst Disturbance
Several methods exist for minimizing the cost in MDP.

The brute force method is to discretize the state space
and numerically solve the Bellman equation, see [14] for
examples. The state space dimension of the class of systems
considered herein prohibits such an approach. Other methods
yield a lower bound on the cost. One such approach is to use
difference inclusions to compute the set of reachable states
and then minimize the cost over all trajectories [15]. Differ-
ence inclusions however are overly conservative in that future
states depend only on the current set of reachable states
and not on the actual current state value. Another approach
is to approximate the global optimal solution using sum-
of-squares convex relaxation [2, 16]. This approach yields
a lower bound on the optimal solution up to any specified
tolerance. However, it is only numerically feasible for prob-
lems comprising relatively few optimization variables; the
method presented in [2] applied to MDP with 10 time steps,
and 5 dimensional state space and 5 dimensional disturbance
space at each time step requires approximately 100 million
optimization variables for a first order relaxation.
In this section, we construct a method for computing

the lower bound on the optimal cost using the theory of
moments. The method yields a convex relaxation that is
numerically feasible and retains some state transition in-
formation. It is not guaranteed to produce the actual lower
bound, it does allow for better approximations through higher
order relaxations. The resulting convex problem is solvable
using standard interior point methods.
The method developed herein is based on the following

lemma from [2].

Lemma 1. For a given cost function J : Rn → R, the
following two optimization problems are equivalent:

minimize
x∈X

J (x) ⇐⇒ minimize
µ∈∆(X)

∫

X
J (x) dµ (x) .

To illustrate how Lemma 1 is utilized, consider the follow-
ing nonlinear, scalar difference equation for either candidate
model:

x (k + 1) = x (k) + x (k)2 w (k) . (3)

Let the real state and disturbance variables x(k) and w(k) be
the random variables X(k) and W (k) (which is without loss
of generality in MDP and MIP by Lemma 1). Equation 3
can then be looked at as a moment relation, and, instead
of propagating state, we can propagate state moments. This
relaxes the constraint imposed by the difference equation and
results in a lower bound on the cost in MDP. Higher moments
can be computed to improve the bound but at the expense
of computational costs.
To see how we can propagate the first moments of the

state, let the reachable set of x(k) lie in the set X (k) =
[x−, x+] and let the domain of w(k) be given by the set
W = [w−, w+]. Then take the expected value of both sides
of the random difference equation to yield

E [X(k + 1)] = E [X(k)] + E
[
W (k)X(k)2

]
. (4)

At time k, the value of E [X(k)] is known since it was
computed at time k−1. The value of E

[
W (k)X(k)2

]
is not

known, since we don’t know the full distribution of X(k).
We can, however, constrain the value (using the theory of
moments) since we know the reachable set X(k) and the
disturbance domain W.
The constraints on the mixed moment are given

in [2] and briefly reviewed here in the following
lemma. Some additional notation is required. For a
random vector X and a positive integer N , let X1×N

be the vector of all monomials up to the order N ,
e.g., (X1,X2)

1×2 =
(
1,X1,X2,X2

1 ,X1X2,X2
2

)
,

and let XN×N = XN×1X1×N . Furthermore, for
an interval [x−, x+] that contains the support of
X , define the block diagonal matrix as XN×N

± =
diag

((
Xi − x−

i

) (
x+

i − Xi

)
XN×N

)
.

Lemma 2. The expected values of XN×N and XN×N
± are

positive semidefinite.

Lemma 2 is used to constrain the mixed moment in
Equation 4 as follows. Denote the first moment of E [X]
by x̄. Expand the dimension of the disturbance space by
assigning a new disturbance variable w̄α1,α2 to every mono-
mial E [Xα1Wα2 ]. Note that the disturbances corresponding
to the first moment of X are not free, i.e., w̄1,0 = x̄. Finally
form the matrices in Lemma 2 out of the disturbances w̄
and the state x̄. What results is a convex approximation of
Equation 3 with the form

x̄(k + 1) = w̄2,1(k) + x̄(k) (moment diff. eq.),
x̄(k + 1) ∈ X(k + 1) (reachable stte),

V 1,2
N (k) ≥ 0 (moment matrix),

V 1,2
N−1,±(k) ≥ 0 (constraint matrix),

(5)

where

V 1,2
N (k) := E

[
(X(k),W (k))N×N

]
,

V 1,2
N−1,±(k) := E

[
(X(k),W (k))N×N

±

]
.

To see how these constraints affect the transition of x̄, see
Figure 2. The figure plots a sample trajectory generated



from random disturbance values. At each point along the
trajectory, we computed the set of possible values for the
next state. These values are shown for the time k = 7.
The moment constrained dynamics close approximate the
actual dynamics, while reachable set compute by solving
the difference inclusion greatly overapproximates the actual
dynamics.
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0.24

0.28

0.32

k

x(
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Actual Constraint

Moment Constraint

Reachable Constraint

Sample Trajectory
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Fig. 2. A plot of a random trajectory for the simple model in Equation 3.
At each point along the trajectory a set of possible future states can be
computed using the moment constraint, the reachable set constraint, and
the actual difference equation constraint. At time 7 the sets are shown in
the figure.

The approach used for the system in Equation 3 can be
directly extended for the compose model M , except now
separate moment and constraint matrices will be formed for
each monomial. Moreover, the matrices will have to also
be conditioned on the control input trajectory. Recall that
the transition function for a fixed control input u has the
form f (x, w) =

∑
α aα(u) (x, w)α. Allow the state and the

disturbance to be random variables X and W , respectively,
and denote the mixed moment E [(X,W )α] by w̄α. The
domains of X and W are assumed to be some known
intervals. For i ∈ {1, . . . , n}, let w̄i = x̄i, and let Au =
(ai (u))i∈{1,...,n}. Then, order the remaining disturbances
(those not corresponding to first moments of X) into a vector
w̄ and let Bu be the matrix with columns formed from
the corresponding coefficients aα (u). Then the difference
equation conditioned on uk can be approximated by the by
the following convex constraints (denoted by C

(
k;uk

)
)

C
(
k;uk

)






x̄
(
k + 1;uk

)
= Au(k)x̄

(
k;uk−1

)

+Bu(k)w̄
(
k;uk−1

)
,

x̄
(
k + 1;uk

)
∈ X

(
k + 1;uk

)
,

ȳ
(
k;uk−1

)
= Cx̄

(
k;uk−1

)
,

V α
N

(
k;uk−1

)
≥ 0,

V α
N−1,±

(
k;uk−1

)
≥ 0.

(6)

MDP with the exact difference equation constraint re-
placed by the constraints C

(
k;uk

)
is convex with respect

to the disturbance. Moreover, if we fix the control input, the
minimization problem is a linear matrix inequality problem,
which can be solved efficiently. Finally, if we replace the
exact difference equation constraint with the constraints
C

(
k;uk

)
and then solve MDP the resulting minimization

problem will yield a lower bound on the optimal cost.
Therefore, if the optimal cost for the relaxed problem is
positive for some U , then their exists a disparity certificate
for the pair of models.

B. Disparity Certificate Derivation
The minimization problem with the relaxed transition

constraints C
(
k;uk

)
can be solved using standard interior

point methods. In this section, we address the maximiza-
tion over the control inputs for the relaxed problem. It is
important that we find the optimal control input since the
relaxed minimization problem is already conservative. First
we show how the minimization problem can be modified
to simultaneously account for the maximization over the
control inputs. Second we show how to iteratively compute
the optimal control input.
Let MDP be the problem obtained by substituting the

constraint C(·) for the difference equation constraint in MDP.
This problem is convex in the disturbance variables when
the probabilities are held fixed. Moreover, the cost function
is concave (linear) with respect to the probabilities P

(
uK

)
.

Since the disturbances and probabilities belong to convex,
compact sets, it is known that the problem has a saddle
point, i.e., the max and min operations can be reversed [17].
Consider the following problem.
Convex Model Discrimination Problem (CoMDP) . Given
a composite model M , the problem is

minimize
w̄,λ

λ(1) + ||ȳ (1)||22 ,

subject to

λ
(
k;uk−1

)
− λ

(
k + 1;uk

)
−

∣∣∣∣ȳ
(
k + 1;uk

)∣∣∣∣2
2
≥ 0

C
(
k;uk

)
, for all k ∈ {1, . . . , K} , uK ∈ TK .

CoMDP is equivalent to the minimax problem where the
control inputs can depend on the past and present values of
the states and disturbances. The existence of a saddle point
for MDP implies the following result.

Proposition IV.1. The optimal cost of MDP’ is equal to the
optimal cost of CoMDP.

CoMDP can be solved using standard interior point meth-
ods by forming a log barrier function for each inequality
constraint. The resulting cost function at each centering step
then has the form

J (w̄) =
K+1∑

k=1

∑

uk−1∈Tk−1

"
(
x̄

(
k;uk−1

)
, w̄

(
k;uk−1

))
,

and is subject to the equality constraint C (·). Efficient
stepwise Newton’s method algorithms can then be used to
minimize J . Such algorithms have the favorable property of
linear complexity growth with respect to the number of time
steps.
Next, we compute a control input U sufficient for discrim-

ination. Let P
(
uk|uk−1

)
be the conditional probability that

Uk = uk, given that Uk−1 = uk−1. Let w̄∗ be the optimal
disturbance value. Define the partial cost evaluated along the
trajectory resulting from w̄∗ as

vk

(
uk−1

)
=

∣∣∣∣ȳ
(
k;uk−1

)∣∣∣∣2
2

+ max
u∈S(uk−1)

vk+1

(
uk−1, u

)
.



Define the set of maximizing control inputs as

Zk

(
uk−1

)
= argmax

u

{
vk

(
uk−1, u

)}
.

Then, a control input that will discriminate the pair of models
is given in the next theorem.

Theorem 1. Suppose the existence of a disparity certificate
is shown by solving CoMDP, then the following control input
will discriminate the pair of models with positive probability:

P
(
u|uk−1

)
=

{ 1
|Zk(uk−1)| , u ∈ Zk

(
uk−1

)

0, otherwise
.

Proof: All we need to show is that the optimal control
input must have the same support as UK given by the
transition probabilities P

(
u|uk−1

)
described in the theorem.

Suppose that for some k and uk−1, the optimal control input
assigns a positive probability to a u not in Zk

(
uk−1

)
. Then

the expected cost will be less than v1, which contradicts
Proposition IV.1 that says the optimal cost is equal to v1.
It is important to note that although Theorem 1 yields a
control input that will discriminate the models, it is not the
optimal control input. To compute the maximizing control
input in MDP’, further development is required.
Remark 1. If CoMDP produces a disparity certificate and
different control inputs from the sample space of U in
Theorem 1 are applied to the experimental system in multiple
trials, then at least one model must be invalidated in a
fine number of trial by solving MIP’ (MIP with the convex
constraints C

(
k;uk−1

)
).

V. EXAMPLES

In this section we introduce a two examples that illustrate
the methods developed herein. A interior point method based
on log barrier functions was developed that implements
the stepwise Newton’s method [18] to solve the centering
problems. No special precautions were taken to deal with
ill posed Hessian matrices, hence preventing large problems
from being solved. It is important to note, however, that this
is not a limitation of the method, rather a limitation of the
current numerical implementation.

A. Example: Inhibition
Figure 3(a) shows a biochemical reaction network in

with two species A and B. The input signal is the rate at
which B is added and the output is the concentration of
A. Two models of this network are presented in the table
of Figure 3(a), the only difference being the range for the
rate k2. The chemical kinetics model corresponding to the
network is defined by

˙[A] = k1 − k2 [A] [B] − k3 [A] ,
˙[B] = u − k2 [A] [B] .

(7)

We model the uncertainty in the reaction rates as a distur-
bance as in Equation 1, which implies that the reaction rates
are allowed to vary with time. For the input u, we consider

impulses at specific time instances. To apply our method, we
use the discrete time approximation of Equation 7 is

[A] (k + 1) = [A] (k) + δ
(

k1 (k)

− k2 (k) [A] (k) ([B] (k) + u) − k3 (k) [A] (k)
)

,

[B] (k + 1) = [B] (k) + u (k)

+ δ
(
− k2 (k) [A] (k) ([B] (k) + u)

)
.

(8)

The maximum input is u = 1 and the minimum input is
u = .1. Our method shows that the two models can be
discriminated. The resulting disparity certificate is shown
in Figure 3(b). For this system, a uniform distribute over
input signals is enough to distinguish between the compete
models. In Figure 3(c) we illustrate the output of model one
for a random pair of inputs and show that in the worst case,
model two cannot match the outputs (and hence is invalidated
with respect to model one).

B. Example: Self-Annihilation

Figure 4(a) shows a network in which a species A activates
its own degradation. The two candidate models for the
system differ in the range they assign to the parameter
k2, and thus to the degree to which A annihilates itself.
Figures 4(b) and (c) are similar to those of the previous
example, except that here the disparity certificate weights
some input signals more than others, therefore suggesting a
different array of experiments with the physical system.

VI. CONCLUSION

Model discrimination and model invalidation for polyno-
mial system was considered in the framework of dynamic
games. The class of disparate competing models was broad-
ened through the use of stochastic inputs, i.e., models that no
one input can discriminate, were shown to have a disparity
certificate. The model invalidation problem for this setup was
formulated. It was shown that at least one of two disparate
models can be invalidated in a finite number of experiments.
To solve the model invalidation and discrimination problems,
a scalable convex relaxation method (based on the theory
of moments) was developed and implemented in MATLAB.
Future work includes a more efficient implementation of the
developed theory and experimental application.
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