
Directed Self-Assembly Using Graph Grammars

Eric Klavins?

University of Washington
Electrical Engineering Department

Box 352500
Seattle, WA 98195

Abstract. In this paper we describe the graph grammar approach to
modeling self-assembly. The approach is used to describe how the topol-
ogy of an assembling aggregate changes as it grows. The main purpose of
the paper is to demonstrate the utility of the approach by giving detailed
examples. We also describe the beginnings of our approach to physically
embedding graph grammar assembly rules in physical settings, focusing
on macro- and micro-scale programmable parts and a simulation envi-
ronment.

1 Introduction

Engineering in the realm of the very small presents us with the daunting problem
of manipulating and coordinating vast numbers of objects so that they perform
some global task. Nevertheless, there are examples of sophisticated machines,
such as the ribosome or the mechanical motor in the bacterial flagellum, that
seem to be built in bulk spontaneously. It is assumed that in the formation of
these objects, simple small components self-assemble into more complex aggre-
gates which, in turn, self-assemble into larger aggregates.

Our starting point in understanding self assembly is the idea of conforma-
tional switching [17]: Each part (molecule, robot, etc.) exists in one of several
conformations or shapes. When two parts come into close proximity, they at-
tach or not based on whether their conformations are complimentary. If they do
attach, their conformations change (mechanically for example), thereby deter-
mining in what future assembly interactions the parts may partake.

In this paper, as in other work [16, 14], we represent the conformation of a
part by a discrete symbol, and we model an assembly as a simple graph labeled
by such symbols. Vertices in these graphs represent parts, and the presence of an
edge between two parts represents that they are somehow attached. An assembly
rule, then, is a pair of such labeled graphs interpreted as follows. If a subset of
parts with their labels and edges matches the first part of an assembly rule,
then it may be replaced by the second part of the rule to achieve a new state of
the system. We are in particular interested in (1) the situation where the parts
decide in a distributed fashion whether and how to execute an assembly rule;

? This work is supported in part by NSF Grant #0347955.

(2) how to model natural and artificial assembly processes; (3) how to define
assembly rule sets so that only prespecified assemblies are built.

Specifically, the main contribution of this paper is a set of illustrative exam-
ples that show (1) how various types of assembly processes can be modeled and
(2) how the graph grammars can simulate string grammars [9] and tile assembly
systems [21, 2]. The paper is meant to be complimentary to another paper where
we investigate some of the formal properties of graph grammars [14]. We also in-
clude a brief discussion of how one can embed the graph grammar formalism into
physical assembly systems, including macro-scale robotic “programmable parts”
and micro-scale directed tile assembly. Finally, we end with a brief discussion of
related work.

2 Definitions

We begin with basic definitions. Much of this section appeared first elsewhere
[14], we include it for completeness. Basic graph-theory definitions are not num-
bered, but only recalled [6].

A simple labeled graph over an alphabet Σ is a triple G = (V,E, l) where
V is a set of vertices, E is a set of pairs or edges from V , and l : V → Σ is a
labeling function. We restrict our discussion to simple labeled graphs and thus
simply use the term graph. We denote by VG, EG and lG the vertex set, edge set
and labeling function of the graph G or by V , E and l when there is no danger
of confusion. We will usually use the alphabet Σ = {a, b, c, ...}.

Given graphs G1 and G2, we write f : G1 → G2 and f : VG1
→ VG2

equivalently to mean that f is a function from the vertex set of G1 to the vertex
set of G2. A function h : G1 → G2 is a label preserving embedding if

1. h is injective,
2. {x, y} ∈ EG1

⇔ {h(x), h(y)} ∈ EG2
,

3. lG1
= lG2

◦ h.

If h is also surjective then it is called an isomorphism. The graphs G1 and G2 are
said to be isomorphic (written G1 ' G2) if there exists an isomorphism relating
them.

Definition 1. A rule is a pair of graphs r = (L,R) where VL = VR. The graphs
L and R are called the left hand side and right hand side of r respectively. The
size of r is |VL| = |VR|. Rules whose vertex sets have one, two and three vertices
are called unary, binary and ternary, respectively.

We may refer to rules as being constructive (EL ⊂ ER), destructive (EL ⊃ ER)
or mixed (neither constructive or destructive). A rule is acyclic if its right hand
side contain no cycles (the left hand side may contain cycles).

Definition 2. A rule r is applicable to a graph G if there exists an embedding
h : L → G. In this case the function h is called a witness. An action on a graph
G is a pair (r, h) such that r is applicable to G with witness h.

Definition 3. Given a graph G = (V,E, l) and an action (r, h) on G with r =
(L,R), the application of (r, h) to G yields a new graph G′ = (V ′, E′, l′) defined
by

V ′ = V

E′ = (E − {{h(x), h(y)} | {x, y} ∈ L})

∪{{h(x), h(y)} | {x, y} ∈ R}

l′(x) =

{

l(x) if x 6∈ h(VL)
lR ◦ h−1(x) otherwise.

We write G
r,h
−−→ G′ to denote that G′ was obtained from G by the application of

(r, h).

Definition 4. A graph assembly system is a pair (G0, Φ) where G0 is the initial
graph and Φ is a set of rules (called the rule set).

We often refer to a system simply by its rule set Φ and assume that the initial
graph is the infinite graph defined by

G0 , (N, ∅, λx.a) (1)

where a ∈ Σ is the initial symbol (here λx.a is the function assigning the label
a to all vertices).

Definition 5. An assembly sequence of a system (G0, Φ) is a finite sequence
{Gi}

k
i=0 such that there exists a sequence of actions {(ri, hi)}

k
i=1 where ri ∈ Φ

and
Gi

ri,hi

−−−−→ Gi+1

for i ∈ {0, ..., k − 1}.

Thus, a system (G0, Φ) defines a non-deterministic dynamical system whose
states are labeled graphs over VG0

. The system is non-deterministic since, at
any step, many rules in Φ may be simultaneously applicable, each possibly via
several witnesses.

Two vertices in a graph G are connected if there is a path (sequence of edges)
connecting them in G. The connectivity relation on V is an equivalence relation
partitioning V into sets {Vi}i∈I where v1 and v2 are connected if and only if
v1, v2 ∈ Vi for some i. The sets Vi are called the components of G. A graph G is
connected if it has exactly one component.

Definition 6. A connected graph G is reachable in a system (G0, Φ) if there
exists an assembly sequence {Gi}

k
i=0 of (G0, Φ) such that G is isomorphic to

some component of Gk. The set of all such reachable graphs is denoted R(G0, Φ),
or just R(Φ) if G0 defined by (1).

Definition 7. A graph G ∈ R(G0, Φ) is stable if for all G′ there does not exist
an action (r, h) on the disjoint union G q G′ such that r = (L,R) ∈ Φ and
h(L)∩VG is nonempty. The set of all such stable graphs is denoted S(G0, Φ), or
just S(Φ) if G0 defined by (1).

(a)

(b)

Fig. 1. Example assembly sequences arising from the rule sets defined in Examples 1
and 2. The symbol ⇒∗ denotes the application of more than one rule and, in the first
transition of (a), for example, demonstrates the concurrent application of rules. (a)
Φ1 produces unstable chains and stable cycles. (b) The stable set of Φ2 is exactly the
four-cycle.

3 Examples

In this section we describe several examples. Our goal is to illustrate the utility
of the graph grammar approach to defining or characterizing self assembling
systems. Thus, we attempt with these examples to span a wide spectrum of
phenomena.

We begin by illustrating the approach with a simple example.

Example 1. Define a constructive rule set by

Φ1 =







a a ⇒ b − b,

a b ⇒ b − c,

b b ⇒ c − c

We use the position of the nodes in the presentation of the rules to denote the
re-labeling. For example, the first rule in Φ1 is given by

L = ({1, 2}, ∅, λx.a)

R = ({1, 2}, {{1, 2}}, λx.b)

An example assembly sequence for Φ1 set is shown in Figure 1(a). The reachable
set R(Φ1) consists of all cycles and chains. Only cycles are stable however. This
is because, once a chain closes into a cycle (using the last rule), all of its nodes
are labeled by c, which does not appear in the left hand side of any rule. Thus,
the stable set S(Φ1) consists only of cycles. N

The rules in example 1 are not useful if cycles of a particular size are desired.
In fact, it can be shown [14] that if a set of binary rules rules produces a cyclic
graph of size n, then it produces cyclic graphs of size kn for all k ∈ N (the result
is actually somewhat more general). The next example shows how get around
this using larger rules.

Example 2. Define a mixed rule set with three binary constructive rules, two
ternary constructive rules and one binary destructive rule by

Φ2 =



















































a a ⇒ b − c,

d

fb

 JJ ⇒

d1

f1b1

 JJ
,

a c ⇒ e − d,

f1

gb1

 JJ ⇒
f2

g1b2

 JJ
,

a e ⇒ g − f, b2 − f2 ⇒ b3 f3

An example assembly sequence for Φ2 is shown in Figure 1(b). The three bi-
nary constructive rules yield chains of length 4. The two constructive and cyclic
ternary rules “triangulate” the cycle. The last rule, removes the first triangulat-
ing edge to yield a length 4 cycle, which is the unique stable graph of the system.
N

Graph grammars are a generalization of grammars on strings studied in com-
puter science. Thus, they can do anything that string grammars can do (rep-
resent regular languages, arbitrary computation, ...). In the next example, we
show how to simulate a string grammar in Chomsky Normal Form [9] with a
graph grammar. From the example, it should be clear that any string grammar,
context-free or context sensitive, can be simulated in a similar fashion.

Example 3. A context free string grammar is said to be in Chomsky Normal
Form if all of its productions are of the form A → BC or A → x where B and
C are not the start symbol S and x is a terminal symbol. To simulate a string
grammar Γ with a graph grammar system (G0, Φ), we use the alphabet

ΣΓ ∪ {τ}

where ΣΓ consists of all terminal and non-terminal symbols from Γ and τ is a
new symbol. To represent the production A → BC, we use the set of rules of
the form

∗1

τ

A ∗2 ⇒ ∗1

��
B

@@
C ∗2

where ∗1 and ∗2 range over all symbols in Σ or may be left out to include
situations wherein A is at the end of the current derivation. Similarly, for the
production A → x, we use a set of rules of the form

∗1 A ∗2 ⇒ ∗1 x ∗2

Fig. 2. An assembly sequence arising from the rule set defined in Example 4 that
produces arbitrarily long “trusses”. Although there are an infinite number of nodes
labeled a, we only show them if they are about to be used in a rule application. Note
that the sub-graph c −−d appears at the beginning of each new truss section.

where, once again, ∗1 and ∗2 range over all symbols in Σ or may be left out.
The initial graph G0 contains an infinite discrete graph all of whose vertices
are labeled τ except one, which is labeled with S, the start symbol of Γ . The
reachable set of the graph grammar consists of all chains of terminal and non-
terminal symbols corresponding to derivations in Γ , and the stable set consists
of chains of terminal symbols corresponding to strings in the language L(Γ)
generated by G. N

We believe the utility of the graph grammar approach is not in its ability to
model computation, but in representing the topology of assemblies. In the next
example, we illustrate how repeating truss-like structures can be formed using a
simple set of rules.

Example 4. Define a rule set by

Φ4 =















a b ⇒ c − d,

a d ⇒ e − f,

c e ⇒ g − h,

f − h ⇒ c − d

and define an initial graph to be discrete, with each node labeled a except one
“seed” node labeled b. The reachable set of this grammar consists of truss-like
structures. There are no stable trusses, as there is always a way to extend a truss
of a given length. Figure 2 illustrates an assembly sequence for this grammar. N

Of course, more sophisticated grammars can be defined to produce even more
complicated structures.

A crucial problem for self assembly is: Given a desired graph Gd, produce a
set of assembly rules Φ so that S(Φ) = {G} and G ' Gd. The solution to this
problem could be used as the basis for an automatic self-assembly design tool,
and turns out to be solvable, as the next example, which assumes that Gd is
acyclic, suggests.

a

a

a

a a

a

a

a

a

a

a a

a

a

g i

k l
a h ⇒ l k

i

k l
⇒ l k

g i

l

d
b

m n k e ⇒ m n
l

d
b

m n k e ⇒ m n

g

h

i

a f ⇒ i� h

d

e

b
a c ⇒ d� e

g

h

i

a f ⇒ i hg

h

i

a f ⇒ i h

d

e

b
a c ⇒ d ed

e

b
a c ⇒ d e

f

g
a a ⇒ g� f

b
c

a a ⇒ b� c

f

g
a a ⇒ g f

f

g
a a ⇒ g f

b
c

a a ⇒ b c
b

c
a a ⇒ b c

Fig. 3. A rule set that produces a given tree structure as uniquely stable can be au-
tomatically obtained by disassembling the tree and defining rules to build it from the
bottom up.

Example 5. Given an acyclic graph T = (V,E), we can define a rule set ΦT

such that T is uniquely stable with respect to the system (G0, ΦT). We proceed
by first disassembling T into a binary assembly graph, as illustrated in Figure 3.
The root of the assembly graph is T , inner nodes are sub-trees of T , leaf nodes
are singletons. The children of a sub-tree are obtained by deleting an edge from
the subtree. Rules are then defined that reassemble the tree from the bottom
up, as shown in Figure 3. Two new labels are used in each rule. It can be shown
that the resulting rule set, which contains |V | − 1 rules and uses 2|V | − 2 labels,
makes (a graph isomorphic to) the tree T as uniquely stable. N

In fact, a rules set can be automatically synthesized to make any desired
graph uniquely stable using only binary and ternary rules [14]. The procedure is
to use the above algorithm to grow a spanning tree of the desired graph, and then
triangulate the cycles in the graph using a procedure similar to that in Example
2. In another paper [14], we explain that this triangulation procedure using
ternary rules is necessary: There does not exist a binary rule set that produces a
uniquely stable cyclic graph.

A graph grammar need not define an assembly process wherein an assembly
is “grown” from smaller parts. Non-stationary dynamical systems can be defined
too, as the next example illustrates.

Example 6. A rule set need not define an assembly process, as in the following
set, containing constructive and destructive rules as well as mixed rules that
simply re-label nodes.

Φ6 =















e g ⇒ c − h,

a − c ⇒ d e,

b − h ⇒ f − b,

d − f ⇒ g − a

g

g

a

b

g

g

g

g

d

b

g

g

g

g

d

b

h

g

g

g

d

f

b

g

g

g

g

a

b

g

c

e
c c c

...

Fig. 4. The rule set defined in example 6 defines a dynamical system, wherein a part
“ratchets” along a substrate.

An assembly sequence of Φ3 is shown in Figure 4. The sequence starts with a
cycle labeled with a, b and c attached to linear substrate of parts labeled g. As
the figure shows, the rule set “ratchets” the 3-cycle along the substrate. N

There are other models of self-assembly besides graph grammars, as discussed
in Section 5. For example, many researchers consider passive tile systems wherein
the parts to be assembled do not have control over their states. Instead, 2D
polygonal tiles combine along complimentary edges [1, 21, 2, 15]. What defines
complimentary depends on the physical setting. For example, edges might consist
of a strand of un-hybridized DNA: A complimentary strand on another tile will
attach to it under suitable conditions [21].

A tile system is wedded to a particular geometry that cannot be modeled
explicitly in graph grammars. However, the topology induced by the geometry
can be modeled. For example, square tiles assembling on a planar surface produce
a regular square lattice of tiles: Each tile is attached to four others. The next
example shows how to simulate this situation. First we define a tile system in a
similar manner to the tile systems defined elsewhere[21].

A (square) tile system (T,Σ, τ,R) consists of a discrete set T of tiles, an
assignment τ : T × {N,S,E,W} → Σ of symbols to the north, south, east and
west edges of each tile, and a symmetric relation R ⊆ Σ × Σ that specifies
which pairs of edge symbols are complimentary.1The east edge of a tile may
assemble with the west edge of another tile if the symbols on those edges are
complimentary, and similarly for north and south. One usually starts with a seed
tile s ∈ T placed on a planar grid, and adds tiles one at a time following the
rules above.

Example 7. To model a tile system (T,Σ, τ,R) with a graph grammar (Φ,G0),
we first define a new set of symbols. For each symbol a ∈ Σ, we add the “sym-
bols”

(N, a), (S, a), (E, a), (W,a) and (N, a)′, (S, a)′, (E, a)′, (W,a)′

1 The tile assembly model usually includes a binding energy for each pair of symbols,
which we leave out for simplicity.

y’

x’

E W
S

N

y E W
S

N

y E W
S

N

y E W
S

N

y E
S

N

N

(N,a)

(E,b)

(S,c)

(W,d)

N N N N

y E W
S

N

y E W
S

N

y E W
S

N

y E W
S

N

y E
S

N

y E W
S

N

y E W
S

N

y E W
S

N

y E W
S

N

y E
S

N

y E W

W

W

W

W
S

y E W
S

y E W
S

y E W
S

y E
S

...

...

...

...

...

...

...

...

...

...

...

(E,b)(W,d)

(N,a)

(S,c)

x

(a)

(b)

Fig. 5. (a) A graph representing a square tile with edges labeled a, b, c and d. (b) A
graph representing the underlying grid or substrate onto which the tiles assemble.

to stand for the edges that tiles may have. The unprimed version of each symbol
represents an unmatched edge and the primed version represents a matched edge.
We also add the four new symbols

x, y, , x′, and y′.

The symbols x and x′ represent the “center” of a tile in different states: either
attached to the underlying grid (primed) or not (unprimed). The symbols y and
y′ represent points on an underlying grid that are either unoccupied or not,
respectively. Finally, we also add new symbols

N, S, E, and W

that will be used to specify the orientation of the underlying grid.

The initial graph G0 consists of two parts: the underlying grid and an infi-
nite supply of tiles of each type. Figure 5(a) shows a graph that represents an
unattached tile t ∈ T where τ(t,N) = a, τ(t, E) = b, τ(t, S) = c and τ(t,W) = d.
The underlying grid, shown in Figure 5(b), initially consists of an infinite square
lattice of nodes labeled by y separated by length 2 chains labeled with N and S

or E and W . We also start with a copy of the seed tile attached to one of the y

nodes.

To assemble tiles, it is not enough to simply combine tiles along complimen-
tary edges. This could result in non-planar assemblies that are not possible in
the tile assembly model. We must include information about how the tiles attach
to the substrate. In effect, the topology of the initial underlying grid specifies
the possible topologies of the resulting assembly (and could in fact be cylindri-
cal, toroidal, etc). To mimic the tile assembly model, therefore, we add, for each
(p, q) ∈ R the two rules

⇒

(E,p) (W,q)

x’ x

y’ y

(E,p)’ (W,q)’

x’ x’

y’ y’E WE W

⇒

(E,p) (W,q)

x’ x’

y’ y’

(E,p)’ (W,q)’

x’ x’

y’ y’E WE W

and similar rules for north-south pairs. The first rule specifies how an unattached
tile may bind to a tile already attached to the substrate via the east and west
edges of the two tiles. The second rule specifies how two tiles already attached
to the substrate but not to each other may bind. Note that without the E and
W nodes in the substrate, the “edges” of the tiles could permute and direction
would not be preserved. N

4 Physical Instantiations

4.1 A Particle Based Model

In our first physical embedding of the graph grammar formalism, we suppose that
a large number of robotic parts float in a stirred fluid (Figure 6). Upon colliding
(by chance), two parts will latch onto each other or not based on whether their
current labels match the left hand side of a rule in a rules set Φ. If they do latch
together, then they change their labels according to the rule. A similar scheme
works for mixed or destructive rules.

To model this system, we suppose that each part i with position xi ∈ R
3 has

a latch variable Li,j ∈ {0, 1} associated with every other robot j. When the parts
come in close proximity, they sense each other’s current label in an attempt to
find an applicable rule. If one is found, they both set their latch variable for the
other to 1 and change their labels. Otherwise the latch variable is set to 0 and
the parts bounce off each other. The dynamics of robot i are

mẍ = F1(xi, t) − cẋi +
∑

j 6=i

Li,jLj,iF2(xi, xj) (2)

where F1 is a time varying force field that models the effect of the fluid on the
part and

F2(xi, xj) , −∇xi
U(xi, xj) − b

ẋi(xj − xi)

||xj − xi||
(xj − xi)

is a damped spring, with spring potential U , modeling the latching mechanism.
We suppose that U has a minimum at ||xi − xj || = R, the desired distance
between assembled particles.

Particles float
in stirred or

agitated fluid
Occasionally,
parts collide
Occasionally,
parts collide

If states
correspond to an

assembly rule,
particles stick and

change state.

Else,
particles
rebound

Fig. 6. A particle based embedding of self assembly using graph grammars.

4.2 Programmable Parts with Modulated Surfaces

In our lab we are presently building simple macro-scale devices that can im-
plement the scheme described above. The devices, which we call programmable
parts, consist of tiles with magnetic latches on their edges. The parts float on
an air table and are stirred by overhead fans. When two parts collide, they stick
(because the default positions of their magnets are complementary). After they
stick, they communicate their states to each other via IR transceivers mounted
on their edges. If the states do not correspond to a rule, the parts switch their
latches and repel away from each other. We will report on this effort in a future
publication.

In other work [13] we describe, for example, how such a mechanism would
work using capillary forces. In a related effort, we are in the preliminary stages of
considering MEMs-scale tiles whose wetabilities can be modulated [5] to realize
a controlled binding interaction.

4.3 Simulation Environment

We have begun to explore the behavior of the above model in simulation using
the rule systems we explored in this paper and Equation (2). The simulation
can handle thousands of parts by carefully considering the collision dynamics of
only neighboring parts and by using simplifying assumptions on the effect of the
fluidic stirring due to F1 in Equation (2). In Figure 7(a), we show a snapshot
of a system of parts that use the rules in Example 1. In Figure 7(b), we show a
snapshot of a system using the truss-rules in Example 4. In our lab we are using
the simulation environment to explore, for example, how quickly various rule
systems assemble structures and how various design options affect other aspects
of the assembly process. We are presently encoding the physics of more realistic
systems with non-trivial geometries and binding site physics and plan to report
on this effort in future work.

-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

(a) (b)

Fig. 7. Simulation data using Equation (2) and (a) the rules from Example 1 and (b)
the rules from Example 4.

5 Previous and Related Work

Conformational switching was first described as a symbolic process for self as-
sembly by Saitou [16], who considered the assembly of strings in one dimension.
Self assembly as a graph process has been described by the author of this pa-
per [11, 12] (although the graph grammar formalism first appeared in [14]) and
a rule synthesis procedure for trees was given that is somewhat more complex
than the one described here. A method for using potential fields and deadlock
avoidance to implement graph grammar rules with a group of mobile robots was
also described [12].

Graph grammars were introduced [8, 7] at least two decades ago and have
been used to describe a broad array of systems, from data structure maintenance
to mechanical system synthesis. Graph grammars are, of course, a generalization
of the standard “linear” grammars used in automata theory and linguistics [9]
and thus (incidentally), can perform arbitrary computation. The use of graph
grammars to model distributed assembly, to the best of our knowledge, is new.

There are other models of self assembly besides graph grammars, a complete
list of which is beyond the scope of this paper. But, for example, several groups
[21, 2, 3] have explored self assembly using passive tiles floating in liquid. The
tiles attach along complimentary edges (due, for example, to capillary forces
or the assembly of complimentary strands of DNA) upon random collisions. As
illustrated in Example 7 above, graph grammars are somewhat more general and
are possibly better suited to describing the topology of assemblies.

A simple dynamical model of the physics of tile assembly has been described
[13]. Somewhat similar to the stable set in this paper (Definition 7), the identi-
fication of “unique” assemblies has been explored [18]. There is also other work
on tile systems with conformal-like state information [10]. Such systems can in

fact be used to perform arbitrary computations [20] and are best understood as
two or three dimensional symbolic processes. Another approach uses geometri-
cal constraints on part-part interactions to model, for example, the assembly of
proteins into spherical shells called capsids [4]. The addition of simple process-
ing to each part, similar in capability to that assumed in the present paper, is
considered in models of the assembly of the T4 bacteriophage [19].

6 Conclusion

In this paper we have demonstrated that graph grammars can be used to model
a variety of self-assembling systems and other systems consisting if local-rule-
based interactions as well (such as the ratchet). The emphasis in graph grammars
is on the algorithmic and topological structure of assembly as opposed to the
geometrical or physical. This allows more generality than other models, which
may be wedded to a particular geometry. It should be warned, however, that
an embedding of a graph grammar into a physical environment may not respect
the rules of the grammar. For example, the geometries of the parts and the
environment may render reachable assemblies in the grammar impossible to
realize physically. The process of embedding a grammar in a physical system
is more intuitive than formal, and is the main focus of our present research.

Acknowledgments

The author’s research in self-assembly is supported in part by NSF Grant #0347955.
The author wishes to thank his collaborators Rob Ghrist and Steve Lipsky at
UIUC.

References

1. N. L. Abbott, C. B. Gorman, and G. M. Whitesides. Active control of wetting using
applied electrical potentials and self-assembled monolayers. Langmuir, 11(1):16–18,
1995.

2. L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang. Running time and program
size for self-assembled squares. In Proceedings of the thirty-third annual ACM
symposium on Theory of computin, pages 740–748, Hersonissos, Greece, 2001.

3. L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. Wilhelm P. Mois-
set de Espanés, and K. Rothemund. Combinatorial optimization problems in self-
assembly. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, pages 23–32, Montreal, Canada, May 2002.

4. B. Berger, P.W. Shor, L. Tucker-Kellogg, and J. King. Local rule-based theory
of virus shell assembly. Proceedings of the National Academy of Science, USA,
91(6):7732–7736, August 1994.

5. K. F. Böhringer, M. Cohn, K. Y. Goldberg, R. Howe, and A. Pisano. Parallel
microassembly with electrostatic force fields. In IEEE International Conference
on Robotics and Automation, Leuven, Belgium, May 1998.

6. B. Bollobás. Modern Graph Theory. Springer, 1991.

7. B. Courcelle. Handbook of Theoretical Computer Science, Volume B: Formal Mod-
els and Sematics, chapter on Graph Rewriting: An Algebraic and Logic Approach,
pages 193–242. MIT Press, 1990.

8. H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Graph-Grammars and Their Application to
Computer Science and Biology, volume 73 of Lecture Notes in Computer Science,
pages 1–69, 1979.

9. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

10. C. Jones and M. J. Matarić. From local to global behavior in intelligent self-
assembly. In International Conference on Robotics and Automation, Taipei, Tai-
wan, 2003.

11. E. Klavins. Automatic synthesis of controllers for distributed assembly and forma-
tion forming. In Proceedings of the IEEE Conference on Robotics and Automation,
Washington DC, May 2002.

12. E. Klavins. Automatically synthesized controllers for distributed assembly: Partial
correctness. In S. Butenko, R. Murphey, and P. M. Pardalos, editors, Cooperative
Control: Models, Applications and Algorithms, pages 111–127. Kluwer, 2002.

13. E. Klavins. Toward the control of self-assembling systems. In A. Bicchi, H. Chris-
tensen, and D. Prattichizzo, editors, Control Problems in Robotics, pages 153–168.
Springer Verlag, 2002.

14. E. Klavins, R. Ghrist, and D. Lipsky. Graph grammars for self-assembling robotic
systems. In Proceedings of the International Conference on Robotics and Automa-
tion, 2004. To Appear.

15. W. K. Rothemund. Using lateral capillary forces to compute by self-assembly.
Proceedings of the National Academy of Science, USA, 97(3):984–989, 2000.

16. K. Saitou. Conformational switching in self-assembling mechanical systems. IEEE
Transactions on Robotics and Automation, 15(3):510–520, 1999.

17. K. Saitou and M. Jakiela. Automated optimal design of mechanical conformational
switches. Artificial Life, 2(2):129–156, 1995.

18. Y. S. Smentanich, Y. B. Kazanovich, and V. V. Kornilov. A combinitorial approach
to the problem of self assembly. Discrete Applied Mathematics, 57:45–65, 1995.

19. R. L. Thompson and N. S. Goel. Movable finite automata (MFA) models for
biological systems I: Bacteriophage assembly and operation. Journal of Theoretical
Biology, 131:152–385, 1988.

20. H. Wang. Notes on a class of tiling problems. Fundamenta Mathematicae, pages
295–305, 1975.

21. E. Winfree. Algorithmic self-assembly of DNA: Theoretical motivations and 2D as-
sembly experiments. Journal of Biomolecular Structure and Dynamics, 11(2):263–
270, May 2000.

