
A Computation and Control Language for Multi-Vehicle Systems

Eric Klavins

Electrical Engineering Department
University of Washington, Seattle, WA
klavins@washington.edu

Abstract— We introduce the Computation and Control Lan-
guage (CCL), a guarded-command formalism for expressing
systems wherein control and computation are intertwined. A
CCL program consists of a set of guarded commands that
update continuous or discrete variables. CCL programs are
used to specify systems and program them. Their properties
can be analyzed using temporal logic. In this paper, a robot
capture-the-flag system, called the “RoboFlag Drill”, is encoded
in CCL and certain desirable properties of it are verified. The
example consists of a self-stabilizing communications protocol
whose behavior depends on the actions taken by the robots in
their environment. The paper concludes with a brief overview
of our initial implementation of the formal semantics of CCL
as a practical programming language.

I. INTRODUCTION

We are interested in designing large scale decentralized
systems that have multiple computational and controlled el-
ements, like multi-vehicle systems, sensor-actuator networks
or automated factories. Generally, to understand and control
these systems, a combination of control, computation and
communication theory is needed at various different levels.
In any non-trivial system, these seemingly separate aspects
of system design become intermingled. The result is that,
for example, the verification of the control part of the design
depends heavily on the design of the communications part,
requiring, ideally, that these two aspects of the design inhabit
the same formalism.

For instance, the problem we consider in this paper
(Section III-B) involves a group of robots that must defend
their flag against a group of opponent robots in a game
similar to capture-the-flag. Thus, each robot must perform
a low level motion control task (tracking an opponent) and
simultaneously take part in a high level communications
protocol with the other robots (to decide who should track
what opponent). The protocol we propose is self-stabilizing
[7] under certain circumstances (explored in Section V-
D) that depend on the motions of the robots. The stable
configuration of the protocol corresponds to a reasonable
agreement among the defending robots about who will track
whom and is important for the entire control scheme to
function correctly.

We specify the capture-the-flag system in a formalism
called the Computation and Control Language (CCL). CCL
is inspired by the UNITY formalism for parallel program
design [3] but is adapted to dynamical systems and control

tasks. Simply put, a CCL program consists of a set of guarded
commands that are executed in some order at each step in
the evolution of the system. One feature of CCL is that the
dynamics of the environment are modeled by a subset of
these commands and not by separate differential equations.
The result is that the distinction between the internal (logical)
and external (physical) states of the system under considera-
tion is lost, allowing a single set of tools (standard temporal
logic) to be used for modeling, specification and analysis.

The main contributions of the paper are the introduction of
CCL (Section III), including a brief description of its seman-
tics (Section IV), and the logic used to reason about CCL
programs (Section V). The freedom with which schedules
are used in the semantics of CCL is particularly new. We
also present a detailed case study of the use of CCL with
a simplified version of the above-mentioned capture-the-flag
system, which we both specify (Section III-B) and verify
(Section V-D). Ultimately we intend for CCL to be used
not only for modeling and analysis of systems but also as a
practical programming tool in its own right. Thus, we briefly
describe a runtime CCL interpreter (Section VI), a prototype
of which we have made available to the general community.
We begin with a review of related work.

II. RELATED WORK

The UNITY formalism [3] is used to specify and reason
about concurrent reactive systems [14] and has been extended
to real time systems [2]. Although UNITY was designed as
a reasoning tool, an implementation of it has been built [15].
To the best of the author’s knowledge, the application of
UNITY-like formalisms to distributed control problems has
not been well developed. Temporal logic has been used to
specify and reason about concurrent and distributed systems
as well as control systems [12].

Several efforts underway address the gulf between mod-
eling, control and computation. Giotto [8] is a language
for programming the interfaces between control-software
modules. It makes explicit the timing, mode switching and
communication aspects of an implementation that may have
been hidden (or assumed) at the initial modeling and con-
troller design stage. In CCL, one generally models and
programs these aspects from the outset, although CCL could
be used in conjunction with Giotto to schedule guarded com-
mand execution. Furthermore, CCL programs are required

to be robust to variations in low level scheduling (as in
Definition 4.3). Charon [1] is modeling language that in
essence formalizes state-charts (as in MATLAB). It provides
a means of representing switching, parallel composition
and refinement of continuous/discrete modes. In contrast,
CCL adopts a logical/symbolic based description of both
the system dynamics and the control code and is geared
toward the specification of large scale distributed control
systems. Reasoning in CCL is done with temporal logic
and could be automated using either model checking or,
more likely, theorem proving. The main difference between
CCL and hybrid systems formalisms is that one can specify
only discrete-time dynamical systems in CCL: Continuous
dynamics must be approximated or discretized. We believe
that this actually simplifies specifications while nevertheless
maintaining the essence of the systems to be specified.

CCL originated with the practical desire to specify and
program distributed robotic and control systems, such as
the Caltech Multi-vehicle Wireless Testbed [4] or automated
factories [10], in a principled yet natural manner. CCL has
since grown into a convenient tool for specifying multi-agent
control systems. CCL was first described in [11] where it is
used to specify multi-robot communication algorithms whose
communication complexities are subsequently analyzed.

III. CCL

In this section, we describe the Computation and Control
Language (CCL) informally and present a detailed example
to illustrate some aspects of the language. In later sections
we fill in many of the details left out here.

A. Anatomy of a CCL Specification

A CCL specification, or program, P consists of two parts
I and C. I is a predicate on states called the initial condition.
C is a set of guarded commands of the form g : r where g
is a predicate on states and r is a relation on states. In a
rule, primed variables (such as x′

i) refer to the new state and
unprimed variables to the old state. For example,

x < 0 : x′ > y + 1

is a guarded command stating: If x is less than zero, then
set the new value of x to be greater than the current value
of y plus 1. If x is not less than zero, do nothing.

Programs are composed in a straightforward manner: If
P1 = (I1, C1) and P2 = (I2, C2) then P1 ◦ P2 = (I1 ∧
I2, C1 ∪ C2).

Programs in CCL are thus similar in appearance to UNITY
specifications [3], except that we allow rules to be relations
instead of assignments. However, due to our desire to model
real-time, controlled systems, the semantics (i.e. interpreta-
tion) of CCL are somewhat different. To explain our choice
of semantics for CCL, we first describe the semantics of
UNITY.

UNITY Semantics: At state s, nondeterministi-
cally choose a command g : r from C. If g is
true in state s, then choose s′ such that s r s′ is
true. Repeat with the new state s′. Every command
must be chosen infinitely often in any execution.

The benefit of this interpretation is that arbitrary interleav-
ing of commands (supposedly each assigned to a different
processor) can occur — modeling the possibility for each
command to execute at a possible different rate. If one can
reason that any interleaving leads to a correct behavior, then
one has a good specification of a parallel system. However, in
CCL we often combine computation and control commands
(performed by control processors or robots), such as

g(xi) : u′

i = h(x), (1)

with commands that model the environment as in

true : ||x′ − f(x,u)|| < ε. (2)

In the UNITY semantics, the latter command may be chosen
one billion times before the former is chosen at all. Of
course, one could change the guards and add an auxiliary
synchronizing state so that the intended behavior occurs. This
is essentially what we enforce with the CCL semantics.

CCL EPOCH Semantics: Commands are chosen
non-deterministically from C, but each command
must be chosen once before any command is cho-
sen again.

Thus, the execution of a system is divided into epochs during
which each command is executed exactly once. This is an
attempt1 to capture the small-time interleaving that may
occur between processors that are essentially synchronized. It
is important to note that the set of behaviors of a specification
under the CCL semantics is a subset of the behaviors of
the same program under the UNITY semantics. Thus, any
statement (in temporal logic) that is true about UNITY
behaviors is true about the CCL behaviors. CCL behaviors
may satisfy more properties, however, as discussed in Section
V and demonstrated in Section V-D.

Remark on Time: The intention is that epochs occur at
some fixed frequency, although this is not modeled explic-
itly. Thus, equation (2) would represent a periodic sampled
version of some continuous-time system.

B. The RoboFlag Drill

In this section we consider a game called RoboFlag, which
can be thought of as “capture the flag” for robots [5]. Two
teams of robots, say red and blue, each have a defensive zone
that they must protect (it contains the team’s flag). If a red
robot enters the blue team’s defensive zone without being

1The EPCOH semantics are just one of several interpretations of CCL that
we are exploring [9]. Other possibilities are that each command executes
at approximately the same frequency; or each command executes equally
many times in any interval.

0 5 10

0

5

10

15 t=0

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

0 5 10

0

5

10

15 t=0.25

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

0 5 10

0

5

10

15 t=0.5

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

0 5 10

0

5

10

15 t=0.75

Defensive Zone

1
2

3

4

5

6

1 2 3 4 5 6

Fig. 1. The first four epochs of an execution of Prf (6). Dots along the x-axis represent blue defending robots. Other dots represent red attacking robots.
Dashed lines represent the current assignment.

tagged by a blue robot, it captures the blue flag and earns a
point. If a red robot is tagged by a blue robot in the vicinity
of the blue defensive zone, it is disabled. These rules hold
when the roles are reversed as well. We do not propose to
address the full complexity of the game. Instead, we examine
the following very simple drill or exercise. Some number of
blue robots with positions (zi, 0) ∈ R

2 must defend their
zone {(x, y) | y ≤ 0} from an equal number of incoming
red robots. The positions of the red robots are (xi, yi) ∈ R

2.
The situation is illustrated in Figure 1.

We first specify in Program Pred (i) the very simplified
dynamics of red robot i. It simply moves toward the defensive
zone in small downward steps. When it reaches the defensive
zone, it stays there (as there is no rule describing what to do if
yi ≤ δ). The constants min < max describe the boundaries
of the playing field and δ > 0 is the magnitude of the distance
a robot can move in one step.

Program Pred (i)
Initial xi ∈ [min,max] ∧ yi > δ

Commands yi − δ > 0 : y′

i = yi − δ

The motion law for the blue team is equally simple. Each
blue robot i is assigned to a red robot α(i). In each step,
blue robot i simply moves toward the robot to which it is
assigned (in an attempt to intercept it), as long as taking such
an action does not lead to a collision.

Program Pblue(i)
Initial zi ∈ [min,max] ∧ zi < zi+1

Commands zi < xα(i) ∧ zi < zi+1 − δ : z′i = zi + δ
zi > xα(i) ∧ zi > zi−1 + δ : z′i = zi − δ

The dynamics of the entire drill system are defined by the
composition

Pdrill (n) = Pred (1) ◦ ... ◦ Pred (n) ◦ Pblue(1) ◦ ... ◦ Pblue(n).

To update the assignment α, each robot negotiates with its
left and right neighbors to determine whether it should trade
assignments with one of them. Switching is useful in two
situations. First, if zi < zj and α(i) > α(j), then i and j
are in conflict: Intercepting their assigned red robots requires

them to pass through each other. Second, if red robot α(i) is
too close to the defensive zone for blue robot i to intercept,
but not so for blue robot j, then the two robots should
switch assignments. The following definition captures the
latter situation.

r(i, j) ,

{

1 if yα(j) < |zi − xα(j)| − δ
0 otherwise.

(3)

Finally, we define the predicate switch(i, j) to be true if
either switching the assignments of robots i and j decreases
the number of red robots that can be intercepted or leaves it
the same and decreases the number of conflicts.

switch(i, j) , r(i, j) + r(j, i) < r(i, i) + r(j, j)

∨ (r(i, j) + r(j, i) = r(i, i) + r(j, j)

∧ xα(i) > xα(j).

The protocol is then

Program Pproto(i)
Initial α(i) 6= α(j) if i 6= j

Commands switch(i, i + 1) : α(i)′ = α(i + 1)
α(i + 1)′ = α(i)

and the full RoboFlag drill system is given by

Prf (n) , Pdrill(n) ◦ Pproto(1) ◦ ... ◦ Pproto(n − 1).

IV. THE SEMANTICS OF CCL

A. Basic Definitions

We begin with a set V of variable symbols and a set Val

of values that the variables may take. The set Val contains
natural numbers, real numbers, sets, etc. We suppose that
the type of a variable does not change, even though its value
might. The definitions of state, state function and action in
this subsection and the definition of behavior in the next are
taken from [12].

A state s is a function from V to Val . The value of a
variable v ∈ V with respect to a state s is denoted s[[v]]. A
state function f is an expression over symbols in V and
constant symbols. The set of all states is denoted S. The

meaning of a state function f , denoted [[f]], is a function
from states into values and is defined by

s[[f]] , f (∀v : s[[v]] / v),

that is, the value obtained by replacing all (free occurrences
of) variables in f by their values under the state s. A
predicate is simply a boolean valued state function.

We denote by V ′ the set {v′ : v ∈ V }, that is, the set of
all primed variables symbols from V . We assume V ∩V ′ = ∅.
An action is a boolean valued expression over variables in
V , primed variables in V ′ and constant symbols. If f is a
state function then f ′ denotes f(∀v : v′ / v). If p is a
predicate, then p is also an action (with no primed variables)
and p′ is an action with only primed variables. The meaning
of an action a, denoted [[a]], is a function from S × S into
values and is defined by

s[[a]]t , a (∀v : s[[v]] / v, t[[v]] / v′),

that is, the value obtained by replacing all (free occurrences
of) unprimed variables in a by their values under the state s
and replacing all (free occurrences of) primed variables in a
by their values under t. For example,

s[[x′ > x + 2y − 1]]t ≡ t(x) > 2s(x) + s(y) − 1.

Remark We usually regard variables not appearing primed
in an action as not changing. So, for example, x′ > x + 1
refers to

x′ > x + 1 ∧ ∀v ∈ V − {x} . v′ = v.

A particular kind of action is the guarded command,
consisting of a predicate g (the guard) and an action r (the
rule), usually written g : r. The meaning of g : r is a function
from S × S into values and is defined by

s[[g : r]]t , (s[[g]] ∧ s[[r]]t) ∨ (¬s[[g]] ∧ s = t).

We give the name skip to the guarded command

true : ∀v.v′ = v (4)

Note that skip is equivalent to the guarded command false : a
for any action a. Finally, a program or specification is a pair
P = (I, C) where I is a predicate called the initial condition
and C is a set of guarded commands. If P1 = (I1, C1) and
P2 = (I2, C2) are programs, their composition is defined by

P1 ◦ P2 = (I1 ∧ I2, C1 ∪ C2).

B. Behaviors and Schedules

Definition 4.1: A behavior is a sequence σ : N → S of
states. We denote σ(k) by σk. A schedule for a program
P = (I, C) is a function ω : N → C ∪{skip} that assigns to
each step either a guarded command from C or the command
skip in Equation (4). The behavior σ is called an ω-behavior
for the program P = (I, C) if

i) σ0[[I]]

ii) ∀k . σk[[ω(k)]]σk+1.

If ω(k) = skip then we call step k a stutter step.

Based on behaviors, we will provide two ideas of what it
means for a behavior σ to satisfy a program P (other less
restrictive semantics are defined in [9]). For each semantics
(i.e. meaning) M we will define the M -meaning of P ,
denoted

[[P]]M : (N → S) → {true, false}

to be a boolean valued function on behaviors. We use the
usual prefix notation σ[[P]]M to denote the (boolean) value
that [[P]]M assigns to σ.

The least restrictive schedule for a program is one that
eventually applies each guarded command, interleaving them
in any order, as in UNITY [3]. The fact that each guarded
command is eventually applied is equivalent to saying that
the system enjoys weak fairness [12].

Definition 4.2: (UNITY SEMANTICS) Given a program
P = (I, C) and a behavior σ, then σ[[P]]UNITY = true if
and only if there exists a schedule ω such that

i) σ is an ω-behavior for P
ii) for all c ∈ C, the set ω−1(c) is infinite.

However, a reasonable assumption for scheduling a program
is that the entire set of guarded command is fired over and
over again. That is, that no command is fired again until
all commands have been fired once. The set of steps during
which each command is fired once is called an epoch. This
notion is defined formally in the next definition.

Definition 4.3: (EPOCH SEMANTICS) Given a program
P = (I, C) and a behavior σ, then σ[[P]]EPOCH = true if
and only if there exists a schedule ω such that

i) σ is an ω-behavior for P
ii) there exists an increasing sequence of natural numbers

{ni}i∈N with n0 = 0 such that for all i, if ni ≤ k <
l < ni+1 then either

ω(k) 6= ω(l) or ω(k) = ω(l) = skip.

The subsequence 〈σni
, ..., σni+1−1〉 is called the ith epoch

of σ under ω.

V. PROPERTIES OF SPECIFICATIONS

A. Temporal Logic

In this and the following sections we will need to reason
about the effect of an action on the set of all states satisfying a
predicate. For this, we use the Hoare triple notation (standard
in Computer Science) defined in CCL as follows.

Definition 5.1: Let a be an action and let P and Q be
predicates. Then the Hoare triple relating P to Q by a is
defined as

{P} a {Q} , ∀s, t . s[[P]] ∧ s[[a]]t ⇒ t[[Q]].

We reason about entire CCL programs using standard
temporal logic [13], [12], which due to space constraints and
the desire not to be redundant, we do not describe completely
here. Briefly, temporal logic formulas are constructed from
predicates, actions, basic connectives (such as ∨, ∧, ¬ and
⇒) and the special operators 2 (always) and 3 (eventually).
Given a temporal logic formula F , we define [[F]] to be
a function from behaviors to {true, false} and say that σ
satisfies F if σ[[F]]. If p is a predicate, a an action, and F
and G be arbitrary temporal logic formulas, then

i) σ[[p]] , σ0[[p]],
ii) σ[[a]] , σ0[[a]]σ1,

iii) σ[[¬F]] , ¬σ[[F]],
iv) σ[[F ∧ G]] , σ[[F]] ∧ σ[[G]],
v) σ[[2F]] , ∀n.〈σn, σn+1, ...〉[[F]].

The formula 3F is equal to ¬2¬F . The following properties
are useful in reasoning about programs. They are similar to
those introduced in [3] and [14].

Definition 5.2: Let p and q be predicates. Then
i) p co q , 2 (p ⇒ [(q′ ∨ skip) ∧ 3q′])

ii) p ; q , 2(p ⇒ 3q).

Thus, p co q (read “p constrains q”) means that whenever
p is true, then after the next time the state changes, q will
be true. The second property, p ; q (read “p leads to q”)
means that whenever p is true, q will be true at some later
time.

One of the most common properties we desire of a CCL
program is that starting from any initial state allowed by I ,
some property F is eventually always true, that is 32F .
Thus, if the system is disturbed from equilibrium (F), it will
eventually return. We call this “strong stability” (as opposed
to just stability which, in computer science, is 2F). The rules
for showing strong stability are summarized in the following
lemma.

Lemma 5.1: Let F be a temporal logic formula, V be a
state function over the natural numbers, including zero, and
σ be any behavior. Then

i) For any k ∈ N, if σ[[V = k ; (G ∨ V < k)]] then
σ[[V = k ; G]].

ii) For any k, if σ[[V = k ; F]] and σ[[F co F]] then
σ[[32F]].

We use temporal logic formulas to specify the behaviors
we desire for the CCL programs we write. Thus, we would
like to know when all behaviors allowed by a particular
program also satisfy a given temporal logic formula. This
is captured in the following definition in which M ranges
over UNITY and EPOCH .

Definition 5.3: Let P be a CCL program and F a tem-
poral logic formula. Then P models F with respect to the
semantics M , written P |=M F , if and only if

∀σ . σ[[P]]M ⇒ σ[[F]].

If P |=UNITY F we just write P |= F . Note that P |= F
implies that P |=EPOCH F , but not conversely.

B. Reasoning About UNITY

We wish to determine when P |= F by examining the
initial condition and the commands of P . We first have a
lemma relating the commands in a program P with the co
relation.

Lemma 5.2: Let P = (I, C) be a program and p and q be
predicates. If for all commands c ∈ C we have {p} c {q}
then P |= p co q.

That is, whenever the effect of any guarded command exe-
cuted in a state for which p is true results in a state for which
q is true, we may conclude that p co q.

The formula p co p implies that once p becomes true, it
stays true. This is reflected in the following lemma:

Lemma 5.3: Let P = (I, C) be a program and p be a
predicate. Then if I ⇒ p and P |= p co p, then P |= 2p.

The next lemma is a rule for showing progress.

Lemma 5.4: Let P = (I, C) be a program and p and q be
predicates. If {p} c {p ∨ q} for all c ∈ C and if there exists
a d ∈ C such that {p} d {q}, then P |= p ; q.

C. Reasoning About EPOCH

Determining when P |=EPOCH F even if P 6|= F
(under the UNITY semantics), requires examining behaviors
on an epoch by epoch basis, as the inference rule in this
section implies. We use the notation Π(C) for the set of all
permutations (bijections) π : {1, ..., |C|} → C.

Lemma 5.5: Let P = (I, C) be a program with C =
{c1, ..., cn} and let p be a predicate. If there exists a predicate
q such that

i) I ⇒ q;
ii) q ⇒ p;

iii) for all π ∈ Π(C) it is the case that

{q} cπ(1) {p ∨ q} cπ(2) ... cπ(n−1) {p ∨ q} cπ(n) {q};

then P |=EPOCH 2p.

D. Properties of the RoboFlag System

We now verify several properties of Prf (n), defined in
Section III-B. In particular, we show that (1) no two blue
robots collide; (2) under certain assumptions, the assignment
protocol stabilizes (eventually no switches ever occur again);
and (3) under certain restrictions on the initial positions of
the robots, the protocol stabilizes before the red robots reach
the defensive zone. Due to space considerations, we only
sketch the proofs. First, we show that no two blue robots
collide.

Theorem 5.1: Prf (n) |= 2zi < zi+1.

Proof (Sketch): We first use Lemma 5.2 to show that
zi < zi+1 co zi < zi+1. Given i, the only commands that
change zi or zi+1 are the second command in Pblue(i) and
the first in Pblue(i+1). In the first case {zi < zi+1} c {zi <
zi+1} is equivalent to

zi < zi+1 ∧
(

zi < xα(i) ∧ zi < zi+1 − δ : z′i = zi + δ
)

⇒ z′i < z′i+1

which is easily shown to be true using the definition of
guarded command. A similar argument shows that the first
command of Pblue(i+1) also preserves zi < zi+1. With the
trivial fact that Irf (n) ⇒ zi < zi+1, we have the desired
result using Lemma 5.3.

Next, we show that the assignment protocol self stabi-
lizes. That is, we show that eventually no more assignment
switches will be made. For convenience, define a predicate
Q (for “quiescent”) by

Q , ∀i.¬switch(i, i + 1). (5)

To prove the result, we make use of a Lyapunov style
argument (as in Lemma 5.1), showing that a non-negative
function decreases with each switch. First define

ρ ,

n
∑

i=1

r(i, i)

to be the total number of blue robots that are too far away
to reach their assigned red robots, assuming all the robots
move at the same rate. And define

β ,

n
∑

i=1

n
∑

j=i+1

γ(i, j), where γ(i, j) ,

{

1 if xα(i) > xα(j)

0 otherwise,

to be the total number of conflicts in the current assignment.

Noting that ρ ∈ {0, ..., n} and β ∈ {0, ...,

(

n
2

)

}, we

define V by

V ,

[(

n
2

)

+ 1

]

ρ + β.

Note that V ≥ 0. Our goal is to show that V does not
increase. This is true, however, only under certain conditions,
a full analysis of which are beyond the scope of this paper.
Instead, we will assume that the system is “safe” in the
simple (and very conservative!) sense defined by

Safe , 2 (∀i . r(i, i) = 0 ∧ zi+1 − zi > 2δ) .

Although Safe is true only for certain behaviors allowed
by Prf , the protocol stabilizes for many others that we do
not describe. Essentially (with Safe) we are avoiding the
situation where two blue robots almost collide, and therefore
make no progress toward their assignments; and the situation
where a red robot alternates between being far enough for
its defender to intercept and too close to intercept in a single

epoch. In any case, a simple stabilization theorem is as
follows.

Theorem 5.2: Prf (n) |= Safe ⇒ 32Q.

Proof (Sketch): We first show that for any k ∈ N,

Prf (n) |= Safe ⇒ (V = k ; (V < k ∨ Q)) (6)

using Lemma 5.4. Since the formula Safe holds, none of
the motion commands in Pred (n) or Pblue(n) will decrease
V . Thus, for all the motion commands c, we have {V =
k} c {V = k}. Also, given that V = k and that Q is
false (otherwise we are done), there must be a command
c in Pproto(n) whose guard is true. The effect of this clause
is to decrease V since it clearly decreases β. Thus, for this
clause, {V = k} c {V < k} so that (6) holds by Lemma
5.4. The result then follows using (6) and Lemmas 5.2 and
5.1.

Last, we show that if the red robots start “far enough”
away, then the assignments stabilize before any red robot
reaches the defensive zone. We first define what “far enough”
means:

Far , ∀i.yi > δκn + δ ∧ xi + 2δκn ≤ xi+1 (7)

where κn is a the maximum value of V :

κn , (n + 1)

(

n
2

)

+ n.

Note that, since Far is a predicate, it applies only to the
first state of any behavior for which the specification applies.
Thus, it will be a restriction on the initial condition of Prf (n).
Also, note that the protocol can only stabilize before the red
robots get to the defensive zone under the assumption that the
protocol commands and the red robot commands are executed
equally often. Thus we will need the EPOCH semantics for
the following theorem.

Theorem 5.3: Prf (n) |=EPOCH Far ∧ Safe ⇒
2 (¬Q ⇒ ∀i.yi > δ).

Proof (Sketch): With the fact that ¬Q ⇒ V > 0, it
suffices to show that

Prf (n) |=EPOCH Far ∧ Safe ⇒ 2(∀i . yi > δV).

We will use Lemma 5.5 with q defined to be the predicate
yi − δ > δV . Because ¬Q, some switch will occur to
decrease V . Because Safe and Far , no switch will occur
to increase V . Now let i ∈ N. All commands excpet the one
in Pred (i) leave yi the same and all commands except the
active switch command(s) in Pproto(n) will decrease V by
at least one. We need only consider whether the red clause
occurs first, or after one of the switch commands. In both
cases we have that q remains true. At the end of the epoch,
yi will have decreased by δ and V will have decreased by at
least one, thus part (iii) of Lemma 5.5 is satisfied. The other
preconditions of the lemma are simple.

VI. CCL SOFTWARE TOOLS

In addition to providing a tool for modeling systems
and a logic for reasoning about such models, we are de-
veloping a programming language version of CCL for the
implementation of controllers in settings where control and
communication depend on each other. To this end, we have
built a prototype CCL interpreter called CCLi. CCLi input
consists of basic types (boolean, integer, floating point, string,
list, lambda expression and records), a rich set of possible
expressions on these types, and programs. A program is
essentially a specification as defined in Section IV except
that rules are sets of assignments (as opposed to arbitrary
relations as in Section IV). Also, programs may be composed
with hidden and shared variables as in

P1 ◦ P2 sharing x, y

which means that any use of variables named x or y in P1 and
P2 refer to the same object, while all other variable references
are local to P1 or P2 as the case may be.

CCLi includes an interface to shared libraries (writ-
ten in C++ for example) so that it can easily be in-
terfaced to libraries in other languages, simulation soft-
ware or a controls testbed. We are presently experiment-
ing with CCLi program development with the Caltech
Multi-Vehicle Wireless Testbed [4]. More information about
CCLi, including many examples such as the encoding
of the RoboFlag Drill from this paper, can be found at
http://www.cs.caltech.edu/∼klavins/ccl/.

VII. CONCLUSION

We have introduced a distributed systems based formalism,
CCL, for modeling control systems wherein computation
takes a primary role. We demonstrated CCL by specifying
and verifying the RoboFlag drill controller and its self-
stabilizing protocol. This example is typical of the sorts
of systems that we wish to specify and build, involving
both control (albeit extremely simple in this example) and
distributed computation.

The verification of high level algorithms such as the one
presented in this paper, however, represents only the first
step on the design path. We are presently exploring methods
for refining CCL specifications into executable code by
applying the formalism to increasingly rich examples from,
for example, our multi-vehicle testbed [4] where we plan to
have real vehicles running verified CCL programs.

The CCL formalism also presents certain difficult chal-
lenges. Although it is easy to represent the idea of strong
stability (32F) from which standard notions of stability
in control (e.g. asymptotic stability) can be defined, other
notions crucial to control theory are not so straightforward.
For example, the notion of robustness to model uncertainty
is in particular not expressible in CCL (or any other related

formalism), because logical and interleaved-execution mod-
els do not admit naturally metrizable space. Recent results in
concurrency theory [6], where metrics are defined on discrete
probabilistic transition systems, may be applicable to this
problem, however.

Acknowledgments

Many of the ideas in this paper grew out of discussions
with Jason Hickey, Richard M. Murray, Raff D’Andrea and
Reza Olfati-Sabor. Natarajan Shankar made several sugges-
tions regarding self-stabilizing protocols. This research is
supported in part by the AFOSR, grant number F49620-01-
1-0361.

VIII. REFERENCES

[1] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular
specifications of hybrid systems in CHARON. In Hybrid
Systems: Computation and Control, LNCS 1790, pages 6–19,
Pittsburgh, PA, 2000. Springer-Verlag.

[2] A. Carruth. Real-time UNITY. Technical Report TR-94-10,
University of Texas at Austin, 1994.

[3] K. M. Chandy and J. Misra. Parallel Program Design: A
Foundation. Addision-Wesley, 1988.

[4] L. Cremean, B. Dunbar, D. van Gogh, J. Hickey, E. Klavins,
J. Meltzer, and R. M. Murray. The caltech multi-vehicle
wireless testbed. In 41st IEEE Conference on Decision and
Control, Las Vegas, NV, December 2002.

[5] R. D’Andrea, R. M. Murray, J. A. Adams, A. T. Hayes,
M. Campbell, and A. Chaudry. The RoboFlag Game. In
American Controls Conference, 2003.

[6] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangadon.
The metric analogue of weak bisimulation for probabilistic
processes. In Proceedings of the 17th IEEE Symposium on
Logic in Computer Science (LICS), pages 413–422, 2002.

[7] E. W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Communications of the ACM, 17(11):643–
644, November 1974.

[8] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto:
a time-triggered language for embedded programming. In
Proceedings of the First International Workshop on Embedded
Software, LNCS 2211, pages 166–184. Springer-Verlag, 2001.

[9] E. Klavins. The computation and control language (CCL). In
Progress.

[10] E. Klavins. Automatic compilation of concurrent hybrid
factories from product assembly specifications. In Hybrid
Systems: Computation and Control, LNCS 1790, pages 174–
187, Pittsburgh, PA, 2000. Springer-Verlag.

[11] E. Klavins. Communication complexity of multi-robot sys-
tems. In Workshop on the Algorithmic Foundations of
Robotics, December 2002.

[12] L. Lamport. The temporal logic of actions. ACM Transactions
on Programming Languages and Systems, 16(3):872–923,
May 1994.

[13] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1992.

[14] J. Misra. A logic for concurrent programming: Safety and
Progress. Journal of Computing and Software Engineering,
3(2):239–300, 1995.

[15] R. T. Udink and J. N. Kok. Impunity: UNITY with procedures
and local variables. In Mathematics of Program Construction,
pages 452–472, 1995.

