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Abstract— We introduce a way to compose two local rule sets
to form an environmental sensor. Each set of local rules results
in a different global behavior when interpreted by a set of
interacting programmable particles. In the composed system,
the particles choose which set of rules to use depending on
whether or not a certain condition is true or false about the
initial state of the system. The global behavior of the system
eventually matches only one set of rules, signaling that the
particles have collectively recognized the condition on the initial
state. We demonstrate the composition method on our robotic
testbed.

I. INTRODUCTION

Self-organization is the phenomenon by which many lo-
cally interacting particles form global behaviors. It is ubiq-
uitous in nature. For example, virus capsids, cell-membranes
and tissues are all self-assembled from smaller components
in a completely distributed fashion and the processes they
form are the result of local interactions. Self-organization is
beginning to find its way into engineering, harnessed using
a variety of technologies such as DNA [1], [2], PDMS [3],
MEMs [4] and robots [5], [6], [7].

We are particularly interested in self-organizing systems
that are programmed by local interaction rules. The rules
state what the result of a local interaction among particles
should be in terms of the local internal states of the particles
and the connection topology they form. The formal tool
we use to describe an analyze these systems is the graph
grammar [8], which we have used to describe robotic self-
assembly [5], [6], [9], self-replication [10] and cooperative
control [11].

Complex self-organized behaviors, described by graph
grammars or otherwise, are difficult to engineer due to their
massively concurrent nature and vast irregular state spaces.
To attempt to harness this complexity, we are exploring
methods with which to compose local-rule-based behaviors
to form composite systems. The idea is that a complex rule
set with easily determined properties can be formed from the
composition of many simpler ones with known properties.
This can be done in a variety of ways. One may form a
system that first uses one set of local rules and then another.
This is not necessarily straightforward since it is difficult
for the participants to decide using only local interactions
when to start using the second set of rules. Furthermore, the
global properties resulting from the combination of two rule
sets may be difficult to determine.

In this paper, we describe one particular composition,
the boolean recognizer. The construction takes two output
grammars and results in a system that behaves like one or the
other depending on whether certain environmental factors are
present in the initial condition. We describe the grammatical
formalism, introduce the construction, give examples and
prove the construction results in the expected global behav-
ior. Finally, we demonstrate the construction with several
examples designed for our self-organizing programmable-
parts robotic testbed [5], [6].

II. RELATED WORK

Environmental sensor networks based on systems of large
numbers of autonomous robots have been demonstrated for
many types of tasks, such as localization and navigation
[12], exploration [13], and chemical plume sensing [14].
In addition, methods for the decentralized coordination of
autonomous agents to achieve behavioral consensus have also
been previously demonstrated [15], [16].

However, whereas the methods described in [15], [16]
lead to an average behavior that is dependent on the initial
states of the agents, the method described in this paper leads
to one of two behaviors, which is determined by initial
environmental conditions. In this sense, our method derives
more from the notion of consensus as defined in computer
science [17] than as defined in the control systems literature.
The notion of composition as used here is also grounded in
computer science, where provably correct methods for the
composition of programs are of great interest [18].

III. DEFINITIONS

This section contains the basic definitions of graph gram-
mars and introduces the idea of a boolean recognizer. The
notion of graph grammar used here is almost identical to
that defined in [8], except for the use of unary rules defined
below.

A. Graphs

We use labeled graphs to describe the state of a self-
assembling system. In this formalism, vertices represent
the parts of a system which may be, for example, robots,
molecules or particles. Edges represent a connection of some
kind between parts formed by, for example, a communication
link, a dynamic coupling or a chemical bond.
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Formally, a labeled graph over an alphabet Σ is a triple
G = (V, E, l) where (V, E) is a graph and l : V → Σ is
a labeling function. We refer to labeled graphs as simply
graphs for the rest of this paper. We refer to the vertices,
edges and labels of a graph by VG, EG and lG. The label
l(v) of a part v corresponds to its internal discrete state and
will be used to keep track of local information.

B. Grammars

A graph grammar consists of a set Φ of rules. Each rule
r is of the form L ⇀ R where L and R are labeled graphs
over some small vertex set VL = VR.

For example, the rule

a a ⇀ b − b

rewrites two unconnected parts labeled a as two connected
parts labeled b. This is an example of a binary rule since
|VL| = |VR| = 2. Notice that in the general definition of a
rule, there can be any number of vertices and that the context
does not matter (the parts involved can be connected to any
number of other parts, for example).

We will find it useful to define a special type of context-
dependent unary rule of the form L ⇀◦ R that rewrites the
label of a single vertex v as long it has degree d(v) = 0. For
example, the rule

ω ⇀◦ a

rewrites a part having label ω having no neighbors so that it
has the label a. The use of a different arrow (⇀◦ ) highlights
the requirement that d(v) = 0.

We make use of the several standard concepts in graph
theory to describe the way in which rules rewrite labeled
graphs. If G and H are graphs, we write graph isomorphism
G � H , which implies a witness h that maps vertices in
G to vertices in H while preserving edges and labels. If
U ⊆ V , we write the graph induced by U as G|U . We write
a sequence of graphs {Gi}i∈N.

A system (G0, Φ) consists of an initial graph G0 and a
set of rules Φ. We usually assume that EG0

= ∅. Given a
system (G0, Φ), a sequence

{Gi}i∈N

is a non-deterministic system trajectory if for all i, there
exists a rule r ∈ Φ such that:

i. If r = L ⇀ R, there exists a set of distinct vertices
U ⊆ VG0

= V such that

a. Gi|U � L and Gi+1|U � R via the same witness
h.

b. Gi|V −U = Gi+1|V −U .
c. If uv ∈ EGi

with u ∈ U and j ∈ V − U then
uv ∈ EGi+1

and conversely.

ii. If r = L ⇀◦ R, there exists a vertex u ∈ V such that

a. di(u) = 0
b. Gi|u � L and Gi+1|u � R

c. Gi|V −u = Gi+1|V −u .

If the sequence is finite, then we require that there is no rule
in Φ applicable to the terminal graph. If G′ is obtained from
G via the rule r and witness h, we write G

r,h
−−→ G′.

The set of all graphs reachable from G0 via some tra-
jectory is called the reachable set R(G0, Φ). The set of
all connected components of graphs in R(G0, Φ) up to
isomorphism is denoted C(G0, Φ). If C ∈ C(G0, Φ), then
C is called stable if its vertices can not participate in any
rule application in any trajectory in which it appears. The
set of all stable components is denoted S(G0, Φ).

C. Labelings

The construction of a boolean recognizer grammar is best
expressed using labels coming from a cartesian product of
alphabets. This allows us to use labels as a type of data
structure, with each alphabet encoding a separate type of
local information.

Given a graph G with a labeling function lG : V → Σ1 ×
Σ2×· · ·×Σr, the function lG,i : V → Σi returns the ith part
of the label of a vertex in G. We define the ith projection
of a graph G by

πi(G) = (VG, EG, lG,i).

Also, if G is a set of graphs, then πi(G) denotes the set
{πi(G) | G ∈ G}.

In the rest of this paper, we use the alphabet Σ1 =
{a, b, c, ...} of letters and the alphabet Σ2 = N of natural
numbers. The boolean recognizer grammar uses the alphabet
Σ1 ×Σ2 and we write, for example, a5 instead of (a, 5), for
convenience.

If G = (V, E, l) is a graph and f : V → N, we define the
graph G[f ] = (V, E, l′) by l′(v) = (l(v), f(v)). If r = L ⇀

R then r[f ] is the rule L[f ] ⇀ R[f ].

D. Boolean Recognizers

We begin with two output grammars Φ0 and Φ1 over the
alphabet Σ1 with R(Φ1) �= R(Φ2). We suppose that these
grammars each have a distinctive behavior starting from the
discrete graph containing no edges and having all vertices
labeled by a. For example, one grammar might form stable
chains of length three while the other forms stable cycles of
length four.

Next, we consider the second alphabet Σ2 as input to a
boolean function Q : N → {0, 1}. Assuming that m ∈ N

is expressed as a binary number, we use the bits of m to
represent the presence different “substances”. For example,
(001)2 represents the presence of substance 1, and (101)2
represents the presence of both substances 1 and 3.

The boolean recognizer construction operates on initial
graphs G0 having no edges and in which each vertex is
labeled (a, i) = ai for some i ∈ dom(Q). The goal is
to define a composition of Φ0 and Φ1 so that the system
ultimately behaves like Φi if and only if

Q

⎛
⎝ ∨

v∈VG0

l2(v)

⎞
⎠ = i,
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where
∨

represents bitwise or. In particular, we will con-
struct a grammar ΦQ(Φ0, Φ1) such that if the above is true,
then

π1(S(G0, ΦQ)) = S(π1(G0), Φi).

If ΦQ has the above property, then it is called a boolean
recognizer for Q with output grammars Φ0 and Φ1.

IV. SYNTHESIS OF BOOLEAN RECOGNIZER GRAMMARS

For a given boolean function Q and output grammars Φ0

and Φ1 we supply the construction of a boolean recognizer
grammar ΦQ and demonstrate it with a simple example.

A. Construction of a Boolean Recognize Grammar

Let Q be a boolean function and Φ0 and Φ1 be output
grammars designed to operate on the initial graph G0 =
(V, ∅, x �→ a). First define four sub-grammars

Φ′
0 =

{
r[f ]

∣∣ r ∈ Φ0, Q(range(f)) = 0
}

,

Φ′
1 =

{
r[f ]

∣∣ r ∈ Φ1, Q(range(f)) = 1
}

,

Ψ =
{

xn e ym ⇀ X
∣∣ n �= m

}
,

and

Ω =

{
xn − ωn ⇀ ωn ωn

ωn ⇀◦ an

}
where

X =

{
xn|m e yn|m if Q(n) = Q(m) = Q(n|m),
ωn|m ωn|m otherwise.

Note that the symbol e is a wildcard standing for either an
edge or the absence of an edge. It is intended to remain
consistent within a rule definition. Finally, the notation n|m
represents the bitwise or operation.

The roles of the four sub-grammars defined above are as
follows. Grammars Φ′

i contain copies of the output grammars
for each subscript n such that Q(n) = i. The grammar Ψ
updates subscripts between any two (interacting) vertices
to reflect the union of the information gathered by each
particle. It also introduces the symbol ω to indicate that an
inconsistency in information was encountered, implying the
need to change from one output grammar to the other. We
assume that ω does not occur in any of the rules in either of
the output grammars. Finally, the grammar Ω removed edges
between vertices labeled by ωn until they all have degree
0. These vertices are then relabeled an, allowing them to
be assembled into new components by the correct output
grammar, the one corresponding to the subscript Q(n).

The boolean recognizer grammar is the union

ΦQ = Φ′
0 ∪ Φ′

1 ∪ Ψ ∪ Ω. (1)

B. An Example

Consider the boolean function Q1 defined by the truth
table

n Q1(n)
0 1
1 0

and output grammars

Φ0 = { a ⇀ f } and Φ1 = { a ⇀ t }.

The corresponding boolean recognizer grammar is

ΦQ1
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 ⇀ f1 (Φ′
0)

a0 ⇀ t0 (Φ′
1)

a0 a1 ⇀ w1 w1 (Ψ)
a0 f1 ⇀ w1 w1 (Ψ)
a0 w1 ⇀ w1 w1 (Ψ)
t0 a1 ⇀ w1 w1 (Ψ)
t0 f1 ⇀ w1 w1 (Ψ)
t0 w1 ⇀ w1 w1 (Ψ)
w0 a1 ⇀ w1 w1 (Ψ)
w0 f1 ⇀ w1 w1 (Ψ)
w0 w1 ⇀ w1 w1 (Ψ)
w0 ⇀◦ a0 (Ω)
w1 ⇀◦ a1. (Ω)

Neither of the control grammars in this example contain rules
that create edges. Therefore, rules in the construction ΦQ1

that contain edges have been left out.
This boolean recognizer grammar results in all vertices

labeled t0, if all vertices in the initial graph are labeled a0,
or all vertices labeled f1, if one or more vertices in the initial
graph are labeled a1. Figure 1 shows a sample trajectory of
the system (G0, ΦQ1

) when G0 contains a single part labeled
a1 and a number of parts labeled a0.

It is possible to construct a grammar that describes the
same behavior as ΦQ using fewer rules. While we have no
automatic method to guarantee a minimum-sized ΦQ, it is
certainly possible to use the construction here as a starting
point and then modify the resulting boolean recognizer
grammar by hand, especially for simple output grammars.

For example, consider the boolean recognizer grammar
ΦQ1

constructed above. We can use the facts that no edges
are defined in any of the rules in ΦQ1

, that the symbols w0

never appears on the right-hand side of any rule, and that
the symbol w1 can be replaced by f1 on the right-hand side
of rules. Removing rules that contain w0 and w1 on their
left-hand side and then substituting f1 for w1 where it still
appears yields the grammar

Φ′
Q1

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1 ⇀ f1

a0 ⇀ t0
a0 a1 ⇀ f1 f1

a0 f1 ⇀ f1 f1

t0 a1 ⇀ f1 f1

t0 f1 ⇀ f1 f1,

which has half as many rules as ΦQ1
. Inspection reveals that

it does indeed describe the same behavior as ΦQ1
, modulo

w1 turning into f1 indirectly.
A slight variation on the boolean recognizer grammar can

be used if not all the vertices in the initial graph represent
programmable elements. For example, one of the vertices
might represent a stationary target or a static environmental
feature [19], [11]. In this case it is possible to modify the
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a0a0

a0a0
a1

t0

t0

t0t0

t0

f1f1

f1
f1f1f1f1

w1w1

w1w1

w1

w1w1
w1

⇒⇒⇒⇒

Fig. 1. A sample trajectory of the system (G0,ΦQ1
). The symbol ⇒ indicates that more than one rule was applied between each graph.

boolean recognizer grammar as in

Φ′′
Q1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0 ⇀ t0
a0 a1 ⇀ f1 a1

a0 f1 ⇀ f1 f1

t0 a1 ⇀ f1 a1

t0 f1 ⇀ f1 f1

where the initial label a1 represents some vertex or vertices
that cannot be programmed.

C. Correctness of the Construction

Theorem 4.1: Each component C of ΦQ(Φ0, Φ1) satisfies
exactly one of the following conditions:

i. π1(C) ∈ C(π1(G0), Φ0) and ∀v ∈ VC , Q(l2(v)) = 0,
ii. π1(C) ∈ C(π1(G0), Φ1) and ∀v ∈ VC , Q(l2(v)) = 1,

or
iii. ∃v ∈ VC such that (lC)1(v) = ω.

Proof: The proof is by induction on the number of steps
taken in a trajectory {Gi}i∈N. The condition is certainly true
of the initial graph: Each component consists of a discrete
vertex labeled ai. Furthermore, a is the only component of
the initial graphs for the output grammars (so is reachable)
and Q(i) is either 0 or 1 so that exactly one of conditions
(i) or (ii) apply.

Now, suppose the condition is true of the graph Gi in the
trajectory and suppose that Gi

r,h
−−→ Gi+1 where r = L ⇀ R.

There are four cases.
Case r ∈ Φ′

0: Suppose C1, ..., Ck are the components of
h(VL) and assume that none of these components contain
a vertex labeled ω. Then π1(Cj) ∈ C(π1(G0), Φ0) for each
j and Q(lGi,2(v)) = 0 for all v ∈ h(VL), by the inductive
hypothesis. Suppose r is derived from the rule r̃ ∈ Φ0. Then

π1 ◦ h(VL)
r̃,h
−−→ H

and the components of H are all contained in C(π1(G0), Φ0)
by definition of the reachable component set. Also, since r

does not change the subscripts of any labels, it follows that
Q((lGi+1

)2(v)) = 0 for all v ∈ h(VL). Thus the components
of Gi+1 meet condition (i) above. Assume now that at least
one of the components C1, ..., Ck do contain a vertex or
vertices labeled ω. By definition, any r ∈ Φ′

0 cannot rewrite
the symbol ω. Therefore any component that contains an
ω after the application of r meets condition (iii) and any
component that does not meets condition (i) by the previous
argument.

Case r ∈ Φ′
1: This case is similar to case 1.

Case r ∈ Ψ: Suppose that r operates on vertices u and
v which are labeled xm and yn respectively. If Q(n|m) =
Q(n) = Q(m), then, after the rule application, the labels
become xn|m and yn|m and the component(s) containing u

and v do not change (since no edges are added or deleted by

r). Thus, if the component(s) of Gi containing u and v satisfy
(i) (resp. (ii)) above, then so do the component(s) of Gi+1

containing u and v. On the other hand, if Q(n|m) �= Q(n) or
Q(n|m) �= Q(m), then the labels of u and v are re-labeled
by ωn|m and condition (iii) applies, above.

Case r ∈ Ω: In this case, r either operates on a component
of size greater than 1, in which case it splits it into two
components having vertices labeled ω (condition (iii)), or
r operates on a discrete vertex and re-labels it an, which
satisfies either condition (i) or (ii) depending on Q(n). �

Theorem 4.2: In any trajectory of (G0, ΦQ), the sub-
scripts eventually stop changing and arrive at the value
Qmax =

∨
v∈VG0

l2(v).

Proof: Only the rules in Ψ change the subscripts. They do
so by computing, in a pairwise fashion, the bitwise or of all
of the subscripts in the system, resulting in each subscript
being equal to Qmax. �

Theorem 4.3: in any trajectory of (G0, ΦQ) it is eventu-
ally the case that labels of the form ωn stop appearing.

Proof: Once the subscripts all become Qmax there may be
labels of the form ωQmax

. Via the rules in Ω, these eventually
become completely disconnected and then relabeled aQmax

.
�

The above arguments together imply that the system
defined by ΦQ eventually behaves like either Φ1 or Φ2,
depending on whether Q(Qmax) is 0 or 1 – meaning that
components that do not correspond to the correct output
grammar are not stable. We thus have the main result.

Theorem 4.4: The construction given for ΦQ(Φ0, Φ1) re-
sults in a boolean recognizer grammar.

V. ROBOTIC TESTBED

A. Hardware

The methods in this paper were designed to be imple-
mented on a set of robots called programmable parts [5]. A
programmable part (Figure 2(a)) consists of an equilateral
triangular chassis that supports three controllable latching
mechanisms, three IR transceivers, and control circuitry.

The parts float randomly on a custom-made air table
(Figure 2(b)). To maximize useful collisions, we use various
methods for stirring the parts on the air table.

Each latch consists of two permanent magnets: one fixed
and the other mounted on the end of a small geared DC
motor. The default position of the magnets is such that the
north pole of the fixed magnet and the south pole of the
movable magnet are pointing out. When two latches from
different parts come into contact, they temporarily bind – the
fixed magnet of one attaching to the movable magnet of the
other. At that point, a contact switch on each part is pressed
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Motor

Motor mount

Movable magnets
and holder

Fixed magnet

Circuit board

IR Transmitter

IR Receiver

Chassis

(a) A programmable part

(b) The air-table environment

Fig. 2. (a) The components of the programmable part include low power
magnetic latches, infrared communications, and an on-board microcon-
troller. (b) The components of the testbed environment include a custom-
made air table and fans for mixing.

and the parts may communicate. If at any point the parts
mutually decide to detach from each other, each temporarily
rotates its movable magnet 180◦, forcing the parts apart. The
movable magnets then return to their default positions.

This mechanism allows us to program the outcomes of
each interaction and we use the graph grammar formalism
to write down these programs. This in turn allows us to
direct the programmable parts to self-assemble into arbitrary
assemblies [8] (e.g hexagons [5]) or perform tasks like self-
replication [10], depending on the graph grammar we use.

B. Simulation

We also explore the programmable parts system in a
simulation environment that allows us to ”experiment” with
a greater number of parts [5]. The simulation uses the Open
Dynamics Engine [20] library, which can routinely compute
trajectories of hundreds of parts and determine the result of
collisions and contact situations quickly. In the simulation
environment the parts are stirred by a grid of downward-
facing fans. The main simplifications in the simulation are
that the magnets are modeled as pairs of point attractors to
avoid explicitly modeling their magnetic fields; the effect of
the fans is modeled as a time varying force field acting on
only the centers of mass of the parts; and communication is
not explicitly modeled.

0

0

0

5

5

5

10

10

10

15

15

15

20

20

20

20

20

20

25

25

25

40

40

40

60

60

60

80

80

80

100

100

100

120

120

120

U0

U0

U0

U1

U1

U1

Uω

Uω

Uω

u(G0) = (24, 0, 0, 0)T

u(G0) = (23, 0, 1, 0)T

u(G0) = (22, 1, 1, 0)T

Time (s)

Fig. 3. Results of simulating the boolean recognizer grammar ΦQ2
on 24

programmable parts for three different initial conditions. The lines in each
plot represent the number of parts executing Φ0, Φ1, or are labeled with
an ω during assembly, respectively.

VI. SIMULATION ANALYSIS

We use the simulation engine here to demonstrate the
behavior of an example system. We do so by showing trajec-
tories generated by an example boolean recognizer grammar,
starting from a representative set of initial conditions. For
this example, consider the boolean function Q2 defined by
the truth table

n Q2(n)
(00)2 1
(01)2 1
(10)2 0
(11)2 1
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(d) 76.7s
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Fig. 4. Frames from simulation shown in Figure 3(bottom), labeled by total time elapsed. The green and blue parts are using the output grammars Φ0

and Φ1, respectively. The red parts have the label ω.

and output grammars

Φ0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a a ⇀ b − b

a b ⇀ c − d

b − c ⇀ b − b

b − d ⇀ c − d

d − d ⇀ b b,

and
Φ1 = { a a ⇀ b − b }.

The output grammar Φ0 results in stable components that
are connected triples, or trimers, while the output grammar
Φ1 results in stable connected pairs, or dimers. The boolean
function Q2(n) can be thought of as the proposition

b(n, 1) ∧ ¬b(n, 2)

where b(n, i) denotes the ith bit of n. Therefore, the cor-
responding boolean recognizer grammar ΦQ2

creates either
stable trimers if G0 contains any parts labeled a10 or stable
dimers otherwise.

Note that while the construction of ΦQ2
relies upon output

grammars that model the programmable parts simply as
single vertices, it is also possible to use grammars that
account for the geometry of the robots more explicitly (e.g.
see [5]). Without any loss of generality, we omit a detailed
discussion of this for the sake of simplicity.

The boolean function Q2 tells us the default system
behavior is that of the output grammar Φ1. If the initial
condition consists only of parts labeled a00 or a01, only Φ1 is
ever executed. However, if the initial condition contains any
parts labeled a01, the output grammar will switch between
Φ1 and Φ0. In this case, the final result depends on the

presence of parts labeled a10 or a11. Only three types of
transient behaviors are therefore expected in this example,
and we simulate three representative initial conditions to
examine them.

We represent initial conditions with a vector u : G → Rn

(where n = |dom(Q)|), defined as

u(G) = (u0(G), ..., uM (G))T with ui(G) =
∣∣l−1

G,2(i)
∣∣.

For a given graph this vector contains the number of vertices
labeled with each type of subscript. For example, the initial
condition u(G0) = (22, 1, 1, 0)T indicates that the initial
graph G0 contains 22 parts labeled a00, one part labeled
a01, one part labeled a10, and no parts labeled a11.

In order to track the evolution of labels in a trajectory, we
also define

Ui(G) =
∣∣ { v ∈ VG | Q(lG,2(v)) = i ∧ lG,1(v) �= ω }

∣∣,
and

Uω(G) =
∣∣ { v ∈ VG | lG,1(v) �= ω }

∣∣.
These equations measure the number of parts that are using
the output grammar Φ0 or Φ1, or are labeled with an ω,
respectively. In Figure 3 we plot these quantities over time
in three simulations, which demonstrate the three different
transient behaviors expected for this example.

Several details of the boolean recognition process are
illuminated by Figure 4, which shows snapshots in time of
the simulation whose data we plot in Figure 3(bottom). The
first snapshot (Fig. 4(a)) shows the initial condition of the
simulation. Figures 4(b), 4(c) show the creation of a trimer
under the output grammar Φ0 (middle left). Figures 4(d)-
4(g) illustrate the approach towards resolving inconsistent
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information. Here, a trimer – with parts using Φ0 – interacts
with a single part using Φ1. First, all four take the label ω.
They then break apart and take new labels, using the output
grammar consistent with their updated subscripts – in this
case Φ1. Fig. 4(h) shows that all 24 parts are eventually
using Φ1.

VII. DISCUSSION

We have introduced a way to compose two local rule
sets to program a self-organizing system. The collective
recognition of a condition on the initial state is performed
locally, resulting in one of two distinct global outcomes.

We are presently exploring several questions that address
the fundamental questions of robotic self-assembly. For ex-
ample, in a stochastic setting (such as with the programmable
parts) what is a tractable model of the dynamics and can we
argue about, e.g., the expected behavior of the system or the
rate at which recognition occurs? The rate at which com-
ponents are formed by the programmable parts is generally
known [6] and so determining the rate at which recognition
occurs is a justifiable next step. Also, can the output of the
boolean recognizer be used as the input to another to produce
arbitrary, and even feedback, interconnections? How else can
grammars be composed? Can we map the construction in
this paper onto a novel physical system beyond the robotic
testbed, such as bacterial quorum sensing [21] or DNA self-
assembly?
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