Soundness and completeness

1. Soundness:
 a. If φ is derivable from Δ, then φ is a consequence of Δ.
 b. In symbols: If $\Delta \vdash \varphi$, then $\Delta \models \varphi$.
 c. Transposing: Every satisfiable set is consistent.

2. Completeness:
 a. If φ is an ω-consequence of Δ, then φ is derivable from Δ.
 b. In symbols: If $\Delta \vdash_\omega \varphi$, then $\Delta \vdash \varphi$.
 c. Transposing: Every consistent set is satisfiable in the domain of natural numbers.

3. The Löwenheim-Skolem theorem: Any set of sentences that is satisfiable is satisfiable in the domain of natural numbers. Follows by the syllogism Barbara from (1c) and (2c).

4. The compactness theorem: If every finite subset of a set of sentences is satisfiable, then the set itself is satisfiable.
 a. Suppose that Δ is not satisfiable.
 b. Then Δ is not satisfiable in the domain of natural numbers.
 c. So Δ is inconsistent.
 d. This means that there is a sentence ϕ such that $\Delta \vdash (\phi \& \neg \phi)$.
 e. But derivations are always finite in length.
 f. So there is a finite subset of Δ, call it Δ', such that $\Delta' \vdash (\phi \& \neg \phi)$.
 g. $(\phi \& \neg \phi)$ is not satisfiable.
 h. Therefore, by soundness, Δ' is not satisfiable.