
(1)

(2)

(3)

(4)

(5)

(6)

(7)

Simple Kelvin wave model with vertical modes
The model integrates the zonal momentum equation in the form

where H is the upper layer depth, with anomalies h, along Kelvin wave characteristics, summing
the wind forcing felt by the traveling Kelvin signal. A simplification is due to the proportionality
between the u and h field of the Kelvin wave, such that h =(c/g′)u , and (1) becomesK K

which has the advantage that no factors of H or g′ (which are ambiguous by at least a factor of
two) appear, whereas c is a well-determined quantity. This simplification results from identifying
the layer depth H with the wind-forced layer. Such an identification is not possible for higher
vertical modes. The integration of (2) along characteristics gives the solution at any (x ,t)0

where WB is the western boundary. Integration in x in (3) substitutes for integration in t since
along the characteristic, t=x/c. This gives the extra factor of 1/c.
 

To find solutions over vertical modes, we use the formalism developed in Cane (1984). If the
vertical dependence is separable, then

where the 1 (z) are the vertical structure eigenfunctions, with eigenvalues c . The 1 (z) aren n n

normalized so that

D is the total ocean depth. (McCreary normalizes 1 (0)=1). The 1 (0) decrease with n, but notn n  

monotonically (table 1). The n-th system of shallow water equations is driven by a body force

where )  has units of stress per depth. Assuming the stress is confined to a fully-mixed surfacen

layer, the 1 (z) are constant in this layer, and (6) reduces ton
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where )(x,y,0,t) is the surface wind stress. The usual system of momentum and continuity
equations (including the Kelvin wave equations (1)-(3)) is then formally the same for each of the
vertical modes n. Note that (3) is the same as Cane's (1994) Kelvin integration (his eqn (11)).

Cane shows that each system n can be identified as the usual 1½ layer system with upper
layer depth D′ (where D′ is analogous to H in (1)) if  

Higher modes are then equivalent to a 1½ layer system with an increasingly deep mean
pycnocline D′ and smaller density contrast �#/#. With regard to the Kelvin characteristic
integration (3), the solution h  has larger magnitude for the higher vertical modes, since theK

forcing amplitude reduction associated with the term 1 (0) in (7) is dominated by the factorn

(1/c ) in (3). The increase in "pycnocline" amplitude is appropriate because of the smaller density2

contrast for the higher modes. The use of (7) for the forcing term, and the first of (8) for D,
results in forcing proportional to 1/D′1 (0), compared to (1) where it is proportional to 1/H, butn

otherwise solutions are identical. When the solutions u ,v ,h  are reconverted using (4), solutionsn n n

are the same as from (3) but with the vertical structure 1 (z)/1 (0). For 1½ layer formulations,n n

u,v,h are taken to be at z=0, so no factors of the 1  appear.n

To find the sea level expression � of each mode, the solution h  to (3) is converted viaK

� =(�#/#)h . Note that �#/# in (8) varies as (c1 (0))  (table 1). It is usually the case that theK K n n
2

sea level expression of each mode decreases with mode number (table 1). In particular, there is
a sharp falloff in sea level amplitude after mode 2.

It is also possible to find the isopycnal displacement due to each mode, which can then
be compared directly to 20°C depth. Anomalies of density are found from pressure anomalies
using the hydrostatic equation, then isopycnal displacement is estimated by dividing by the mean
vertical density gradient. Note that the vertical structure of density anomalies is proportional to
the vertical derivative of the structure functions 1 (z), so the higher modes can have quite largen

values of density anomaly.
 

Table 1 gives values for various parameters of the modal problem using a mean
temperature profile from the Hawaii-Tahiti shuttle (150°W to 158°W), with ocean depth 4500 m.
 

TABLE 1 1 2 3 4 5

Equivalent depth H  (cm) 76.0 30.9 11.5 5.9 3.5n

Surface amplitude 1 (0) 4.293 3.904 1.698 1.247 1.825n

Wave speed c =gH  (m s ) 2.73 1.74 1.06 0.76 0.59n n
−1

Time scale (�c )  (days) 1.47 1.84 2.35 2.78 3.16n
−½

Rossby radius (c /�)  (km) 346.0 276.3 215.6 182.7 160.9n
½

ULT analogue D′ (m) 244.2 295.3 1560.9 2893.4 1351.1

�#/# analogue (×10 ) 3.1115 1.0450 0.0734 0.0204 0.02633
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A more general form of equation (3) can be written for each mode n

where A  is the baroclinic mode n Kelvin part of the ocean signal (with correspondingn

coefficients � (z)) for any of the quantities upper layer thickness, zonal speed, pressure, densityn

or isopycnal displacement, depending on the form of the coefficients � . This generalityn

expresses the fact that all the Kelvin wave variables have the same phase and structure in (x,y,t),
differing only by an amplitude factor (and also in their vertical structure). The following table
gives the coefficients for the various quantities, with appropriate values, using values for c  andn

1  listed in the previous table. The first three lines give the reduced gravity coefficients, and then

rest are for modal solutions. Note that the factor 1 (0)/D that multiplies the surface wind stressn

) in (7) has been absorbed into the coefficients �.

Quantity Coefficient � Typical Value (mks)

RG Upper layer thickness 1/#c 1.31×102 −4

RG Sea level �#/(#c) 4.07×102 −7

RG Zonal current 1/#cH 2.38×10−6

Sea Level mode 1 4.07×10−7

             mode 2 3.37×10−7

             mode 3 6.36×10−8

Zonal current mode 1 1.46×10    (at z=0)−6

                 mode 2 1.90×10 
−6

                 mode 3 5.89×10 
−7

Pressure mode 1 4.10×10    (at z=0)−3

           mode 2 3.39×10−3

           mode 3 6.41×10−4

Isopycnal displacement mode 1 6.01×10    (at z=125m)−5

                             mode 2 1.15×10 
−4

                             mode 3 4.84×10 
−5


