Tropical Pacific climate mechanisms
(a very partial and personal view!!!)

Use ENSO as a “laboratory” to explore mechanisms
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What'’s special about the tropics?

e Air temperature is near the threshold for convection (~27°C)
= The tropical atmosphere responds rapidly to SST

® Tropical ocean currents can spin up rapidly (downwind on Eq!)
= Wind changes produce rapid ocean changes

® The high speed and long zonal scale of equatorial waves allows
efficient basinwide transmission of thermocline depth anomalies

®* The close connection between thermocline depth and the
surface means SST can vary rapidly

Thus, small SST changes greatly affect the atmosphere,
and small wind changes greatly affect the SST pattern: Coupling

> All this is less true of the extra-tropics:
Other mechanisms by which SST affects the atmosphere -

and winds affect the ocean - are slower and less effective.
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The tropical climate is coupled
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Cool lower water

A positive feedback!

Why are there trade winds? Because the warmest water is in the west.
Why is the warmest water in the west? Because there are trade winds.
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Close relation among SST, convection, winds, thermocline

High cloud fraction (deep convection) and surface winds
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Warm air rises.
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= Surface winds blow
into warm SST.
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That happens everywhere,
28 but the SST pattern
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Lots of interesting stuff in an equatorial section ...
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Equatorial Trade Winds

Barrier to entrainment of cool
thermocline water

(After Brown, Langlais, Sen Gupta (DSR I, 2016))
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Evolution of El Nino: The “normal” situation
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Positive feedback: should be stable, but ....



Schematic ocean-atmosphere interaction during El Nino onset:

A “coupled collapse” as the warm pool sloshes east
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| Cool lower water

Several hypotheses for the opposing winds (M]O),

but once the warmest water shifts east, coupling takes over
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The peak of El Nino
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Again a positive feedback.Why does it end!?
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The big picture of ENSQO isn’t zonal,
it’s inflows and outflows from the equator

The big picture is the accumulation (recharge) and
discharge of mass and heat in the equatorial strip:

— Exchanges of heat and mass with the subtropics

Most discharge during El Nino occurs in the east and
central Pacific, but most recharge occurs in the LLWBCs.

— _EI Nlno anomalles>

1 I I 1 I
180° 150 W/ 120°W 20w



Iwo over-arching hypotheses

® Cyclic ENSO (McCreary = Cane/Zebiak = Jin)
= ENSO is a self-sustained oscillation.

The Pacific ocean-atmosphere system has a natural frequency
of oscillation (slightly perturbed by “weather”)

= Predictability!

® Event-like ENSO (Wyrtki = Kessler?)
= The basic state is stable, thus each event requires
an external trigger. No persistent memory.

= Implies limited predictability.



El Nino occurrences are irregular

Southern Oscillation In

Bjerknes!
Wyrtki!
McCreary!

Delayed Oscillator!
iljecharge Oscillator!
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History of ideas about the physics of ENSO

Bjerknes (1969)
Wyrtki (1975, 86)

McCreary (1983)

Schopf/Suarez (88)
Battisti/Hirst (89)

Cane/Zebiak (87)

Jin (1997)
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Positive feedbacks maintain each state.

Buildup in the west Pacific precedes events.
Other than that, events are independent.

Oscillation can occur via western boundary
reflection delay. Time-lagged negative feedback

Delayed Oscillator paradigm. More realistic
delay via coupled growth on the equator.

Delayed Oscillator forecast model with ocean
memory contained in thermocline depth.

Recharge/Discharge Oscillator.



Bjerknes: positi

Convection occurs
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—> Winds blow towards warm SST
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History of ideas about the physics of ENSO

Bjerknes (1969)
Wyrtki (1975, 86)

McCreary (1983)

Schopf/Suarez (88)
Battisti/Hirst (89)

Cane/Zebiak (87)

Jin (1997)
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Positive feedbacks maintain each state.

“Buildup” in the west Pacific precedes events.
Other than that, events are independent.

Oscillation can occur via western boundary
reflection delay. Time-lagged negative feedback

Delayed Oscillator paradigm. More realistic
delay via coupled growth on the equator.

Delayed Oscillator forecast model with ocean
memory contained in thermocline depth.

Recharge/Discharge Oscillator.



Warm water volume increases before each event

—— Nino3 SST —— Zonal mean 20°C depth
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(7—month running mean) (scaled for equal variance) (BMRC XBT/TAQ data)

Trade winds pile up warm water in the west Pacific.
El Nino serves the climate “purpose” of episodically
draining the warm pool.
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History of ideas about the physics of ENSO
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Wyrtki (1975, 86)

McCreary (1983)

Schopf/Suarez (88)
Battisti/Hirst (89)

Cane/Zebiak (87)

Jin (1997)

Positive feedbacks maintain each state.

Buildup in the west Pacific precedes events.
Other than that, events are independent.

Oscillation can occur via western boundary
reflection delay. Time-lagged negative feedback

Delayed Oscillator paradigm. More realistic
delay via coupled growth on the equator.

Delayed Oscillator forecast model with ocean
memory contained in thermocline depth.

Recharge/Discharge Oscillator.



The mechanism of equatorial Kelvin wave propagation
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Equatorial winds generate
both Kelvin and Rossby waves

Shallow Rossby

Shallow Rossby

Thermocline Ekman convergence

. Thermocline
deepens

1)

Thermocline
shallows

DeepKe» Equator

Wind

Kelvin waves: ~2.5 m/s (6500 km/month)
Rossby waves: ~0.8 m/s (2000 km/month)
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Western boundary reflection

= With opposite sign!

Equatorial winds generate
both Kelvin and Rossby waves
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Kelvin waves: ~2.5 m/s (6500 km/month)
Rossby waves: ~0.8 m/s (2000 km/month)
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History of ideas about the physics of ENSO

Bjerknes (1969)
Wyrtki (1975, 86)

McCreary (1983)

Schopf/Suarez (88)
Battisti/Hirst (89)

Cane/Zebiak (87)

Jin (1997)

Positive feedbacks maintain each state.

Buildup in the west Pacific precedes events
Other than that, events are independent.

Oscillation can occur via western boundary
reflection delay. Time-lagged negative feedback

Delayed Oscillator paradigm. More realistic
delay via coupled growth on the equator.

Delayed Oscillator forecast model with ocean
memory contained in thermocline depth.

Recharge/Discharge Oscillator.
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Normal Conditions

Delayed Oscillator Models -
incorporate both i"“x? '° }
western boundary reflection pir
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Bjerknes positive feedbacks /@J /
During normal conditions, easterly winds .

120°E 80

give Ekman divergence from the equator

—> shallow the equatorial thermocline

—> deepen the off-equatorial thermocline

—> produce downwelling Rossby waves
that propagate west

—> reflect to deepen the equatorial
thermocline

—> begin to warm equatorial SST

—> Bjerknes positive feedbacks increase
the warming (slowly) 120° 30w

—> system moves gradually towards
El Nino: 3-4 year timescale
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Delayed Oscillator m

odels

Fundamental mechanism is the reflection of Rossby
waves at the western boundary, returning to initiate the

reversal of phase on the equator.

Have forecast skill comparable to advanced GCMs.

(Which is to say, not so much).

Allow exploration of the parameter space of tropical

climate: a useful paradigm for thinking a

Produce nearly symmetric and regular E

bout ENSO.

Ninos and

La Ninas (unrealistic). Observational studies have
shown that the D.O. mechanism works for the
termination of an El Nino but not for its initiation.
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History of ideas about the physics of ENSO

Bjerknes (1969)
Wyrtki (1975, 86)
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Positive feedbacks maintain each state.

Buildup in the west Pacific precedes events
Other than that, events are independent.

Oscillation can occur via western boundary
reflection delay. Time-lagged negative feedback

Delayed Oscillator paradigm. More realistic
delay via coupled growth on the equator.

Delayed Oscillator forecast model with ocean
memory contained in thermocline depth.

Recharge/Discharge Oscillator.
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The Recharge-Discharge Oscillator

More general than the delayed oscillator since it
does not depend on wave reflection times.

Similar to Wyrtki’s “buildup”, but each event
leads explicitly to the opposite phase.

Memory of the system contained in the zonal
mean thermocline depth.

Points to a convenient set of variables that can be
evaluated from observations.
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The Jin (1997) recharge-discharge mode
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ea  2.Poleward transport
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— weakens SST anomalies
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/gbw La Nifa

*9 3.Cool SST in east
— easterly winds
— thermocline slopes down
to west
— equatorward transport

(After Meinen and McPhaden (2000))

Another symmetric oscillator

Like the D.O. but considers steady balances, ighores wave transients.
Delay comes from adjustment and advective timescales, not waves.
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Spatial pattern
of thermocline
variability is
called the
“tilting mode”
(EOF 1) and

“zonal mean
mode” (EOF 2).

FEOF spatial patterns of 20°C depth
BMRC XBT/TAO data. Interannual anomalies {m)
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Warm water volume increases before each event
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Trade winds pile up warm water in the west Pacific.
El Nino serves the climate “purpose” of episodically
draining the warm pool.
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Nino3 SST and Warm Water Volume Phase Ellipses
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A mean ENSO cycle. Nino3 SST vs Upper Layer Volume
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Observed mean amplitude and angular speed. Monthly and vyearly tics
Mean cycle length is 4.75 years. Circles are 1 and 2 Std Dev
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Conclude:

Observations suggest that an El Nino event leaves the system in a
cool state with slightly increased warm water volume, and this
state can persist for years, losing memory of previous conditions.

= ENSO is not a self-sustained oscillation.

The evolution of ENSO since 1980 appears consistent with the
idea that the basic state is stable or nearly so, thus warm events
must be produced by forcing external to the cycle itself.

Possibilities include:

* MJO (generated over the Indian Ocean, propagates east to Pacific)
» Events triggered in the trade-wind system of the central N. Pacific
» Stochastic events within the equatorial Pacific
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Overall conclusion

* The tropical climate system is coupled
(much less true of extra-tropics)

Small SST changes can greatly affect the atmosphere in the tropics;
conversely, small changes in the wind can greatly affect the SST pattern.

* The tropical climate system is coupled

* El Nino events are self-limited, but the connection, if
any, between events remains unclear

* Many important processes omitted here!
MJO, extra-tropical forcing mechanisms, other kinds
of feedbacks, processes of thermocline-surface
communication, role of the diurnal cycle, ...
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Rossby reflection to equatorial Kelvin waves at a western boundary

y An example of a Rossby wave
Geostrophic flow vectors (sea level depression) arriving
X at a western boundary.
The Rossby wave is transporting
Propagates @ = .. ¥---..__
Opagaes oo T e mass eastward.

To satisfy the mass constraint,
the needed inflow comes via
northward coastal transport as
Divergence Convergence a coastal Kelvin wave, which
(sea level falls) (sea level rises) carries the signal equatorward.

Ll L L L L L £ L LSS

Arriving at the equator, this forms
the western boundary condition
> Equator for an equatorial Kelvin wave that
propagates east along the equator.
\ Reflected Kelvin wave (With no damping, this would then
propagating east reflect again at the eastern boundary
as above).
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How does the thermocline communicate with the atmosphere? (b)

The diurnal cycle is surprisingly important
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Other feedbacks: Some examples

Zonal advective and WES feedbacks

< winds
West East
Background:
<€
currents
>
+Anoma|ies: __
» €—

In response to a (warm) SST
anomaly (however created):

Zonal advection: anomalous currents
advect the background cooler-to-east SST,
amplifying the original anomaly.

Wind-Evaporation-SST: wind anomalies
due to a warm SST patch also mean that
the wind speed is smaller than the
background, reducing evaporation and
warming SST locally.
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Heat flux damping

In an unstable (warm) atmosphere:

A warm SST patch leads
to convection, increased
cloudiness, reduced SW
flux, decreased SST.
(Negative feedback)

Cooling

In a stable (cool) atmosphere:

A warm SST patch leads
to reduced stratiform

cloudiness, increased SW I
flux, increased SST. Warming

(Positive feedback)

HF “damping” can be a positive or
negative feedback




The Madden-Julian Oscillation (M]O)

30-50 day convection event
propagating from the Indian Ocean into the western Pacific.
Brings heavy rain and strong westerly winds.
El Nino trigger?
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Signals spread efficiently across the Pacific equator
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Red = warm SST

The response to episodic
westerly wind anomalies in
the western Pacific:

* Winds blow into warm SST.

® Westerly winds come in
bursts lasting ~30 days.

® Each wind event cools locally
(mostly by evaporation).

* Each event also generates an
eastward-propagating Kelvin
wave.

Although eastern Pacific winds
remain easterly throughout,
the thermocline deepens due

to persistent remote forcing.

® Shallow eastern thermocline
cools local SST.
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Red = warm SST

The response to episodic
westerly wind anomalies in
the western Pacific:

* Winds blow into warm SST.

® Westerly winds come in
bursts lasting ~30 days.

® Each wind event cools locally
(mostly by evaporation).

* Each event also generates an
eastward-propagating Kelvin
wave.

Although eastern Pacific winds
remain easterly throughout,
the thermocline deepens due

to persistent remote forcing.

® Shallow eastern thermocline
cools local SST.
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Signals spread efficiently across the Pacific equator
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Red = warm SST

The response to episodic
westerly wind anomalies in
the western Pacific:

* Winds blow into warm SST.

® Westerly winds come in
bursts lasting ~30 days.

® Each wind event cools locally
(mostly by evaporation).

* Each event also generates an
eastward-propagating Kelvin
wave.

Although eastern Pacific winds
remain easterly throughout,
the thermocline deepens due

to persistent remote forcing.

® Shallow eastern thermocline
cools local SST.
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The response to episodic
westerly wind anomalies in
the western Pacific:

* Winds blow into warm SST.

® Westerly winds come in
bursts lasting ~30 days.

® Each wind event cools locally
(mostly by evaporation).

* Each event also generates an
eastward-propagating Kelvin
wave.

Although eastern Pacific winds
remain easterly throughout,
the thermocline deepens due

to persistent remote forcing.

® Shallow eastern thermocline
cools local SST.
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Signals spread efficiently across the Pacific equator

Anomalies o
) The response to episodic
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e | - [T } - the western Pacific:

* Winds blow into warm SST.

® Westerly winds come in
bursts lasting ~30 days.

® Each wind event cools locally
(mostly by evaporation).

* Each event also generates an
eastward-propagating Kelvin
wave.

Although eastern Pacific winds
remain easterly throughout,
the thermocline deepens due

to persistent remote forcing.

® Shallow eastern thermocline
cools local SST.
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Linear Kelvin wave speed
(~2.3 m s
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