Is ENSO a cycle
or a series of events’
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Is El Nino predictable?

Could rephrase the title question:

® Does the memory of one El Nino event
persist to the next event!?

® |[s ENSO a self-contained oscillation?
Or does it need an external trigger?

Every event to date has come as a surprise. Ve
have learned to recognize the onset early, and
thus make an early forecast, but no one has
successfully forecast an event before it has started.
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History of ideas about the progression of ENSO
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Bjerknes (|969) Positive feedbacks maintain each state.

Wyrtki (1975, 86) Buildup in the west Pacific precedes events.
Other than that, events are independent.

McCreary (1983) Oscillation can occur via western boundary
reflection delay. Time-lagged negative feedback

Schopf/Suarez (88) Delayed Oscillator paradigm. More realistic
Battisti/Hirst (89)  delay via coupled growth on the equator.

Cane/Zebiak (87) Delayed Oscillator forecast model with ocean
memory contained in thermocline depth.

Jin (1997) Recharge/Discharge Oscillator.



Bjerknes: positive feedbacks

Convection occurs over warm SST
—> Winds blow towards warm SST

During normal conditions,

SST is warm in the west:
—> produces convection there
—> strengthens the trade winds
—> strong upwelling in the east
—> cools the surface there.

During El Nino conditions,
SST is warm across the basin:
—> produces generalized convection
—> weakens the trade winds
—> suppresses upwelling

But, Bjerknes did not know how
the phase could reverse.

Normal Conditions

"

120°E B0™

Increased
Conyechion

120°E a0mw



History of ideas about the progression of ENSO

o o

Bjerknes (1969) Positive feedbacks maintain each state.

Wyrtki (1975,86) Buildup in the west Pacific precedes events.
Other than that, events are independent.

McCreary (1983) Oscillation can occur via western boundary
reflection delay. Time-lagged negative feedback

Schopf/Suarez (88) Delayed Oscillator paradigm. More realistic
Battisti/Hirst (89)  delay via coupled growth on the equator.

Cane/Zebiak (87) Delayed Oscillator forecast model with ocean
memory contained in thermocline depth.

Jin (1997) Recharge/Discharge Oscillator.



Warm water volume increases before each event
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Trade winds pile up warm water in the west Pacific.
El Nino serves the climate “purpose” of episodically
draining the warm pool. Wyrtki (1975)
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Equatorial winds generate
both Kelvin and Rossby waves
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Kelvin waves: ~2.5 m/s (6500 km/month)
Rossby waves: ~0.8 m/s (2000 km/month)



Wave reflection allows an
oscillation
°- -o

e Kelvin waves carry the wind signal
rapidly to the eastern Pacific.

® Rossby waves (with opposite sign)
propagate slowly west, then reflect
from the boundary to return on the
equator and change the sign of the
anomaly.

® Thermocline depths change SST and
thus change the winds (by Bjerknes’
feedbacks). Thus, an oscillation.
But a cycle is only ~| year.
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Normal Conditions

Delayed Oscillator Models =
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Bjerknes positive feedbacks

During normal conditions, easterly winds
give Ekman divergence from the equator
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—> shallow the equatorial thermocline

—> deepen the off-equatorial thermocline

—> produce downwelling Rossby waves \
that propagate west

—> reflect to deepen the equatorial
thermocline

—> begin to warm equatorial SST

—> Bjerknes positive feedbacks increase
the warming (slowly) 120° 30w

—> system moves gradually towards
El Nino: 3-4 year timescale
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Delayed Oscillator models

Fundamental mechanism is the reflection of Rossby
waves at the western boundary, returning to initiate
the reversal of phase on the equator.

Have forecast skill comparable to advanced GCMs.
(Which is to say, not so much).

Allow exploration of the parameter space of tropical
climate: very popular, and they have become the
dominant paradigm for thinking about ENSO.

Produce nearly symmetric and regular El Ninos and
La Ninas (not very realistic). Observational studies
have shown that the D.O. mechanism works for the
termination of an El Nino but not for its initiation.
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El Nino

Recharged

Schematic of the Jin (1997) Recharge-Discharge mode:
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The Recharge-Discharge Oscillator

® More general than the delayed oscillator since it
does not depend on wave reflection times.

® Similar to Wyrtki’s “buildup”, but each event
leads explicitly to the opposite phase.

® Memory of the system contained in the zonal
mean thermocline depth.

® Points to a convenient set of variables that can
be evaluated from observations.



Two over-arching hypotheses

® Cyclic ENSO (McCreary = Cane/Zebiak = |in)
= ENSO is a self-sustained oscillation.
= Predictability!

® Event-like ENSO (Wyrtki = Kessler?)

= The basic state is stable, thus each event requires
an external trigger.

= Implies that there is limited predictability.

What does the data say?



Standard deviation of interannual 20°C depth

BWMRC XBT/TAD data. 1980-2002. 7—month EM of anomalies
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Thermocline depth variability is large on the eastern
equator and in the western off-equatorial Pacific.



FOF spatial patterns of 20°C depth
BMRC XBT/TAD data. Interannual anamalies {(m)
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Evaluate the Recharge-Discharge mode
using time series of eastern Pacific SST
and zonal mean thermocline depth
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Time series to evaluate the cyclic hypotheses

NINOS ST and Warm Water Volume
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Nino3 SST and Warm Water Volume Phase Ellipses
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A mean ENSO cycle. Nino3 SST vs Upper Layer Volume
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Warm water volume (10'* m3)

Memory of amplitude from
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Lag (years)

Lag between El Ninos
as a function of previous El Nino S5TA
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Conclude;

Wyrtki was right!

Observations suggest that an El Nino event leaves the
system in a cool state with slightly increased warm water
volume, and this state can persist for years, losing memory
of previous conditions.

—> ENSO is not a self-sustained oscillation.

The evolution of ENSO since 1980 appears consistent with
the idea that the basic state is stable or nearly so, thus
warm events must be triggered by (stochastic?!) forcing
external to the cycle itself.
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