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Overview

In this final session:

• Overview of imputation – where Bayesian (or approximately-Bayesian) meth-

ods are used to address a complex measurement error/missing data problem

• More details of off-the-shelf MCMC software

• No exercises – time for questions
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Motivation for Imputation

• Imputation is the prediction of missing genotypes, using measured genotypes

and prior information

• It is used widely in both GWAS and in fine-mapping studies, since it can:

– Increase power in GWAS

– Facilitate meta-analysis in which it is required to combine information

from different panels which have different sets of SNPs. (This also helps

power)

– Fine-map causal variants. Imputed SNPs that show large associations

can be better candidates for replication studies.

• The key idea in the approaches we describe is the use of data on haplotypes

from a relevant population to build a model for the missing data – basically

the models leverage linkage disequilibrium.
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Motivation for Imputation

Imputation for the TCF7L2 gene,

from Marcini et al (2007). Imputed

SNP signals are in red and observed

SNPs in black.
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Imputation Overview

From Marchini &
Howie (2010):

10.4

https://www.ncbi.nlm.nih.gov/pubmed/20517342
https://www.ncbi.nlm.nih.gov/pubmed/20517342


Statistical Framework

• Suppose we wish to estimate the association between a phenotype and m

genetic markers in n individuals.
• Let Gij represent the genotype of individual i at SNP j with Gij unobserved

for some SNPs.
• We consider diallelic SNPs so that Gij can take the value 0, 1 or 2 depending

on whether the pair of constituent SNPs are {0,0}, {0,1}, {1,0} or {1,1}.
• If Gij is observed then for SNP j we simply model p(yi|Gij)
• For example, for continuous phenotype yi we might assume a normal model:

E[Yi] = β0 + β1Gij,

and if yi is binary, a logistic model is an obvious candidate:
pi

1− pi
= exp(β0 + β1Gij)

where pi is the probability of disease for individual i.
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Statistical Framework

• Let H = (H1, ...,HN) represent haplotype information at m SNPs in a

relevant reference-panel, with N distinct haplotypes.

• Let Gi be the observed genotype information for individual i.

• If Gij is unobserved then for SNP j we have the model

p(yi|H,Gi) =
2∑

k=0

p(yi|Gij = k)× Pr(Gij = k|H,Gi)

• The big question is how to obtain the predictive distribution

Pr(Gij = k|H,Gi)

• A common approach is to take as prior a Hidden Markov Model (HMM)

• ...so what’s an HMM?
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Hidden Markov Models: simple example

• A common problem is how to model count data over time. A Poisson model

is the standard choice but we need to introduce:

1. overdispersion and

2. dependence over time.

• First consider the model:

Stage 1: Yt|λt ∼ Poisson(λt), t = 1,2, ...

Stage 2: λt|Zt ∼iid

{
λ0 if Zt = 0
λ1 if Zt = 1

Stage 3: Zt|p ∼iid Bernoulli(p).

• This adds overdispersion – the mean varies between λ0 and λ1, with

probabilities 1− p and p respectively
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Hidden Markov Models: simple example

To introduce dependence over time, we replace Stage 3 with a (first-order)

Markov chain model, i.e, Pr(Zt|Z1, ..., Zt−1) = Pr(Zt|Zt−1):

Pr(Zt = 0|Zt−1 = 0) = p0

Pr(Zt = 1|Zt−1 = 1) = p1

• Zt is an unobserved (‘hidden’ or ‘latent’) state.

• The next value of Z depends on the current Z, but no further back – the

chain is ‘memoryless’

• As an example we consider the number of major earthquakes (magnitude 7

and above) for the years 1990–2006.

• We illustrate the fit of this model with two or three underlying states.
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HMM: Earthquake Data

Earthquake data along with

the underlying states for the

two and three state HMMs,

in blue and red, respectively.
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IMPUTE v1

• Marchini et al (2007) consider a HMM for the vector of genotypes for

individual i:

Pr(Gi|H, θ, ρ) =
∑

zi=(z(1)
i ,z(2)

i )

Pr(Gi|Zi, θ)× Pr(Zi|H, ρ)

where Z(1)
i = {Z(1)

i1 , ..., Z
(1)
iJ } and Z(2)

i = {Z(2)
i1 , ..., Z

(2)
iJ }.

• The (Z(1)
i ,Z(2)

i ) are the pair of haplotypes for SNP j from the reference panel

that are copied to form the genotype vector. These are the hidden states.

• Pr(Zi|H, ρ) models how the pair of copied haplotypes for individual i changes

along the sequence. This probability changes according to a Markov chain

with the switching of states depending on the fine-scale recombination rate,

which is denoted ρ.
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IMPUTE v1

• The term Pr(Gi|Z, θ) allows the observed genotypes to differ from the pair of

copied haplotypes through mutation; the mutation parameter is θ.

• IMPUTE v2 (Howie et al, 2009) is a more flexible version that alternates between

phasing and haploid imputation.
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fastPHASE and BIMBAM

• We describe the model of Scheet & Stephens (2006)

• A Hidden Markov Model (HMM) is used to determine Pr(Gij = k|α, θθθ, r).

• The basic idea is that haplotypes tend to cluster into groups of similar

haplotypes; suppose there are K clusters.

• The unobserved hidden or latent state is the haplotype cluster from which

this SNP arose from. Each cluster has an associated set of allele frequencies

θθθkj.

• With K underlying states we have, for SNP j, αkj being the probability of

arising from haplotype k, with

K∑
k=1

αkj = 1
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fastPHASE and BIMBAM

• The model is

Pr(Gi|α, θθθ, r) =
∑
z

Pr(Gi|Zi, θθθ)× Pr(Zi|α, r)

with Zij the haplotype of origin for individual i and SNP j.

• A Markov chain is constructed for Zij with the strength of dependence being

based on the recombination rate r at a given location.

• Given Zij = k, the genotype assigned depends on the allele frequencies of the

k-th haplotype at the j-th SNP.
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Use in Association Studies

• The simplest approach to using imputed SNPs is to substitute Ĝij (a number

between 0 and 2) into the phenotype association model – and it gives valid

tests

• Imputation quality is also used. This is based on the variance of the

imputations – it’s zero if everyone got the same Ĝ

• A set of probabilities Pr(Gij = k|G,H) for k = 0,1,2 are produced and these

may be used to average over the uncertainty in the phenotype model.

• Within BIMBAM the unknown genotype is sampled from its posterior distribution,

within an MCMC framework.

• Other approaches:

– MACH: (Li et al 2010) similar methodology to IMPUTE

– Beagle: (Browning & Browning, 2009) uses a graphical model for

haplotypes
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Practical Issues

• One may attempt to match the haplotype panel (e.g. from HapMAP 2) with

the study individuals.

• An alternative approach is to use all available haplotypes, and assigning equal

prior probabilities to each.

• Many studies, for example Huang et al (2009), have examined SNP imputation

accuracy in different populations.
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Practical Issues

Imputation accuracy

as a function

of sample size,

from Huang et al

(2009); (more recent

approaches impute

everyone together)
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Practical Issues

Imputation accuracy for dif-

ferent populations with a

reference-panel of 120 hap-

lotypes, also from Huang et

al (2009)
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Practical Issues

Example results from Sanna et al (2011), with imputation carried out using the

MACH software.
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Practical Issues

Regional association

plot from Sanna et al

(2011).
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Off-the-shelf MCMC

Recall the big picture of Bayesian computation;

θ1 θ1

θ2 θ2

1

3

4

5

1

2

3

4
5

2

We want a large sample from some distribution – i.e. the posterior. It does
not matter if we get there by taking independent samples, or via some form of
dependent sampling. (Gibbs Sampling, here)
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Off-the-shelf MCMC

Once we have a big sample...
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Any property of the actual posterior (contours) can be approximated by the
empirical distribution of the samples (points)
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Off-the-shelf MCMC

Markov Chain Monte Carlo (MCMC) is the general term for sampling methods
that use Markov Chain processes to ‘explore’ the parameter space; the (many)
random process values form our approximation of the posterior.

But in many settings this ‘walking around’ is mundane; once we specify the model
and priors, the process of getting samples from the posterior can be done with
no original thought – i.e. we can get a computer to do it.

Some example of this labor-saving approach;

• WinBUGS (next)
• ... or JAGS, OpenBUGS, NIMBLE and Stan
• INLA – not a Monte Carlo method

The R Task Views on Genetics and Bayesian inference may also have specialized
software; see also Bioconductor.
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Bayes: WinBUGS
µ τ

Y6

Y5

Y1

Y2

Y3 Y4

θ

Started in 1989, the Bayesian analysis Using Gibbs Sampling (BUGS)

project has developed software where users specify only model and prior

– everything else is internal. WinBUGS is the most popular version.

• The model/prior syntax is very similar to R

• ...with some wrinkles – variance/precision, also column/rows in matrices
• Can be ‘called’ from R – see e.g. R2WinBUGS, much like rstan, rjags

Before we try it on GLMMs, a tiny GLM

example (n = 1, Y = 4);

Y |θ ∼ Pois (E exp(θ))

θ ∼ N(0,1.7972)

E = 0.25

...the BUGS code will look like an R representation of these statements.
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Bayes: WinBUGS

One (sane) way to code this in the BUGS language;
model{

Y∼dpois(lambda) ...Poisson distribution, like R

lambda <- E*exp(theta) ...syntax follows R

E <- 0.25 ...constants could go in data

theta∼dnorm(m,tau) ...prior for θ
m <- 0

tau <- 1/v tau = precision NOT variance!
v <- 1.797*1.797

} ...finish the model

#data

list(Y=4) Easiest way to input data
#inits

list(theta=0) Same list format; or use gen.inits
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Bayes: WinBUGS

Notes on all this; (not a substitute for reading the manual!)

• This should look familiar, from the models we have been writing out. In

particular ‘∼’ is used to denote distributions of data and parameters

• All ‘nodes’ appear once on the LHS; hard work is done on RHS

• No formulae allowed when specifying distributions

• Data nodes must have distributions. Non-data nodes must have priors – it’s

easy to forget these

• Write out regressions ‘by hand’; beta0 + beta1*x1 + ...

• This language can’t do everything; BUGS does not allow e.g.

Y <- U + V

U∼dnorm(meanu,tauu); V∼dt(meanv,tauv,k)
#data

list(Y=...)

10.25



Bayes: WinBUGS

From 10,000 iterations, how

do we do? (Note ‘MC error’

estimates Monte Carlo error

in the posterior mean)

Histogram of WinBUGS output
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prior
likelihood
posterior

node mean sd MC error 2.5% median 97.5%
theta 2.422 0.5608 0.005246 1.229 2.466 3.388
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Bayes: WinBUGS

Under the hood, here’s how WinBUGS ‘thinks’;

Y

λ

E θ

m τ • It’s a DAG; arrows represent stochastic relation-

ships (not causality)

• Some texts use square nodes for observed variables

(Y , here)

• To do a Gibbs update, we need to know/work out

the distribution of a node conditional on only its

parents, children, and its children’s other parents∗.

* This set is a node’s ‘Markov blanket’. The idea saves a lot

of effort, and is particularly useful when fitting random effects

models.
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WinBUGS: HWE example

A multinomial example, with a default prior;

Y ∼ Multinomial(n,θθθ)

where θθθ = (p2,2p(1− p), (1− p)2)

p ∼ Beta(0.5,0.5).

And a typical way to code it in “the BUGS language”;

model{

y[1:3] ~ dmulti(theta[], n)

theta[1] <- p*p

theta[2] <- 2*p*(1-p)

theta[3] <- (1-p)*(1-p)

p ~ dbeta(0.5, 0.5)

}
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WinBUGS: HWE example

We have n = 186, and

Y = (53,95,38).

We will run 3 chains, starting at p

= 0.5, 0.1 and 0.9.

In WinBUGS, input these by

highlighting two list objects:

# Data # Initial values
list(y=c(53,95,38),n=186) list(p=0.5)

list(p=0.1)
list(p=0.9)
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WinBUGS: HWE example

WinBUGS unlovely

but functional in-

house output;

The posterior has 95% support for p ∈ (0.49, 0.59), the posterior mean =
posterior median = 0.54. Use coda to get the chain(s).
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WinBUGS: less pointy-clicky

Apart from coming up with the model, everything can be automated, using R’s
R2WinBUGS package;
library("R2WinBUGS")
hweout <- bugs(data=list(y=c(53,95,38),n=186),
inits=list(p=0.5, p=0.1, p=0.9),

parameters.to.save=c("p"),
model.file="hweprog.txt",
bugs.directory = "C:/Program Files/WinBUGS14",
n.chains=3, n.iter=10000,
n.burnin=500, n.thin=1, DIC=FALSE)

• Model code now in a separate file (hweprog.txt)
• Specify the data and initial values as R structures
• Tell R where to find WinBUGS
• The output is stored in hweout, an R object – no need to go via coda

• When debugging, pointy-clicky WinBUGS is still useful
• See next slide for less-clunky graphics
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WinBUGS: less pointy-clicky

> print(hweout, digits=3)
Inference for Bugs model at "hweprog.txt", fit using WinBUGS,
3 chains, each with 10000 iterations (first 500 discarded)
n.sims = 28500 iterations saved

mean sd 2.5% 50% 97.5% Rhat n.eff
0.540 0.026 0.490 0.541 0.590 1.001 28000.000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

10.32



WinBUGS: less pointy-clicky
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WinBUGS: less pointy-clicky

• As well as the Markov blanket idea, WinBUGS uses what it knows about
conjugacy to substitute closed form integrals in the calculations, where it
can. (e.g. using inverse-gamma priors on Normal variances)
• Otherwise, it chooses from a hierarchy of sampling methods – though these

are not cutting-edge
• Because of its generality, and the complexity of turning a model into a

sampling scheme, don’t expect too much help from the error messages
• Even when the MCMC is working correctly, it is possible you may be fitting a

ridiculous, unhelpful model. WinBUGS’ authors assume you take responsibility
for that

Also, while Gibbs-style sampling works well in many situations, for some problems
it’s not a good choice. If unsure, check the literature to see what’s been tried
already.
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WinBUGS: less pointy-clicky

WinBUGS is no longer updated, but it’s pointy-clicky interface remains a good

place to get started. The BUGS language, describing models, is now used in

JAGS, NIMBLE and OpenBUGS. Here rjags uses the exact same model file;
> library("rjags")
> jags1 <- jags.model("hweprog.txt", data=list(y=c(53,95,38),n=186) )
> update(jags1, 10000)
> summary( coda.samples(jags1, "p", n.iter=10000) )
Iterations = 11001:21000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000
1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE Time-series SE

0.5398583 0.0258055 0.0002581 0.0003308
2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
0.4890 0.5225 0.5398 0.5576 0.5895
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Stan

Stan is similar to

BUGS, WinBUGS,

JAGS etc – but

new & improved;

• Coded in C++, for faster updating, it runs the No U-Turn Sampler – cleverer

than WinBUGS’ routines

• The rstan package lets you run chains from R, just like we did with R2WinBUGS

• Some modeling limitations – no discrete parameters – but becoming popular;

works well with some models where WinBUGS would struggle

• Basically the same modeling language as WinBUGS – but Stan allows R-style

vectorization

• Requires declarations (like C++) – unlike WinBUGS, or R – so models require

a bit more typing...
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Stan: HWE example

A Stan model for the HWE example
data {

int y[3];
}
parameters {

real<lower=0,upper=1> p;
}
transformed parameters {

simplex[3] theta;
theta[1] = p*p;
theta[2] = 2*p*(1-p);
theta[3] = (1-p)*(1-p);

}
model {

p~beta(0.5, 0.5);
y~multinomial(theta);

}

• More typing than BUGS!
• But experienced programmers will be used to this overhead
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Stan: HWE example

With the model stored in HWEexample.stan (a text file) the rest follows as before;

> library("rstan")
> stan1 <- stan(file = "HWEexample.stan", data = list(y=c(53,95,38)),
+ iter = 10000, chains = 1)
> print(stan1)
Inference for Stan model: HWEexample.
1 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=5000.

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff
p 0.54 0.00 0.03 0.48 0.52 0.54 0.56 0.60 5000
theta[1] 0.29 0.00 0.03 0.23 0.27 0.29 0.31 0.36 5000
theta[2] 0.49 0.00 0.01 0.48 0.49 0.50 0.50 0.50 4541
theta[3] 0.21 0.00 0.03 0.16 0.19 0.21 0.23 0.27 5000
lp__ -192.17 0.02 0.87 -194.71 -192.44 -191.81 -191.57 -191.49 2762

Samples were drawn using NUTS(diag_e) at Tue Jul 26 14:13:31 2016.

• Iterations in the stan1 object can be used for other summaries, graphs, etc
• lp is the log likelihood, used in (some) measures of model fit
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INLA

We’ve already seen various examples of Bayesian analysis using Integrated Nested

Laplace Approximation (INLA). For a (wide) class of models known as Gaussian

Markov Random Fields, it gives a very accurate approximation of the posterior

by ‘adding up’ a series of Normals.

• This approximation is not stochastic – it is not a Monte Carlo method

• Even with high-dimensional parameters, where MCMC works less well/badly,

INLA can be practical

• INLA is so fast that e.g. ‘leave-one-out’ & bootstrap methods are practical

– and can scale to GWAS-size analyses

• Fits most regression models – but not everything, unlike MCMC

• Non-standard posterior summaries require more work than manipulating

MCMC’s posterior sample
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INLA

The inla package in R has syntax modeled on R’s glm() function. And with some

data reshaping, our HWE example is a GLM;

> y <- c(53,95,38) # 2,1,0 copies of allele with frequency "p"
> n <- 186
> longdata <- data.frame(y=rep(2:0, y), ni=rep(2, n) )
> # non-Bayesian estimate of log(p)/(1-log(p)) i.e. log odds
> glm1 <- glm( cbind(y,ni-y) ~ 1, data=longdata, family="binomial" )
> expit <- function(x){exp(x)/(1+exp(x) )}
> expit(coef(glm1))
(Intercept)

0.5403226
> expit(confint(glm1))

2.5 % 97.5 %
0.4895317 0.5905604
> inla1 <- inla( y~1, family="binomial", data=longdata, Ntrials=rep(2,n) )
> summary(inla1)$fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.1616 0.104 -0.0422 0.1615 0.3661 0.1612 0
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INLA

Compare these to the non-Bayesian point estimate and confidence interval:

> expit(summary(inla1)$fixed[,3:5]) # posterior of "p"
0.025quant 0.5quant 0.975quant
0.4894516 0.5402875 0.5905163

For non-default priors, see the examples on the course site.
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Model comparison

We saw some model comparison tools in Session 6 – evaluating posterior
probability for different submodels, indexed by different z values.

An alternative approach evaluates different models by how well they predict new
outcomes. In Session 6 we examined the Mean Squared Error – for n ‘new’
observations this is

1

n

∑
i

(Ỹi − Ŷi)2.

A more general criteria is the log posterior predictive density, which for a single
new observation Ỹ we write as

lpd = log pppost(Ỹ ) = log p(Ỹ |Y)

= log
∫
p(Ỹ |θθθ)p(θθθ|Y)dθθθ

where p(θθθ|Y) is the posterior distribution for parameter(s) θθθ.
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Model comparison

Some notes on this:

• If new data Ỹ isn’t likely under the posterior values of θθθ, expect to get a low

‘score’

• If new data Ỹ is likely under the posterior, typically get a big score

• Confusingly, it’s traditional to use −2× lpd as the criteria – so smaller values

are better
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Model comparison

But we don’t know the values of future observations Ỹ , so ideally we would
average lpd over the true sampling distribution of new observations;

elpd = E[ log p(Ỹ |Y);θθθ ] =
∫

log p(Ỹ |Y)p(Ỹ |θθθ)dỸ

for true density q(Ỹ ) – i.e. sampling data under the true θθθ values.

And for predicting a whole new dataset, we could consider the total score

elpdn =
n∑
i=1

E[ log p(Ỹi|Y);θθθ ]

=
n∑
i=1

∫
log p(Ỹi|Y)p(Ỹi|θθθ)dỸi.

– adding up the score for each observation.

Unfortunately these quantities depend on the true θθθ, which is unknown.
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Model comparison

The first widely-used approximation to elpdn ‘plugs-in’ a simple non-Bayesian
maximum likelihood point estimate θ̂θθMLE for θθθ, and assumes the future data Ỹi
can be approximated by current data Yi.

This double use of the data (in both θ̂θθMLE and Ỹi ≈ Yi) results in overfitting, but
this can be easily corrected. We approximate elpdn by

êlpdAIC =

 n∑
i=1

p(Yi|̂θθθ)

− k
and (confusingly!) we report

AIC = −2× êlpdAIC = −2

 n∑
i=1

p(Yi|̂θθθ)

+ 2k,

where k is the number of parameters. AIC, developed by Akaike (1973), is An
Information Criterion.
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Model comparison

In Bayesian and/or hierarchical models, there is no well-defined count of
parameters – because we typically learn about one as we learn about all the
others. The widely-used Deviance Information Criterion instead uses a Bayesian
posterior mean E[θθθ|Y ] for its estimate θ̂θθBayes, giving

êlpdDIC =

 n∑
i=1

log p(Yi|̂θθθBayes)

− pD,
where pD = 2

(
log p(Y|̂θθθBayes)− Eθθθ|Y[ log p(Y|θθθ) ]

)
is another bias-correction term, accounting for double use of data in the ‘score’
log p(Y|θθθ) and also in the posterior p(θθθ|Y).

In the usual confusing manner, we actually use

DIC = −2

 n∑
i=1

log p(Yi|̂θθθBayes)

+ 2pD.
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Model comparison

DIC – easily calculated using the WinBUGS software and similar packages – is

popular in practice. Some examples from genetics;

• Shriner and Yi 2009 use DIC in the context of multiple QTL Mapping – to

select how many QTLs there are, and their locations

• Yu et al, 2012 use DIC studying gene×environment interactions, with a model

that ‘clusters’ nearby∗ variants, so they have similar interaction effects. DIC

is used to choose how many clusters

* ...using the Potts model
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Model comparison

But DIC has been heavily criticized by statisticians;

• pD is not invariant to parameterization

• DIC is not consistent for choosing the correct model

• DIC has an ad hoc theoretical justification and can’t be used for all models

• DIC has been shown to under-penalize complex models (Plummer (2008),

Ando (2007)

• See Spiegelhalter et al (2014) for a recent review
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Model comparison

A currently-preferred alternative is the Widely-Applicable Information Criterion

(WAIC) which is identical to DIC by uses bias-correction term

pWAIC = 2
n∑
i=1

log(Eθθθ|Y[ p(Yi|θθθ) ])− Eθθθ|Y[ log p(Yi|θθθ) ]

... and then reports

DIC = −2

 n∑
i=1

log p(Yi|̂θθθBayes)

+ 2pWAIC.

• This has better theoretical properties, but can be unstable in small samples

• If you find all the log-densities confusing, use of these criteria is similar

in practice to using leave-one-out prediction measures, averaged over each

observation – but they can be computed much, much more quickly
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Model comparison

To illustrate these criteria, we use a linear regression example – similar to the
FTO one, but with a larger dataset;

genotype
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Model comparison

Using R2WinBUGS for a model with a genotype×sex interaction – and calculating

its DIC;

library("R2WinBUGS")
# full model
cat(file="linregprog1.txt", "model{
for(i in 1:n){

Trait[i] ~ dnorm(mu[i], tau)
mu[i] <- beta[1] + beta[2]*Geno[i] + beta[3]*Male[i] + beta[4]*Geno[i]*Male[i]

}
tau <- 1/(sigma*sigma)
sigma <- abs(Z)/sqrt(chi2)
Z ~ dnorm(0,1)
chi2 ~ dchisqr(1) # sneaky way to get a cauchy prior
for(j in 1:4){

beta[j] ~ dnorm(0,0.001) }
}")
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Model comparison

linregout1 <- bugs(data=fms.list, inits=NULL,
parameters.to.save=c("beta"),

model.file="linregprog1.txt",
bugs.directory = "C:/Program Files/WinBUGS14",
n.chains=3, n.iter=10000,
n.burnin=500, n.thin=1, DIC=TRUE, debug=FALSE)
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Model comparison

We also use WinBUGS to fits a reduced model – linregout2 with no interaction
but everything else the same. Comparing it to classical methods and AIC;
> lm1 <- lm(Trait~Geno+Male+Geno*Male, data=fms.clean)
> lm2 <- lm(Trait~Geno+Male, data=fms.clean)

> -2*c(logLik(lm1), logLik(lm2))
[1] 5841.214 5845.255
> c(AIC(lm1), AIC(lm2))
[1] 5851.214 5853.255 # lower is better (i.e. better predictions)

> c(linregout1$DIC, linregout2$DIC)
[1] 5851.174 5853.489
> c(linregout1$pD, linregout2$pD)
[1] 5.014797 4.189147

• AIC and DIC values are extremely close (expected with non-hierarchical model
and large n)
• DIC’s pD approximates the number of parameters very accurately
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Model comparison

Using INLA, this is even simpler – and we can also obtain WAIC;

> library("INLA")
> inla1 <- inla(Trait~Geno+Male+Geno*Male, data=fms.clean, control.compute = list(waic=TRUE, dic=TRUE))
> inla2 <- inla(Trait~Geno+Male, data=fms.clean, control.compute = list(waic=TRUE, dic=TRUE))

> c(inla1$waic$waic, inla2$waic$waic)
[1] 5853.014 5855.292
> c(inla1$dic$dic, inla2$dic$dic )
[1] 5851.213 5853.323

> c(inla1$waic$p.eff, inla2$waic$p.eff) # not so great
[1] 6.654282 5.860704
> c(inla1$dic$p.eff, inla2$dic$p.eff ) # unreasonably good!
[1] 4.995477 4.031116

• INLA’s (sensible) default priors are used here
• Part of the issue with WAIC’s effective number of parameters is that the

model – which assumed Normality – doesn’t fit the spread of the data well
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Model comparison

Just to illustrate this property, we transform the data to look more Normal;
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Model comparison

Re-running all the analyses with the transformed, more-Normal trait;

> inla1b <- inla(Trait2~Geno+Male+Geno*Male, data=fms.clean, control.compute = list(waic=TRUE, dic=TRUE))
> inla2b <- inla(Trait2~Geno+Male, data=fms.clean, control.compute = list(waic=TRUE, dic=TRUE))

> c(inla1b$waic$waic, inla2b$waic$waic)
[1] 1637.344 1638.347
> c(inla1b$dic$dic, inla2b$dic$dic )
[1] 1637.252 1638.192

> c(inla1b$waic$p.eff, inla2b$waic$p.eff) # much better
[1] 5.082174 4.162125
> c(inla1b$dic$p.eff, inla2b$dic$p.eff ) # still unreasonably good!
[1] 5.044638 4.042928
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Conclusions

• Stan, INLA and others allow almost any model to be fit, given some coding

based on a description of the model and data, and some care using MCMC

• No universally agreed upon approach to carrying out model comparison. (Also

true in non-Bayesian work)

• The Widely Applicable Information Criteria (WAIC) is growing in popularity,

and both DIC and WAIC are available off-the-shelf, for many frequently-used

models.
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