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Overview

In this final session:

e Overview of imputation — where Bayesian (or approximately-Bayesian) meth-

ods are used to address a complex measurement error/missing data problem
e More details of off-the-shelf MCMC software

e NO exercises — time for questions
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Motivation for Imputation

e Imputation is the prediction of missing genotypes, using measured genotypes
and prior information
e It is used widely in both GWAS and in fine-mapping studies, since it can:
— Increase power in GWAS
— Facilitate meta-analysis in which it is required to combine information
from different panels which have different sets of SNPs. (This also helps
power)
— Fine-map causal variants. Imputed SNPs that show large associations
can be better candidates for replication studies.
e [ he key idea in the approaches we describe is the use of data on haplotypes
from a relevant population to build a model for the missing data — basically
the models leverage linkage disequilibrium.
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Motivation for Imputation
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Statistical Framework

e Suppose we wish to estimate the association between a phenotype and m
genetic markers in n individuals.

o Let Gij represent the genotype of individual « at SNP 5 with G,L-j unobserved
for some SNPs.

e \We consider diallelic SNPs so that Gij can take the value O, 1 or 2 depending
on whether the pair of constituent SNPs are {0,0}, {O,1}, {1,0} or {1,1}.

o If G;; is observed then for SNP j we simply model p(y;|G;;)

e For example, for continuous phenotype y; we might assume a normal model:

E[Y;] = Bo + 81Gij,
and if y; is binary, a logistic model is an obvious candidate:
D;
; — = exp(Bo + B1Gij)
— Pi
where p; is the probability of disease for individual 3.
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Statistical Framework

e let H = (Hq,...,Hy) represent haplotype information at m SNPs in a
relevant reference-panel, with N distinct haplotypes.

e Let G, be the observed genotype information for individual 7.

e If GG;; is unobserved then for SNP j we have the model

2
p(yilH,G;) = > p(yilGij = k) x Pr(G;; = k|H, G;)
k=0
e [ he big question is how to obtain the predictive distribution

Pr(G;; = k|H, G;)

e A common approach is to take as prior a Hidden Markov Model (HMM)
e ...50 what's an HMM?
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Hidden Markov Models: simple example

e A common problem is how to model count data over time. A Poisson model
is the standard choice but we need to introduce:
1. overdispersion and
2. dependence over time.

e First consider the model:

Stage 1: Y| ¢+ ~ Poisson(\), t =1,2,...
Ao If Zz =0
dY N if Zp =1
Stage 3: Zi|p ~;;q Bernoulli(p).
e T his adds overdispersion — the mean varies between Mg and Aq, with
probabilities 1 — p and p respectively

Stage 2: M| Zy ~y;
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Hidden Markov Models: simple example

To introduce dependence over time, we replace Stage 3 with a (first-order)
Markov chain model, i.e, Pr(Z¢|Z1, ..., Z1_1) = Pr(Z¢|Z;_1):

Pr(Zy =0|Z;_1 = 0)
Pr(Zy=1|Z4_1 = 1)

Po
P1

e Z; is an unobserved (‘hidden’ or ‘latent’) state.

e [ he next value of Z depends on the current Z, but no further back — the
chain is ‘memoryless’

e As an example we consider the number of major earthquakes (magnitude 7
and above) for the years 1990—2006.

e \We illustrate the fit of this model with two or three underlying states.
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HMM: Earthquake Data

Earthquake data along with
the underlying states for the
two and three state HMMs,
in blue and red, respectively.
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IMPUTE v1

e Marchini et al (2007) consider a HMM for the vector of genotypes for
individual z:

PI’(G”H,@,p) = Z PF(GZ|ZZ,9) X PI’(Z”H,p)
zi=(z{" 2
where Z,§1> = {ZZ-(ll), ey ZZ.(Jl)} and Z,L(Q) = {ZZ.(12), ...,ZZ.(;)}.
e [ he (Zgl),Zgz)) are the pair of haplotypes for SNP 5 from the reference panel
that are copied to form the genotype vector. These are the hidden states.
e Pr(Z;|H,p) models how the pair of copied haplotypes for individual i changes
along the sequence. This probability changes according to a Markov chain
with the switching of states depending on the fine-scale recombination rate,

which is denoted p.
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IMPUTE v1

e The term Pr(G,|Z,0) allows the observed genotypes to differ from the pair of
copied haplotypes through mutation; the mutation parameter is 6.

e IMPUTE v2 (Howie et al, 2009) is a more flexible version that alternates between
phasing and haploid imputation.
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https://www.ncbi.nlm.nih.gov/pubmed/19543373

fastPHASE and BIMBAM

e We describe the model of Scheet & Stephens (2006)

e A Hidden Markov Model (HMM) is used to determine Pr(G;; = k|a,0,r).

e [ he basic idea is that haplotypes tend to cluster into groups of similar
haplotypes; suppose there are K clusters.

e [ he unobserved hidden or latent state is the haplotype cluster from which
this SNP arose from. Each cluster has an associated set of allele frequencies
ij.

e With K underlying states we have, for SNP j, Q. being the probability of
arising from haplotype k, with

K
2. gy =1
k=1
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fastPHASE and BIMBAM

e [ he model is
Pr(Gila,0,r) => Pr(G;|Z;,0) x Pr(Z;|e,r)
z

with Z;; the haplotype of origin for individual < and SNP j.

e A Markov chain is constructed for Z;; with the strength of dependence being
pbased on the recombination rate r at a given location.

e Given Zij — k, the genotype assigned depends on the allele frequencies of the
k-th haplotype at the j5-th SNP.
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Use in Association Studies

e [ he simplest approach to using imputed SNPs is to substitute @Z-j (a number
between 0 and 2) into the phenotype association model — and it gives valid
tests

e Imputation quality is also used. This is based on the variance of the
imputations — it's zero if everyone got the same G

o A set of probabilities Pr(G;; = k|G, H) for Kk =0,1,2 are produced and these
may be used to average over the uncertainty in the phenotype model.

e \Within BIMBAM the unknown genotype is sampled from its posterior distribution,
within an MCMC framework.

e Other approaches:

— MACH: (Li et al 2010) similar methodology to IMPUTE
— Beagle: (Browning & Browning, 2009) uses a graphical model for
haplotypes
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Practical Issues

e One may attempt to match the haplotype panel (e.g. from HapMAP 2) with
the study individuals.

e An alternative approach is to use all available haplotypes, and assigning equal
prior probabilities to each.

e Many studies, for example Huang et al (2009), have examined SNP imputation
accuracy in different populations.
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Practical Issues

Imputation accuracy
as a function
of sample Size,
from Huang et al
(2009); (more recent
approaches impute
everyone together)
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Practical Issues

Imputation accuracy for dif-
ferent populations with a
reference-panel of 120 hap-
lotypes, also from Huang et
al (2009)
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Practical Issues

Table 1. Association Analysis results.

Varianaoa Variance
Effect Freq explained Top Effect Freq explained
Allele/ Effect Ganomic by the GWAS Allelel Effect Adjusted by the
Locus SMPname Type Other Allele Effect [SE)® P-value Annotation locus SMNP Other Allele Effect (SE)® P-value rd P-value locus
PC5K9 rs11591147 Metabochip T/G 0037 —0.380 (0.048) 2090x10” " missense (R46L) 1.19% rs11206510 OT 0243 —Q0106 (0023) S7Ix107% 0101 0013 0L13%
s 2479415  1000G oT 0413 0076 (0019) 750x107% & Kb from PCK9
SORTH rs583104 Metabochip T/G Q77 0149 (D24) 128x10°% 31 Kb from SORT® 0.463% rs5996839 GIA 0276 —0.148 (0025 143107 0991 090 0L61%
B3GALTS rs 283561085 10006 oT 0073 0114 (0uD35) 0.00169 146 Kb from B3GALT3 0.22% rs2254287  G/C 0492 QD05 0.018) Fi 0413 084 00 2%
B4GALTS rs3H507110 10005 GfA 0154 0122 (0uD30) 499x10”" 83 Kb from B4GALTS 0.48% rs12695382 A 0075 —0.074 (0035) 0,035 0795 048 0L03%
APOE 547335 10005 AG 0187 —0.144 (0.024) 160x10°% 140 Kb from APOB 051% rs562338 ARG 0173 —0.139 (0025 143 x1 0% (.E7E 098 0.43%
LOLR rs73015013 Metabochip T/C 0138 —0.155 (0027) 1.2x107% 9 kb from LDLR 1.17% rsBS1TH TAG 0132 —0160 (0027 171 =107 0934 097 0L.5%%
rs 72658854 Metabochip OT 0005 0626 (0.134) 390x10”% missense [V578A)
APOCICIE 157412 Metabochip  T/C 0.037 —0563 (0.048) 1.80x10°"" missense (R176C) 333% rsM420638° G/A 0097 0218 0031}  467x10 "7 00003 641x107 " 1.07%
APOE
rs4 29358 Affy+Sanger O 0o 0.260 (0UD35) 582x10°""  missense (C130R)
APOE

The left panel shows the association results at 7 lodi. For each gene, the strangest variant is listed first, and any second detected independent signal is listed with results from the conditianal analysis (Materials and Methods). The
calumn Type indicates whether the SNP was directly genotyped (Metabochip) or imputed using 1000G reference haplotype (1 000G) or the Sardinian reference panel (Affy+Sanger). The right panel shows the associatian results for
the GWAS SNPs previously described [5), the correlation with the top SNF listed in the left panel, and its p-value in the conditional analysis (Adjusted P-value).

*Effect sizes are standardized (see Materiaks and Methods), and represent the change in trait LDL-C values associated with each copy af the reference allele, measured in standard deviation units.

BSNP rsE83104 is also 1 Kb from PSRCT transcript.

“F =0.967 with Metabochip second independent SNP, rs429358. After adjusting for the two independent SNPs, rs7412 and rs429358, the p-value for rs4420638 was 0.5,

doi10.1371 jourmnalpgen. 10021981001

Example results from Sanna et al (2011), with imputation carried out using the
MACH software.
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Practical Issues
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Off-the-shelf MCMC

Recall the big picture of Bayesian computation;
e2

0, 0,

We want a large sample from some distribution — i.e. the posterior. It does
not matter if we get there by taking independent samples, or via some form of
dependent sampling. (Gibbs Sampling, here)
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Off-the-shelf MCMC

Once we have a big sample...

Sample (points) approximate distribution (contours)

X

Any property of the actual posterior (contours) can be approximated by the
empirical distribution of the samples (points)
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Off-the-shelf MCMC

Markov Chain Monte Carlo (MCMCQC) is the general term for sampling methods
that use Markov Chain processes to ‘explore’ the parameter space; the (many)
random process values form our approximation of the posterior.

But in many settings this ‘walking around’ is mundane; once we specify the model
and priors, the process of getting samples from the posterior can be done with
no original thought — i.e. we can get a computer to do it.

Some example of this labor-saving approach;

e WIinBUGS (next)
o ... or JAGS, OpenBUGS, NIMBLE and Stan
e INLA — not a Monte Carlo method

The R Task Views on Genetics and Bayesian inference may also have specialized
software; see also Bioconductor.
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Bayes: WiIinBUGS

5 Started in 1989, the Bayesian analysis Using Gibbs Sampling (BUGS)
" project has developed software where users specify only model and prior
— everything else is internal. WinBUGS is the most popular version.

e The model/prior syntax is very similar to R
e ...with some wrinkles — variance/precision, also column/rows in matrices

e Can be ‘called’ from R — see e.g. R2WinBUGS, much like rstan, rjags

Child cancers 'not caused Before we try it on GLMMSs, a tiny GLM
b.ysfe"af'e'd example (n=1,Y = 4);

Y| ~ Pois(Eexp(0))
0 ~ N(0,1.797%)
E = 0.25

...the BUGS code will look like an R representation of these statements.
10.23



Bayes: WiIinBUGS

One (sane) way to code this in the BUGS language;

model{
Y~dpois(lambda) ...Poisson distribution, like R
lambda <- Exexp(theta) ...syntax follows R
E <- 0.25 ...constants could go in data
theta~dnorm(m,tau) ...prior for 6
m <- 0
tau <- 1/v tau = precision NOT variance!
v <—- 1.797%1.797
} ...finish the model
#data
list(Y=4) Easiest way to input data
#inits
list (theta=0) Same list format; or use gen.inits
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Bayes: WiIinBUGS

Notes on all this; (not a substitute for reading the manuall)

This should look familiar, from the models we have been writing out. In
particular ‘~’ is used to denote distributions of data and parameters
All ‘nodes’ appear once on the LHS; hard work is done on RHS
No formulae allowed when specifying distributions
Data nodes must have distributions. Non-data nodes must have priors — it’s
easy to forget these
Write out regressions ‘by hand’; beta0 + betal*xl + ...
This language can’'t do everything; BUGS does not allow e.q.
Y<-U+V
U~dnorm(meanu,tauu); V~dt(meanv,tauv,k)
#data
list(Y=...)
10.25



Bayes: WiIinBUGS

. ) Histogram of WinBUGS output
From 10,000 iterations, how

do we do? (Note ‘MC error’ — ﬁifﬁhgod
estimates Monte Carlo error — posteror
in the posterior mean)

0.8

0.6

density
0.4

0.2
|

theta

node mean sd MC error 2.5% median 97.5%
theta 2.422 0.5608 0.005246 1.229 2.466 3.388
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Bayes: WiIinBUGS

Under the hood, here’'s how WinBUGS ‘thinks’;

@ G e It's a DAG; arrows represent stochastic relation-
ships (not causality)

e Some texts use square nodes for observed variables
G @ (Y, here)
e To do a Gibbs update, we need to know/work out
the distribution of a node conditional on only its
° parents, children, and its children’s other parents®.

* This set is a node’'s ‘Markov blanket’. The idea saves a lot

of effort, and is particularly useful when fitting random effects

“ models.
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winBUGS: HWE example

A multinomial example, with a default prior;

Y ~ Multinomial(n,8)
where 8 = (p?,2p(1 —p), (1 —p)?)
p ~ Beta(0.5,0.5).

And a typical way to code it in “the BUGS language”;

modeld{
y[1:3] ~ dmulti(thetal]l, n)
thetal[l] <- p*p
theta[2] <- 2%p*x(1-p)
thetal[3] <- (1-p)*(1-p)
p ~ dbeta(0.5, 0.5)
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winBUGS: HWE example

We have n = 186, and
Y = (53,95,38).

We will run 3 chains, starting at p
— 0.5, 0.1 and 0.9.

In WinBUGS, input these by
highlighting two list objects:

# Data # Initial values

list (y=c(53,95,38),n=186) 1list (p=0.5)
1list(p=0.1)
1ist (p=0.9)

0,

0.8 1.0

0.6

0.2 0.4

0.0

Observed proportions

1.0
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winBUGS: HWE example

WinBUGS unlovely
but functional in-
house output;

The posterior has 95%

untitled1 oo =
p chains 1:3 A
0.7
06} ] ! I . [l 1 ]
05} | j
04F
T T T T T
1 2500 5000 7500 10000
iteration
node mean sd MC error 2.5% median  97.5% start sample
p 0.5405 0.02601 1.586E-4 0.4895 0.5405 0.5914 501 28500

p chains 1.3 sample: 28500

150

- '/_A——\\\
/

50 ,//

0.4 0S 06 07

v

support for p € (0.49, 0.59), the posterior mean =

posterior median = 0.54. Use coda to get the chain(s).
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WiIinBUGS: less pointy-clicky

Apart from coming up with the model, everything can be automated, using R’s
R2WinBUGS package;

library ("R2WinBUGS")
hweout <- bugs(data=list(y=c(53,95,38),n=186),
inits=1list(p=0.5, p=0.1, p=0.9),
parameters.to.save=c("p"),
model.file="hweprog.txt",
bugs.directory = "C:/Program Files/WinBUGS14",
n.chains=3, n.iter=10000,
n.burnin=500, n.thin=1, DIC=FALSE)

Model code now in a separate file (hweprog.txt)

Specify the data and initial values as R structures

Tell R where to find WinBUGS

The output is stored in hweout, an R object — no need to go via coda
When debugging, pointy-clicky WinBUGS is still useful

See next slide for less-clunky graphics

10.31



WiIinBUGS: less pointy-clicky

> print (hweout, digits=3)
Inference for Bugs model at "hweprog.txt", fit using WinBUGS,
3 chains, each with 10000 iterations (first 500 discarded)
n.sims = 28500 iterations saved
mean sd 2.5% 507, 97 .5Y% Rhat n.eff
0.540 0.026 0.490 0.541 0.590 1.001 28000.000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
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WIinBUGS: less pointy-clicky
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0 100 200 300 400 045 050 055 0.60 0.65
iteration p
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WiIinBUGS: less pointy-clicky

e As well as the Markov blanket idea, WinBUGS uses what it knows about
conjugacy to substitute closed form integrals in the calculations, where it
can. (e.g. using inverse-gamma priors on Normal variances)

e Otherwise, it chooses from a hierarchy of sampling methods — though these
are not cutting-edge

e Because of its generality, and the complexity of turning a model into a
sampling scheme, don't expect too much help from the error messages

e Even when the MCMC is working correctly, it is possible you may be fitting a
ridiculous, unhelpful model. WinBUGS’ authors assume you take responsibility
for that

Also, while Gibbs-style sampling works well in many situations, for some problems
it's not a good choice. If unsure, check the literature to see what's been tried
already.
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WiIinBUGS: less pointy-clicky

WinBUGS is no longer updated, but it's pointy-clicky interface remains a good
place to get started. The BUGS language, describing models, is now used in
JAGS, NIMBLE and OpenBUGS. Here rjags uses the exact same model file;

> library("rjags")

> jagsl <- jags.model("hweprog.txt", data=list(y=c(53,95,38),n=186) )

> update(jagsl, 10000)

> summary( coda.samples(jagsl, "p", n.iter=10000) )

Iterations = 11001:21000
Thinning interval = 1

Number of chains =1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:
Mean SD Naive SE
0.5398583 0.0258055 0.0002581
2. Quantiles for each variable:
2.5% 25% 50% 75% 97 .5%
0.4890 0.5225 0.5398 0.5576 0.5895

Time—-series SE
0.0003308
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Stan

Stan is similar to
BUGS, WinBUGS,
JAGS etc — but
new & improved:

e Coded in C++4, for faster updating, it runs the No U-Turn Sampler — cleverer
than WinBUGS’ routines

e [ he rstan package lets you run chains from R, just like we did with R2WinBUGS

e Some modeling limitations — no discrete parameters — but becoming popular;
works well with some models where WinBUGS would struggle

e Basically the same modeling language as WinBUGS — but Stan allows R-style
vectorization

e Requires declarations (like C4++4) — unlike WinBUGS, or R — so models require
a bit more typing...
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Stan: HWE example

A Stan model for the HWE example

data A
int y[3];
+
parameters {
real<lower=0,upper=1> p;
¥
transformed parameters {
simplex[3] theta;

theta[l] = px*p;
theta[2] = 2*p*x(1-p);
thetal[3] = (1-p)*(1-p);
+
model {
p~beta(0.5, 0.5);
y multinomial (theta) ;
+

e More typing than BUGS!
e But experienced programmers will be used to this overhead
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Stan: HWE example

With the model stored in HWEexample.stan (a text file) the rest follows as before;

> library("rstan")
> stanl <- stan(file = "HWEexample.stan", data = 1list(y=c(53,95,38)),
+ iter = 10000, chains = 1)
> print(stanl)
Inference for Stan model: HWEexample.
1 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=5000.

mean se_mean  sd 2.5 25% 50% 75% 97.5%, n_eff
p 0.54 0.00 0.03 0.48 0.52 0.54 0.56 0.60 5000
thetal1] 0.29 0.00 0.03 0.23 0.27 0.29 0.31 0.36 5000
thetal2] 0.49 0.00 0.01 0.48 0.49 0.50 0.50 0.50 4541
thetal[3] 0.21 0.00 0.16 0.19 0.21 0.23 0.27 5000
lp__ -192.17 0.02 4.71 -192.44 -191.81 -191.57 -191.49 2762

O OO OO0

Samples were drawn using NUTS(diag_e) at Tue Jul 26 14:13:31 2016.

e Iterations in the stanl object can be used for other summaries, graphs, etc
e 1p__is the log likelihood, used in (some) measures of model fit
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INLA

We've already seen various examples of Bayesian analysis using Integrated Nested
Laplace Approximation (INLA). For a (wide) class of models known as Gaussian
Markov Random Fields, it gives a very accurate approximation of the posterior
by ‘adding up’ a series of Normals.

e [ his approximation is not stochastic — it is not a Monte Carlo method

e Even with high-dimensional parameters, where MCMC works less well/badly,
INLA can be practical

e INLA is so fast that e.g. ‘leave-one-out’ & bootstrap methods are practical
— and can scale to GWAS-size analyses

e Fits most regression models — but not everything, unlike MCMC

e Non-standard posterior summaries require more work than manipulating
MCMC’s posterior sample
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INLA

The inla package in R has syntax modeled on R’s glm() function
data reshaping, our HWE example is a GLM;

>y <- c(53,95,38) # 2,1,0 copies of allele with frequency "p"
> n <- 186
> longdata <- data.frame(y=rep(2:0, y), ni=rep(2, n) )
> # non-Bayesian estimate of log(p)/(1-log(p)) i.e. log odds
> glml <- glm( cbind(y,ni-y) ~ 1, data=longdata, family="binomial" )
> expit <- function(x){exp(x)/(1+exp(x) )}
> expit(coef(glml))
(Intercept)
0.5403226
> expit(confint(glml))
2.5 % 97.5 %
0.4895317 0.5905604
> inlal <- inla( y~1, family="binomial", data=longdata, Ntrials=rep(2,n) )
> summary(inlal)$fixed
mean sd 0.02bquant O.b5quant 0.97bquant  mode kld
(Intercept) 0.1616 0.104 -0.0422 0.1615 0.3661 0.1612 O

. And with some
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INLA

Compare these to the non-Bayesian point estimate and confidence interval:

> expit(summary(inlal)$fixed[,3:5]) # posterior of "p"
0.025quant O0.5quant 0.975quant
0.4894516 0.5402875 0.5905163

For non-default priors, see the examples on the course site.
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Model comparison

We saw some model comparison tools in Session 6 — evaluating posterior
probability for different submodels, indexed by different z values.

An alternative approach evaluates different models by how well they predict new
outcomes. In Session 6 we examined the Mean Squared Error — for n ‘new’
observations this is

1 ~ .
“N (¥ - 1)
n-

A more general criteria is the log posterior predictive density, which for a single
new observation Y we write as

Ipd = |ngppost(?> = |09p(?‘Y)
= log [ p(¥18)p(8Y)do
where p(0|Y) is the posterior distribution for parameter(s) 6.
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Model comparison

Some notes on this:

e If new data Y isn't likely under the posterior values of @, expect to get a low
‘score’

e If new data Y is likely under the posterior, typically get a big score

e Confusingly, it's traditional to use —2 x Ipd as the criteria — so smaller values
are better
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Model comparison

But we don’'t know the values of future observations Y, so ideally we would
average Ilpd over the true sampling distribution of new observations;

elpd = E[log p(V[Y); 0] = / l0g p(Y[Y)p(¥(0)d¥

for true density ¢(Y) — i.e. sampling data under the true 6 values.
And for predicting a whole new dataset, we could consider the total score

n

> E[logp(Y;[Y); 0]

1=1

= > [108p(FiIY)p(FilB)aT..

=1

elpdn

— adding up the score for each observation.

Unfortunately these quantities depend on the true 0, which is unknown.
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Model comparison

The first widely-used approximation to elpd, ‘plugs-in’ a simple non-Bayesian
maximum likelihood point estimate 8,75 for 8, and assumes the future data Y;
can be approximated by current data Y.

This double use of the data (in both 8,7 and Y; = Y;) results in overfitting, but
this can be easily corrected. We approximate elpd, by

n
elpdarc = (Z p<n0>) —k
=1

and (confusingly!) we report

n
AIC = -2 x elpd g;0 = —2 (Z p(y;-|9)> + 2k,
1=1

where k is the number of parameters. AIC, developed by Akaike (1973), is An
Information Criterion.
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Model comparison

In Bayesian and/or hierarchical models, there is no well-defined count of
parameters — because we typically learn about one as we learn about all the
others. The widely-used Deviance Information Criterion instead uses a Bayesian
posterior mean E[8|Y] for its estimate Ogayes, 9iVing

n
elpdprc = (Z |09p(Y:é|eBayes)> —pD,
i=1
where pD = 2 (1og p(Y|8gayes) — Egy (109 p(Y(0)])
IS another bias-correction term, accounting for double use of data in the ‘score’
log p(Y|@) and also in the posterior p(0|Y).

In the usual confusing manner, we actually use

n

DIC = -2 (Z log p(K;GBayes)> + 2pD.
1=1
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Model comparison

DIC — easily calculated using the WinBUGS software and similar packages — is
popular in practice. Some examples from genetics;

e Shriner and Yi 2009 use DIC in the context of multiple QTL Mapping — to
select how many QTLs there are, and their locations

e Yu et al, 2012 use DIC studying genexenvironment interactions, with a model
that ‘clusters’ nearby* variants, so they have similar interaction effects. DIC

IS used to choose how many clusters

* ...using the Potts model
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682718/
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002482

Model comparison

But DIC has been heavily criticized by statisticians;

pp IS not invariant to parameterization

DIC is not consistent for choosing the correct model

DIC has an ad hoc theoretical justification and can't be used for all models
DIC has been shown to under-penalize complex models (Plummer (2008),
Ando (2007)

e See Spiegelhalter et al (2014) for a recent review
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https://www.jstor.org/stable/20441383
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Model comparison

A currently-preferred alternative is the Widely-Applicable Information Criterion
(WAIC) which is identical to DIC by uses bias-correction term

pwarc =2 ) 109(Egy[p(Y;0)]) — Egjy[log p(Y;16) ]
i=1

. and then reports

mn
DIC = —2 (Z log p(Yz’|eBayes)) + 2pw ArC-
1=1

e [ his has better theoretical properties, but can be unstable in small samples

e If you find all the log-densities confusing, use of these criteria is similar
in practice to using leave-one-out prediction measures, averaged over each
observation — but they can be computed much, much more quickly
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Model comparison

To illustrate these criteria, we use a linear regression example — similar to the
FTO one, but with a larger dataset;

Muscle degredation by rs1815739 genotype (n=603)

Trait
150 200 250
| | |

100
|

50

| e e i

CcC CT TT

genotype
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Model comparison

Using R2WinBUGS for a model with a genotypexsex interaction — and calculating
its DIC;

library ("R2WinBUGS")
# full model
cat(file="1linregprogl.txt", "model{
for(i in 1:n){
Trait[i] ~ dnorm(muli], tau)
muli] <- betal[l] + betal[2]*Geno[i] + betal[3]*Male[i] + betal[4]*Geno[i]*Malel[i]
+
tau <- 1/(sigma*sigma)
sigma <- abs(Z)/sqrt(chi2)
Z ~ dnorm(0,1)
chi2 ~ dchisqr(1l) # sneaky way to get a cauchy prior
for(j in 1:4){
betaljl] ~ dnorm(0,0.001) }
")
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Model comparison

linregoutl <- bugs(data=fms.list, inits=NULL,
parameters.to.save=c("beta"),
model.file="linregprogl.txt",
bugs.directory = "C:/Program Files/WinBUGS14",
n.chains=3, n.iter=10000,
n.burnin=500, n.thin=1, DIC=TRUE, debug=FALSE)
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Model comparison

We also use WinBUGS to fits a reduced model — linregout2 with no interaction
but everything else the same. Comparing it to classical methods and AIC;

> 1ml <- 1m(Trait~Geno+Male+Geno*Male, data=fms.clean)
> 1m2 <- 1m(Trait~Geno+Male, data=fms.clean)

> -2*c(logLik(1m1), logLik(1m2))

[1] 5841.214 5845.255

> c(AIC(1ml), AIC(1m2))

[1] 5851.214 5853.255 # lower is better (i.e. better predictions)

> c(linregout1$DIC, linregout2$DIC)
[1] 5851.174 5853.489

> c(linregout1$pD, linregout2$pD)
[1] 5.014797 4.189147

e AIC and DIC values are extremely close (expected with non-hierarchical model
and large n)

e DIC's pD approximates the number of parameters very accurately
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Model comparison

Using INLA, this is even simpler — and we can also obtain WAIC;

> library("INLA")
> inlal <- inla(Trait~Geno+Male+Geno*Male, data=fms.clean, control.compute = list(waic=TRUE, dic=TRUE

> inla2 <- inla(Trait~Geno+Male, data=fms.clean, control.compute = list(waic=TRUE, dic=TRUE))

> c(inlal$waic$waic, inla2$waicPwaic)
[1] 5853.014 5855.292
> c(inlal$dic$dic, inla2$dic$dic )
[1] 5851.213 5853.323

> c(inlal$waicPp.eff, inla28waic$p.eff) # not so great
[1] 6.654282 5.860704
> c(inlal$dicPp.eff, inla28dic$p.eff ) # unreasonably good!

[1] 4.995477 4.031116

e INLA’s (sensible) default priors are used here
e Part of the issue with WAIC's effective number of parameters is that the
model — which assumed Normality — doesn’t fit the spread of the data well
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Model comparison

Just to illustrate this property, we transform the data to look more Normal;

Histogram of fms.clean$Trait Histogram of fms.clean$Trait2
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Model comparison

Re-running all the analyses with the transformed, more-Normal trait;

> inlalb <- inla(Trait2~Geno+Male+Geno*Male, data=fms.clean, control.compute = list(waic=TRUE, dic=TR
> inla2b <- inla(Trait2~Geno+Male, data=fms.clean, control.compute = list(waic=TRUE, dic=TRUE))

> c(inlalb$waicPwaic, inla2b$waicPwaic)
[1] 1637.344 1638.347
> c(inlalb$dic$dic, inla2b$dic$dic )
[1] 1637.252 1638.192

> c(inlalb$waic$p.eff, inla2bPwaicPp.eff) # much better

[1] 5.082174 4.162125

> c(inlalb$dicPp.eff, inla2bPdic$p.eff ) # still unreasonably good!
[1] 5.044638 4.042928
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Conclusions

e Stan, INLA and others allow almost any model to be fit, given some coding
based on a description of the model and data, and some care using MCMC

e No universally agreed upon approach to carrying out model comparison. (Also
true in non-Bayesian work)

e The Widely Applicable Information Criteria (WAIC) is growing in popularity,
and both DIC and WAIC are available off-the-shelf, for many frequently-used
models.
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