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Overview

Rather than trying to cram an-

other book’s-worth of material

into a short session...

• Testing as model selection

• More on Bayes Factors, for point null hypotheses

• Decision theory – how to calibrate

• Two-sided tests as optimal Bayes decisions

• Connections with FDR, and more
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Testing as model selection

Suppose we have some prior belief that a βj = 0; a model allowing this specifies
βj = zj × bj, where zj ∈ {0,1} and bj ∈ R.

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi.

For example, in Session 4’s FTO experiment,

E[Y |x, b, z = (1,0,1,0) ] = b1x1 + b3x3

= b1 + b3 × age

E[Y |x, b, z = (1,1,0,0) ] = b1x1 + b2x2

= b1 + b2 × group

E[Y |x, b, z = (1,1,1,0) ] = b1x1 + b2x2 + b3x3

= b1 + b2 × group + b3 × age.

Can also think of each value of z = (z1, . . . , zp) representing a different model.
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Testing as model selection

But easier to implement thinking of zj as unknown components in one (big)

model – written informally as;

zj
i.i.d.∼ Bern(0.5)

bj ∼ p(bj)

εi
i.i.d.∼ N(0, σ2)

σ2 ∼ p(σ2)

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi

Each of the 2p possible values of of z has a posterior probability. (In the prior we

treat them as a ‘coin toss’, equally likely to be ‘in’ or ‘out’.)
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Bayesian model comparison

The posterior probability of the submodels is obtained from

p(z|y,XXX) =
p(z)p(y|XXX, z)

p(y|XXX)

To compare submodels a and b, usually consider the odds of each, and how they

compare:

p(za|y,XXX)

p(zb|y,XXX)
=

p(za)

p(zb)
×

p(y|XXX, za)

p(y|XXX, zb)
posterior odds = prior odds × “Bayes factor”

Importantly, the Bayes Factor (BF) does not depend on the prior for z – so the

‘coin toss’ prior is not crucial for this approach.
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Parsimony

In the linear regression model, the formula for p(y|x, z) is complex, but

p(y|XXX, za)

p(y|XXX, zb)
= (1 + n)(pzb−pza)/2

s2
za

s2
zb

1/2

×

s2
zb

+ SSR
zb
g

s2
za + SSRzag

(n+1)/2

.

where SSRg denotes a form of sum of squared residuals.

So a model za is penalized if;

• it is too complex (number of covariates pA is large)

• it doesn’t fit well (SSRag is large)
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FTO example

E[Yi|βββ,xi ] = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4
= β1 + β2 × grpi + β3 × agei + β4 × grpi × agei .

effect of group ⇔ one of more of β2, β4 not zero

z model log p(y|XXX, z) p(z|y,XXX)
(1,0,0,0) β1 −71.82 0
(1,1,0,0) β1 + β2 × grpi −70.04 0
(1,0,1,0) β1 + β3 × agei −67.04 0
(1,1,1,0) β1 + β2 × grpi + β3 × agei −61.19 0.63
(1,1,1,1) β1 + β2 × grpi + β3 × agei + β4 × grpi × agei −61.72 0.37

P[β2 or β4 6= 0 ] = 0.60

P[β2 or β4 6= 0|y,XXX ] ≈ 1
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FTO example: using JAGS

Using the conjugate g-prior is a little artificial here;

• Each sub-model has a prior that corresponds to one observation’s information,
but those observations are not the same.
• It’s strange to support the model with all βj = 0, i.e. where E[Yi|xi ] is exactly

zero for everyone

So we’ll instead use a general-purpose Gibbs sampler for the same model, but
with z1 = 1 (forcing an intercept) and

zj
i.i.d.∼ Bern(0.5)

bj ∼ N(0,10), for j = 2,3,4

εi
i.i.d.∼ N(0, σ2)

1/σ2 ∼ Γ(0.5,1.839) ... as in Lec 4

yi = z1b1xi,1 + · · ·+ zpbpxi,p + εi
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Reminder: Gibbs sampler

For a couple of 2D examples; the same idea also works for binary parameters

θ1 θ1

θ2 θ2

1

3

4

5

1

2

3

4
5

2
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FTO example: using JAGS

Stan can’t handle discrete parameters (yet?) so we’ll use JAGS – Just Another
Gibbs Sampler. The JAGS model and data:

library("rjags")
# first, write the model as to a text file
cat(file="linearprog2.txt", "model{

for(j in 1:p){
b[j]~dnorm(0, 0.1) }

z[1] <- 1 # fix the intercept to be in the model
for(j in 2:p){

z[j] ~ dbern(0.5) }
inv.sigma2 ~ dgamma( 0.5, 1.839 )

sigma <- sqrt(1/inv.sigma2)
for(i in 1:n){

mu[i] <- x[i,1]*b[1]*z[1] + x[i,2]*b[2]*z[2] + x[i,3]*b[3]*z[3] + x[i,4]*b[4]*z[4]
y[i] ~ dnorm(mu[i], inv.sigma2) }
}")
# compile code based on model and data, then run chain
jags1 <- jags.model("linearprog2.txt", data=list(y=y,x=X, n=nrow(X), p=ncol(X)) )
update(jags1, 50000) # initial iteraions
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FTO example: using JAGS

And some of

the output;

> jags1.out <- coda.samples(jags1, c("b","inv.sigma2", "z"), n.iter=100000)[[1]]
> summary(jags1.out)
Iterations = 50001:150000
Number of chains = 1
Sample size per chain = 1e+05
1. Empirical mean and standard deviation for each variable & std err of the mean:

Mean SD Naive SE Time-series SE
b[1] 0.7593 1.26609 0.0040037 0.0184052
b[2] 1.2431 2.71152 0.0085746 0.0300475
b[3] 2.6202 0.39962 0.0012637 0.0057575
b[4] 2.1791 0.62138 0.0019650 0.0091990
inv.sigma2 0.2676 0.09069 0.0002868 0.0004338
z[1] 1.0000 0.00000 0.0000000 0.0000000
z[2] 0.5604 0.49634 0.0015696 0.0058886
z[3] 1.0000 0.00000 0.0000000 0.0000000
z[4] 0.9928 0.08431 0.0002666 0.0015052

The coefficient of genotype is 6= 0 with 56% posterior support; the interaction
term being 6= 0 has 99% support. The chain never moved from supporting age
term 6= 0, so it has (approximately) 100% support.
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FTO example: using JAGS

All 100,000 steps in the chain are stored, so we can assess posterior for other

terms – for example the support for each set of included/excluded variables;

> table(apply( jags1.out[,c("z[1]","z[2]","z[3]","z[4]")], 1, paste, collapse="") )/100000
1011 1110 1111

0.43851 0.00693 0.55456

And comparing the

posteriors for b2 to

the posterior to the

actual genotype coef-

ficient, β2 = b2 × z2;
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FTO example: using JAGS

To computing the Bayes Factor for whether any βj = bjzj = 0;

• Compute compute pj = P[ bj = 0 ] (which may be of interest on its own)

• Divide pj/(1− pj) by prior odds of the null

Note it’s straightforward to test multiple parameters, e.g. that β2 = β4 = 0 –

just compute the relevant prior and posterior probabilities.

But this doesn’t scale well with p, for tests that rely on the sampler exploring 2p

submodels. (Sensitivity to the prior on bj also a problem)
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FTO example: using JAGS

Using MCMC, we have to start the ‘chain’ somewhere – but this arbitrary choice
shouldn’t affect analysis, if we run the chains for long enough.

• After running long enough, the chains from any two starting points should
converge to cover the posterior in the same way
• Less formally, after running long enough, chains forget where they started
• It’s pragmatic (but not perfect) to run chains from a few different starting

points, and check they give similar answers

JAGS makes this fairly painless – here for 4 short chains;

set.seed(4)
inits1 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,0,1,0))
inits2 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,0,0,0))
inits3 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,1,1,0))
inits4 <- list( b=rnorm(4,0,1),inv.sigma2=0.5,z=c(NA,1,1,1))
jags2 <- jags.model("linearprog2.txt", data=list(y=y,x=X, n=nrow(X), p=ncol(X)),
inits=list( inits1, inits2, inits3, inits4), n.chains=4 )
jags2.out <- coda.samples(jags2, c("b"), n.iter=10000)
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FTO example: using JAGS

An informal way to check for convergence is to look for differences in each chain’s
traceplot; (no issues seen here)

plot(jags2.out, trace=TRUE, density=FALSE, auto.layout=FALSE, col=adjustcolor(2:5, alpha.f=0.25), lty=1)
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FTO example: using JAGS

To more formally check convergence of the chains for individual parameters, the
Gelman-Rubin diagnostic compares within-chain variance (W ) to between-chain
variance (B), using tools from mixed models. For a converged chain their ratio
R = W/B should be ≈ 1...

> gelman.diag(jags2.out)
Potential scale reduction factors:

Point est. Upper C.I.
b[1] 1 1.00
b[2] 1 1.00
b[3] 1 1.00
b[4] 1 1.01

Similar ideas provide the effective sample size, i.e. roughly how big a simple
random sample from the posterior is represented by the (auto-correlated) chain

> effectiveSize(jags2.out)
b[1] b[2] b[3] b[4]

1860.972 3057.044 1898.274 1586.170 # each from 40,000 iterations
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FTO example: using JAGS

gelman.plot(jags2.out) shows how W/B evolves over iterations;
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Ideally, don’t start using the chain output until it looks like it converged – & even
then, use as long a chain as you can manage. Thin it, if memory is an issue.
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Bayes Factors, again

Recall the Bayes Factor for two models/hypotheses is

BF =
P[y|H0 ]

P[y|H1 ]
=

P[H0|y ]

P[H1|y ]

/ P[H0 ]

P[H1 ]

Large BF values indicate support for the null.

• For one-sided tests results are typically little different from using p-values

• With large samples/sane priors, posterior probability of the null ≈ p-value

from a one-sided test. (Casella & Berger 1987).

• But particularly in high-throughput studies (e.g. GWAS) we don’t want one-

sided tests – just an indicator that ‘something interesting is going on’, i.e.

that θ 6= 0. Which hypotheses are low-hanging fruit, ready for further studies?
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Bayes Factors, again

Testing in this way, it’s natural to use two-sided tests, of hypotheses

• H0 : θ = 0, i.e. exactly nothing going on

• H1 : θ 6= 0, i.e. something going on (but we’re not saying what)

• Adapting the frequentist test is easy; just double the smaller p from two

one-sided tests

• Or equivalently use p < 0.025 (not 0.05) as a threshold, i.e. |Z| > 1.96 (not

1.64) to identify the significant results

Warning: No such neat relationship holds between the

Bayes Factors used in one-sided and two-sided tests.
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Bayes Factors, again

This may not be intuitive – but

the one-sided version has a smooth

prior, versus the two-sided’s lump

and smear — here with a N(0,W )

‘smear’:part

θ

− 3 W − 2 W − W 0 W 2 W 3 W

50:50 N(0,W), point mass N(0,W) alone

To a good approximation (Wakefield 2009), the Bayes Factor is√
V +W

V
e
Z2
2

W
W+V =

√
(1 +W/V )e

−Z
2

2
W/V

1+W/V ,

where V is the large-sample variance estimate of θ̂MLE.
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Bayes Factors, again

Making the prior more diffuse, eventually this happens:

θ
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• With W huge, any data we observe is massively unlikely under H1, so the BF
points strongly to H0, completely contradicting the classical test (!!!)
• Known as the Jeffreys-Lindley paradox. BFs are sensitive to the ‘smear’ prior
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Bayes Factors, again

With BF ≈
√

(1 +W/V )e
−Z

2
2

W/V
1+W/V , we also see that the BF varies with n for

fixed Z – because V shrinks with 1/n

• BF fans can motivate them as classical test where α changes with n —
not keeping α = 0.05, or α = 5 × 10−8. (Specifically, having α shrink with
1/
√
n logn — see e.g. Wakefield (2009))

• Broadly, bigger studies do look for smaller effects. But it’s hard to motivate
any particular formula when effective n is due to e.g. imputation quality
• Conversely, Sellke et al (2001) use two-sided p-values in lower bounds on

the BF and posterior probability of the null: (with prior P[H0 ] denoted π0)

BF ≥ −ep log(p)

P[H0|y ] ≥
1

1− 1
ep log p ×

1−π0
π0

, for p < 1/e ≈ 0.368
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Bayes Factors, again

Illustrating those bounds:
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If you believe in a ‘lump’ at zero, a small p-value need not provide strong evidence
to overwhelm that lump. This is one argument to redefine statistical significance
as p ≤ 0.005.
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Decision theory

Decision theory is (formally) how statisticians make decisions!

The decision of whether or not a

vaccine is safe and effective, that

is made by a completely independent

group, not by the federal government,

not by the company. It’s made by

an independent group of scientists,

vaccinologists, ethicists, statisticians.

How much worse do we believe other decisions are — those we could have made?
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Decision theory

Extending our taxonomy:

• Prior distribution: statement of everything we know about θ outside of the

current data

• Likelihood: statement of how plausible the observed data is under different

values of θ

• Posterior distribution: updated prior, everything we know about θ including

the current data

• Loss function: for true parameter value θ, how bad it would be if we make

decision d

The costs of getting it wrong depend on d and θ, but not sample size, prior

belief, etc.
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Decision theory

Before we get

to testing, for

quadratic loss

(θ − d)2, first

compare some

decisions:

θ

density,
loss (scaled)

0 5 10 15

d=3 d=7 d=12

• The expected loss, i.e. the loss averaged over our posterior uncertainty

about θ, is E[ (θ − d)2 ] = Var[ θ ] + (E[ θ ]− d)2

• The choice of d with smallest expected loss (the Bayes rule, i.e. best decision)

is the posterior mean — so d=7, here

• With absolute loss |θ − d|, the posterior median is the Bayes rule

9.25



Decision theory: for tests

To make it work for statistical

tests, we borrow some nuance

from ‘Scots Law’, which has

three possible verdicts – guilty,

not guilty and not proven:

How do the verdicts

overlap with test-

based decisions?

Verdict Hypothesis test Significance test
(Neyman-Pearson) (Fisher)

Guilty Reject H0 Reject H0
Not proven no analog No conclusion
Not guilty Accept H0 no analog
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Decision theory: for tests

“Three-decision” problems (is θ > 0? θ < 0? not saying?) must have this loss:

Decision (what do we assert?)
Above No Decision Below

Loss when θ > 0 lTA lNA lFB
θ < 0 lFA lNB lTB

With any non-decision equally bad, coherence conditions & sign-symmetry, get;

Decision
Above No Decision Below

Loss when θ > 0 0 α/2 1
θ < 0 1 α/2 0

Bayes rule: do this iff P[ θ < 0 ] < α/2 Otherwise P[ θ > 0 ] < α/2

... i.e. a Bayesian sided test — α/2 is the ratio of costs for making any
no-decision vs a wrong sign-decision. (See Rice et al (2020) for more.)
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Three-decision problems: transparent example

θ, treatment effect

de
ns

ity

−0.7 −0.5 −0.3 −0.1 0.1 0.3θ0 = 0

prior

posterior
likelihood
(normalized)

Pr[θ > 0]=0.11

• With α = 0.05, sign errors are ×40 worse than making no decision
• ...so only make sign decision if 2 min(P[ θ < 0 ],P[ θ > 0 ]) < 0.05.
• Making sign decisions around other θ0 works similarly
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Multiple decisions

Informally, we could write the sign-testing loss as

Loss =
α

2
1d=N + 1sign error

... where α < 1 prevents us saying d 6= N without even seeing the data.

For m multiple decisions, if we simply add loss functions for individual losses, i.e.

Loss =
m∑
j=1

Lossj(θj, dj)

then overall Bayes rule dB just collects the individual Bayes rules {d1B, d2B, ..., dmB}.

This seems trivial∗ – but note that to account for multiple tests we must,
somehow, say how one result affects how we value other results.
∗But frequentist methods don’t do it (!!!) Famously, under squared error losses and simple Normal
locations θ1, θ2, ...θm, then the sample mean ȳ1, ȳ2, ..., ȳm is worse (on average) than estimates that
shrink together the components. This is Stein’s paradox.
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Multiple sign tests: Bonferroni/FWER

For j = 1,2, ....m tests, we trade off the sum of the non-decision losses for a

single sign error:

Loss =
∑

j:dj=N

αj/2 + 1any sign error

• Must constrain
∑
j αj < 1, or would never decide all dj = N

• With this constraint and symmetry wrt θj, set each αj = α/m for α < 1. A

(mildly) conservative approximation to the Bayes rule makes sign decisions iff

2 min(P[ θ < 0 ],P[ θ > 0 ]) < α/m

...i.e. Bonferroni correction!

• Classical Bonferroni correction uses p < α/m to control family-wise error rate,

i.e. the P[ any false positive ], at or below level α. FWER is a conservative

criterion – its control by Bonferroni is usually mildly conservative
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Multiple sign tests: Bonferroni/EFP

Alternatively: just add m copies of the 3-decision loss, with all αj = α/m:

Loss =
α

2m
#{non-decisions}+ #{sign errors}

• Each θj in its own sign error/non-decision tradeoff

• Bonferroni-corrected 2-sided tests are the exact Bayes rule – not a conser-

vative approximation

• Classical Bonferroni using p < α/m controls the expected number of false

positives (EFP) at α – not very conservatively, and regardless of any

correlation between the test statistics. (Gordon et al 2007)

• No automatic reason to constrain α < 1, but EFP < 1 is desirable in

application where we don’t expect to find overwhelming numbers of ‘hits’
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Multiple sign tests: Benjamini-Hochberg/FDR

Lewis & Thayer (2009), in our notation, use

Loss =
#{sign errors}

1 ∨#{sign decisions}︸ ︷︷ ︸
Prop( wrong sign|decide sign )

+
α

2

#{non-decisions}
m︸ ︷︷ ︸

Prop( no decision|decision possible )

,

and a conservative approximation to the Bayes rule is a step up procedure:
ordering by smaller tail area, keep making signs until 2× tail areas exceeds αj/m

This is a Bayesian analog of the famous Benjamini-Hochberg algorithm, that
rejects ordered p-values until p[j] < αj/m, which controls the frequentist False
Discovery Rate,

FDR = E
[

#{false positives

1 ∨#{positives}

]
,

at pre-specified level α. (For ‘nice’ patterns of inter-test correlation)
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Decision theory: lumps versus smears

When we have a lump and smear model, losses for decisions that θ = 0 (exactly!)
make more sense;

Decision
Accept lump Accept smear

True θ = 0 0 L1
True θ 6= 0 L2 0

We accept the alternative ‘smear’ if and only if

L1P[H0|y ] < L2P[H1|y ]

i.e. when the posterior odds of the alternative exceeds L1/L2

• If Type I errors are worse than Type II, L1 > L2 and this threshold is high
• The relative costs of Type I versus Type II errors determine the threshold;

compare this to frequentist focus on controlling Type I error rate and only
then worry about power, or equivalently Type II error rate.

9.33



Decision theory: lumps versus smears

For a given prior P[ θ = 0 ],

the L1/L2 ratio can be turned

into a threshold on the Bayes

Factor. Alternatively use a clone

parameter θ∗ with the same prior

as θ, not updated by the data,

and use this loss:

Decision on θ
Accept lump Accept smear

θ∗ = 0 θ = 0 l00 l00
θ 6= 0 L2 0

θ∗ 6= 0 θ = 0 0 L1
θ 6= 0 l11 l11

We accept the alternative ‘smear’ if and only if

L1P[H0|y ]P[H1 ] < L2P[H1|y ]P[H0 ]

i.e. when the Bayes Factor in favor of H1, i.e. P[H1|y ]
P[H0|y ]/

P[H1 ]
P[H0 ] exceeds L1/L2.

... so can calibrate BF via relative costs of Type I/II error when true θ and
clone θ∗ disagree – and if we don’t care about decisions when θ, θ∗ agree.
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Summary

• Bayes provides various forms of tests: to choose between them, it helps to

state how bad right/wrong answers would be

• There is some interplay between prior on θ and how we test ideas about θ:

using sign tests makes less sense if θ = 0 has a ‘lump’

• Calibration of tests — and multiple tests — is easiest via ratios of (specific!)

costs

• Yes, Bayesians may need to worry about multiple tests

• Ask ‘which question are we answering?’ and answer carefully!

• If no threshold can be agreed, report the summaries (plural) that make

decisions possible, and don’t actually do any tests
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