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Kidney cancer example

Highest kidney cancer death rates Lowest kidney cancer death rates

F'igLJT-I'_‘ 2.7 The counties l:'.i_'jf- the United States with the hfghL’Sr 1 age- ]_:|E|_|_n: 28 The counties gf the United States with the lowest T0% age-
standardized death rates for cancer of kidney/ureter for U.S. white standardized death rates for cancer of kidnev/ureter for US. white
males, 1980-1989. Why are most of the shaded counties in the middle males, 1980-1989. Surprisingly, the pattern is somewhat similar to
af the country? See Section 2.8 for discussion. the map of the highest rates, shown in Figure 2.7,
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Typical high-throughput data

* n: sample size
* m: number of features (genes, proteins)
* m>>n

* Normally, the number of samples are limited.



Detection of DE genes

* A classical problem in gene expression study: detect
differentially expressed (DE) genes.

* DE genes: genes from various samples are expressed
differentially in different cell types, tissues,
developmental stages or diseases.

* Many applications: RNA-seq, ChIP-seq, ATAC-seq, ...

Typically the number of replicates is rather low.



The problem
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Methods for detecting DE genes

* Fold change
* Classical t-test
* SAM (Significance Analysis of Microarray)

Add a constant to the denominator of the t-statistics
Tusher et al. 2001.

* Model-based methods (Li and Wong 2001):
* LIMMA (Linear Models for Microarray Data)

Use Bayesian hierarchical model in multiple regression
setting (Smyth 2004).



An motivating example

To estimate the probability of tumor in a population of
female F344 laboratory rats that receive a certain dose of
the drug.
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From Bayesian Data Analysis Gelman et al.



The probability model

¢ (nl-,yl-),i = 1, e,
* yi~Binom(n;, 0;)



Choose from the following models

* Separate: assume data from each experiment
follow its own Binomial distribution: 8;’s distinct.

* Pooled: assume data from all experiments follow
the same Binomial distribution: 8;’s identical.

* Hierarchical: something in between. But how?



Hierarchical model

* When you don’t have much, borrow.
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From Bayesian Data Analysis Gelman et al.
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Hierarchical model

* Each experiment follow its own Binomial
distribution. But we assume all the 0;’s are
sampled from a common distribution—Hierarchical
distribution.

yi~Binom(n;, 6;)
0;~Beta(a, )



Separated Pooled Hierarchical
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Inference of hierarchical model
e Data and parameters: «, ,B,H-,yj,j =1,..,J

e Joint distribution:
P(a, B,6;|y;) < p(a, BpBla, Bp(y16,a, B)

[(a+ ) - Vj .
OCp((I ,B) H] 1F((ZC;I‘(Bﬁ)9]a 1(1_3}),3 1H§=10j1(1_8j)n] Yj

* Posterior distribution for hyperparameters «, 3:

[(a+B) T(a+y;)T(B+n;j-y;)
P(a, I Iy) OCP(a ,3) H] 1M (a)T(B) ['(a+B+n;)

* Posterior distribution for hyperparameters 6;:
I(a+B+n;) a+y]—1

p(Hj‘a,,B,y) - F(a+y;)T(B+nj—-y;) J (1-

6,]_),8+nj—yj—1



Impact of hierarchical model
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For microarray data






Std dev vs mean
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Std dev vs mean
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Diverse functions
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standard Deviation

(a) Truth (b)) Sample (c) Hierarchical Model
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Drawbacks of hierarchical models

* Restrict to current dataset.
* May overcorrect, especially at the lower end.

* Inflated variance means much less discovery
power—conservative.



nformative prior derived from
nistorical data







But why not this way?
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A microarray compendium

CORRESPONDENCE

A global map of human gene expression

To the Editor: [0 Hematopoietic system B Normal

. O Other B Disease
Although there is only one human genome
& . / & B Connective tissue O MNeoplasm
sequence, different genes are expressed B Incompletely differentiated m Cellline

e 5,372 samples
* 206 different studies

e From 163 different labs
Lukk et al. 2010.
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The global gene expression map
4 meta groups

# of # of
Group
samples samples
blood neoplasm cell line 166
1259 non neoplastic cell line 262
solid tissue neoplasm cell line 831
disease 765 Plogd non neoplastic c.ilse.ase 388
solid tissue non neoplastic disease 377
breast cancer 672
germ cell neoplasm 71
leukemia 567
nervous system neoplasm 112
GJEN M 2315 .
non breast carcinoma 288
non leukemic blood neoplasm 334
other neoplasm 167
sarcoma 104
normal blood 467

— normal solid tissue 566



Standard deviations from different

studies (

(a) SD between Normal and Historical Data
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Standard deviations from different

studies (

orain)

(a) SD between Normal and Historical Data
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Simple shrinkage with historical
information

Sample historical

. . Weight W Adjusted Variance
variance  variance
Genel Varl Var_histl  Var hist1/(Var hist1+Varl) (1-W)*Varl+W*Var_histl
Gene 2 Var2 Var hist2 ~ Var_hist1/(Var_histl +Varl) (1-W)*Var2+W*Var_hist2

Gene1000 Varl000 Var hist1000 Var hist1000/(Var_hist1000+Var1000) (1-W)*Varl000+W*Var_ hist1000

Combine historical information by simply doing a
weighted average between historical variance and

sample variance.

The weight is decided by the relative value of historical
variance and sample variance
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Informative Prior Bayesian Test (IPBT)

e Use historical data to build gene-specific,
informative priors.

* Conduct Bayesian inference on o, the standard
deviation of gene |.

* Either calculate a Bayes factor or test statistics of an
adjusted t-test and rank genes based on that.



Standard Deviation
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Methods compared

* Classical Student’s t-test
* SAM

* Limma

 [PBT

* / test



Simulation study

* 1,000 genes, each has a unique distribution
N(u;, of).

* 10% differentially expressed.

e All controls are sampled from N (u;, 57).

* 10% of treatment sampled from N (u; + 20;, aiz).

* 50 “historical datasets”.



Simulation Study

* Equal sample size for treatment/control is
assumed, with k=2, 3, 4, 5.

e Simulated runs were repeated 500 times
for each setting. Each time calculate the
False discovery rate (FDR) for each
method.

* The boxplot for the 500 FDRs are plotted
for each method.
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ROC curve for one simulation

AUC for each method

Method

student's t-test
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Low variance DE gene detection

(b) FDR (Low SD)
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FDR
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When historical data is noisy

(a) FDR vs. Sample Size(without error)
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Real data analysis

* All the real data analysis used a global gene
expression map of microarray data(U133A) from
Lukk et al. (2010)

* All the microarray data are preprocessed (including
normalization and summarization etc.) by robust
multiarray analysis (RMA, Irizarry, Hobbs et al. 2003



Real data analysis

We conduct two real data analysis
(1) Latin Square hgul33a spike-in experiment

* (2) Brain and heart data from the global gene
expression map of microarray data



Real data (heart)

e Data on heart tissue
e 36 normal (from 2 different studies)
* 51 disease (from 4 different studies)

* Randomly select two samples from heart disease and
normal samples, respectively, as the control and
treatment data.

* The remainder 34 normal sample used to form historical
data.

e Conduct tests and identify top 1000 DE genes.
* Repeat the sampling and testing procedures 5 times.

* Assess the agreement between every pair of the five DE
gene lists.



Agreement evaluation using heart
data

(c) Agreement between Different DE Gene Lists
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Summary

* Gene-specific properties such as variance can be
captured by exploiting existing data that are public-
available.

 Utilizing historical data in detecting differentially
expressed genes is a better alternative than
classical hierarchical model.

e Using informative prior can overcome difficulties
faced in low-sample size inference problems.

* It is possible to reduce the number of replicates.



Reference

Bioinformatics, 2015, 1-8

doi: 10.1093/bioinformatics/btv631

Advance Access Publication Date: 30 October 2015
Original Paper

Gene expression

Bayesian inference with historical data-based
informative priors improves detection of
differentially expressed genes

Ben Li', Zhaonan Sun?, Qing He', Yu Zhu®** and Zhaohui S. Qin'**

'DEpanment of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
30322, USA, *Department of Statistics, Purdue University, West Lafayette, IN 47906, USA and *Department of
Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30322, USA

*To whom correspondence should be addressed.
Associate Editor: Jonathan Wren

Receved on April 15, 2015; revised on September 30, 2015; accepted on October 26, 2015

Li et al. Bioinformatics 2015.

51



Partial utilization of the
historical data



Limitations

e IPBT assumes that historical data is “similar” to the
current data.

 Both historical data and current data have to come
from the same platform.



Exchangeable

* A key assumption in hierarchical model

* Assume some kind of homogeneity among the
features (genes in our context).

 However, this is often unrealistic

* Genes are supposed to perform different functions
hence have different properties.

e What can we do?

* Overkill to borrow strength from all 25,000 genes
 Just need a small subset









Two strategies

* Decompose genes into groups, such that genes in
the same group are homogeneous. Apply
hierarchical model within each group separately.

* For each individual gene, identify some of its
“neighbors”, and run hierarchical model among
these neighboring genes.



How to define groups?

e Use historical data

* Rank all genes using the variances estimated from
historical data.



Real data (heart)

e Data on heart tissue
e 36 normal (from 2 different studies)
* 51 disease (from 4 different studies)

* Randomly select two samples from heart disease and
normal samples, respectively, as the control and
treatment data.

* The remainder 34 normal sample used to form historical
data.

e Conduct tests and identify top 1000 DE genes.
* Repeat the sampling and testing procedures 5 times.

* Assess the agreement between every pair of the five
results.



Real data (heart)
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Summary

* Utilize historical data, but only a small part of them.

* The adaptiveHM Can be applied across platforms, e.g.,
use microarray historical data in RNA-seq analysis.

* Borrow strength both vertically and horizontally.

p—
Stat Biosci \!) CrossMark
DOI 10.1007/s12561-016-9156-x

Improving Hierarchical Models Using Historical Data
with Applications in High-Throughput Genomics Data
Analysis

Ben Li! . Yunxiao Li' . Zhaohui S. Qin!-2
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